WO2022009536A1 - Sputtering apparatus and sputtering film forming method - Google Patents

Sputtering apparatus and sputtering film forming method Download PDF

Info

Publication number
WO2022009536A1
WO2022009536A1 PCT/JP2021/019306 JP2021019306W WO2022009536A1 WO 2022009536 A1 WO2022009536 A1 WO 2022009536A1 JP 2021019306 W JP2021019306 W JP 2021019306W WO 2022009536 A1 WO2022009536 A1 WO 2022009536A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pair
sputtering apparatus
film
sputtering
Prior art date
Application number
PCT/JP2021/019306
Other languages
French (fr)
Japanese (ja)
Inventor
和人 下田
純 佐々木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022534934A priority Critical patent/JPWO2022009536A1/ja
Publication of WO2022009536A1 publication Critical patent/WO2022009536A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present technology relates to a sputtering apparatus and a sputtering film forming method, and more particularly to a sputtering apparatus and a sputtering film forming method for performing high-speed film formation by magnetron sputtering using a gas flow.
  • the sputtering method has been known as a film forming method for a metal compound film or the like, but since a dense film formed by the sputtering method has a low film forming speed and there is a concern about mass productivity, the vapor deposition method is used. It is required to form a dense film at such a high film formation rate.
  • the gas flow sputtering method is known as a method for high-speed film formation.
  • the gas flow sputtering method is a method in which sputtering is generally performed under a relatively high pressure of about 100 Pa, and sputtered particles are transported to a substrate to be formed and deposited by a forced flow of gas. According to the gas flow sputtering method, it is said that high-speed film formation 10 to 1000 times faster than the film formation speed of a normal sputtering method is possible.
  • a sputtering device equipped with a magnetron type rotary cathode is known as a technology that enables a high film formation speed.
  • a sputtering device equipped with a magnetron type rotary cathode is known as a technology that enables a high film formation speed.
  • two magnetic field forming portions in the plasma processing portion are rotatably provided independently of the two rotary cathodes, and the arrangement relationship between the two magnetic field forming portions is caused by the rotation of the two magnetic field forming portions.
  • a sputtering device capable of adjusting the flight direction of the magnetron plasma ions and secondary electrons formed in the processing space, in other words, the energy of the ions and secondary electrons flying to the substrate has been proposed. ing.
  • the film formation rate can be improved as a whole of the treatment while suppressing damage to the base material.
  • Patent Document 1 since the film is formed at a relatively high pressure, there is a problem that the target material tends to become powder, and even if the film is formed, the film quality is poor and the adhesion is poor. Further, since the technique of Patent Document 2 uses a normal sputtering method, there is a problem that the film forming speed is slower than that of gas flow sputtering.
  • the main purpose of this technology is to provide a sputtering apparatus capable of forming a film at a high speed and producing a thin film having high quality and high adhesion.
  • the surface is covered with a target material, and between a pair of cathodes arranged opposite to each other, a pair of magnetic field generators arranged inside each of the pair of cathodes, and a pair of cathodes to generate a magnetic field.
  • a gas that blocks the gas supplied from the gas supply unit which supplies gas in the intermediate flow region, which is the transition region between the viscous flow and the molecular flow, from diffusing from between the pair of cathodes to the surroundings.
  • a sputtering apparatus comprising a blocking portion and forming a film on the surface of a substrate.
  • the surface is covered with a target material, and between a pair of cathodes arranged opposite to each other, gas is blocked from diffusing from between the pair of cathodes to form a viscous flow and a molecular flow.
  • a sputtering film forming method for forming a thin film on the surface of a base material which comprises a step of supplying a gas in an intermediate flow region which is a transition region of the above and a step of generating a magnetic field between a pair of cathodes.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of the sputtering apparatus 100 according to the present embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration example of a gas shutoff plate of the sputtering apparatus according to the first embodiment of the present technology.
  • the sputtering apparatus 100 is an apparatus for forming a thin film such as a metal film on the surface of a film 113 which is an example of a base material arranged on the side surface of the main roll 107 by a gas flow sputtering method.
  • the base material is not limited to the film 113, and may be any material that can form a thin film such as a plate base material.
  • the sputtering apparatus 100 is arranged inside each of a pair of rotary cathodes 101 and a rotary cathode 102 arranged opposite to each other, and a pair of rotary cathodes 101 and a rotary cathode 102.
  • a magnet unit 103 and a magnet unit 104 which are a pair of magnetic field generating units for generating a magnetic field, are provided.
  • the sputtering gas supply unit 105 that supplies the sputtering gas and the sputtering gas supplied from the sputtering gas supply unit 105 diffuse from between them to the surroundings. It is provided with a gas blocking plate 106 which is a gas blocking portion that shuts off the gas, and a main roll 107 that holds a film 113 for forming a film, which is an example of a substrate. Further, the sputtering apparatus 100 includes a chamber 115 that forms a vacuum processing space, and a DC power supply 110 that is a power supply for sputtering to which a sputtering voltage is applied.
  • the rotary cathode 101 and the rotary cathode 102 are arranged so that their side surfaces face each other in a direction intersecting the direction in which the sputter gas is introduced.
  • the rotary cathode 101 and the rotary cathode 102 are formed in a cylindrical shape as a whole, and include a cylindrical base member 108 and a target material 109 that covers the entire surface of the base member 108.
  • the base member 108 is made of, for example, a conductor.
  • As the target material 109 for example, aluminum, silicon, or the like is used.
  • the rotary cathode 101 and the rotary cathode 102 may be provided with the target material 109 without having the base member 108. Further, the rotary cathode 101 and the rotary cathode 102 are connected to the DC power supply 110.
  • the magnet unit 103 and the magnet unit 104 are arranged along the inner circumferences of the rotary cathode 101 and the rotary cathode 102, respectively, and generate a magnetic field near the outer peripheral surfaces of the arranged rotary cathode 101 and the rotary cathode 102 to form a magnetic field. do.
  • the magnet unit 103 and the magnet unit 104 are arranged between the rotary cathode 101 and the rotary cathode 102 so as to face each other. As a result, plasma is generated in the region where the sputter gas flows, and the film-forming particles discharged from the target material 109 ride on the flow of the sputter gas and efficiently head toward the film 113, so that the film-forming speed can be improved. can.
  • the magnet unit 103 and the magnet unit 104 may be arranged between the rotary cathode 101 and the rotary cathode 102 so as to be obliquely opposed to each other toward the film 113.
  • the position where the magnetic field is generated is closer to the film 113 side
  • the position where the film-formed particles are emitted from the target material 109 is closer to the film 113 side, and the target material 109 is moved. Since it adheres efficiently to the film 113, the film forming speed can be further improved.
  • each unit of the magnet unit 103 and the magnet unit 104 includes four magnets, and as an example, two N poles are arranged between two S poles. As described above, the two magnets in the center and the two magnets at both ends thereof have different polarities. Therefore, in the pair of magnet units 103 and the magnet unit 104, magnetic poles that repel each other are arranged so as to face each other.
  • the magnet unit according to the present technology may include one magnet or may include a plurality of magnets other than four. Further, the type of polarity of the magnets to be arranged is not limited to the case of this embodiment. Further, the pair of magnet units 103 and the magnet unit 104 may be arranged so that magnetic poles attracting each other face each other.
  • the sputter gas supply unit 105 includes a spatter gas introduction pipe 111 that introduces a sputter gas such as argon gas, which is an inert gas, into the chamber 115, and a spatter gas attached to the tip of the spatter gas introduction pipe 111 on the inner side of the chamber 115. It has an introduction unit 112 and.
  • a sputter gas such as argon gas, which is an inert gas
  • argon (Ar) gas is introduced upward into the chamber 115 from the sputter gas introduction unit 112 located at the lower part of the chamber 115.
  • a high-pressure sputtering gas of about 100 Pa is usually introduced into the chamber 115. That is, a viscous flow of sputter gas is supplied.
  • the sputter gas supply unit 105 of the present embodiment is an intermediate region between the sputter gas introduction unit 112 and the pair of rotary cathodes 101 and the rotary cathode 102 in the chamber 115, which is a transition region between the viscous flow and the molecular flow. Supply sputter gas in the flow region.
  • the viscous flow means a flow in which the frequency of collision between molecules is higher than the frequency of collision of molecules with the wall.
  • the molecular flow means a flow in which molecules collide with a wall more frequently than molecules collide with each other.
  • the sputter gas introduction section 112 of the sputter gas supply section 105 can be formed in an orifice shape. Further, the sputter gas supply unit 105 includes sputter gas introduction units 112 at a plurality of locations such as the extending direction of the rotary cathode 101 and the rotary cathode 102, and supplies spatter gas into the chamber 115 from the plurality of sputter gas introduction units 112. You can also do it.
  • the gas shutoff plate 106 is arranged from the left and right of the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102, respectively.
  • the gas shutoff plates 106 arranged on the left and right have a shape that spreads to the left and right from the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102. It is desirable that the angle between the gas blocking plates 106 spreading to the left and right is an angle tangential to the surfaces of the target materials 109 facing each other from the viewpoint of less turbulence in the flow of sputter gas. Further, the gas shutoff plates 106 arranged on the left and right extend in the extending direction of the rotary cathode 101 and the rotary cathode 102.
  • the gas cutoff plate 106 is located at positions that close the openings at both ends of the gas cutoff plates 106 arranged on the left and right, and both ends in the extending direction between the rotary cathode 101 and the rotary cathode 102. It is also formed at a position that closes the opening. In this way, the gas shutoff plate 106 seals the space between the rotary cathode 101 and the rotary cathode 102 from the sputter gas introduction portion 112, and blocks the diffusion of the sputter gas from the space to the surroundings, thereby blocking the spatter gas. Can be flowed toward the film 113.
  • the main roll 107 is formed in a cylindrical shape and is arranged above the rotary cathode 101 and the rotary cathode 102. Further, in the vicinity of the side surface of the main roll 107, a winding roll 116 for winding the film 113 and a winding roll 117 for winding the film 113 are provided. As an example, the unwinding roll 116 is provided on the right side of the main roll 107 and the take-up roll 117 is provided on the left side of the main roll 107 toward the paper surface of FIG.
  • the film 113 is unwound from the unwinding roll 116, is arranged so as to be attached to the rotary cathode 101 below the main roll 107 and the side surface facing the rotary cathode 102, and is run on the winding roll 117 to be wound. Be done.
  • the sputtering apparatus 100 runs the film 113 from the unwinding roll 116 to the winding roll 117, and forms a film on the surface of the film 13 arranged in a form of being attached to the side surface of the main roll 107. ..
  • the rotary cathode 101 and the rotary cathode 102 are connected to a control unit 114 that controls the rotational operation of the rotary cathode 101 and the rotary cathode 102.
  • the control unit 114 also has an interval adjusting mechanism (variable mechanism) for adjusting the horizontal spacing between the rotary cathode 101 and the rotary cathode 102 and the vertical spacing between the rotary cathode and the film 113.
  • a protective plate 118 separated from the main roll 107 is provided above each of the rotary cathode 101 and the rotary cathode 102.
  • the adhesive plate 118 has a role of preventing the film from being formed in a region other than the required region of the film 113.
  • the above-mentioned configurations other than the DC power supply 110 and the control unit 114 are arranged in the chamber 115.
  • the sputtering apparatus 100 selects the flow rate of Ar gas, which is a sputtering gas, and the distance between the target material 109 so as to be in the intermediate flow region, and the large flow rate of sputtering gas does not leak to the surroundings between the target material 109 and is formed on the film 113.
  • a gas shutoff plate 106 having a structure that allows the gas to flow toward the surface is arranged. With such a configuration, the film-forming particles formed by sputtering are mainly selectively formed in the required region of the film 113 between the left and right adhesive plates 118, and the film-forming speed can be improved.
  • the sputtering apparatus 100 includes a distance between the target material 109 (distance between TT), a distance between the target material 109 and the film 113 (distance between TS), and a magnet.
  • the respective parameters of the angle between the unit 103 and the magnet unit 104 can be optimized.
  • the magnet angles are arranged diagonally opposite to each other so that the erosion position due to plasma approaches the film 113.
  • FIG. 3A is a schematic cross-sectional view of the sputtering apparatus 100 as viewed from the front.
  • FIG. 3B is a schematic plan view of the sputtering apparatus 100 as viewed from above.
  • the sputter gas uniformly discharged from the sputter gas introduction unit 112 through the sputter gas introduction pipe 111 in the width direction is uniformly discharged in the width direction in the chamber 115. It is sprayed between the rotary cathode 101 and the rotary cathode 102.
  • the rotary cathode 101 rotates counterclockwise, for example.
  • the rotary cathode 102 rotates clockwise in the counterclockwise direction to the rotary cathode 101.
  • the sputtering apparatus 100 includes a gas shutoff plate 106 from the sputter gas introduction unit 112 to between the rotary cathode 101 and the rotary cathode 102, so that the released sputtering gas is around. It prevents it from spreading. Further, by extending the gas introduction unit 112 in the extending direction of the rotary cathode 101 and the rotary cathode 102, the sputter gas can be uniformly discharged in the extending direction.
  • the sputter gas introduction section of the sputter gas supply section according to the present technology is not limited to three, and may be one, or may be two or four or more.
  • the target material 109 is sputtered by the plasma generated by the magnetron discharge between the rotary cathode 101 and the rotary cathode 102 connected to the DC power supply 110, and the sputtered particles of the repelled target material 109 are sputtered by an intermediate flow of the sputter gas. Transport to film 113 such as film.
  • sputter particles are deposited on the surface of the film 113 while the film 113 runs on the side surface of the main roll 107.
  • FIG. 4 is a flowchart showing a sputtering film forming method according to the present embodiment.
  • step S1 the user attaches the film 113, which is a film-forming film, to the unwinding roll 116, sets the film 113, and passes the film 113 to the winding roll 117 via the main roll 107.
  • the film 113 which is a film-forming film
  • step S2 the user closes the door of the sputtering apparatus 100 and evacuates the chamber 115.
  • the sputter gas supply unit 105 supplies the sputter gas to the sputter gas introduction pipe 111, and discharges the spatter gas from the sputter gas introduction unit 112 into the chamber 115. More specifically, the surface is coated with the target material 109, and the sputter gas is formed between the pair of rotary cathodes 101 and the rotary cathode 102, which are arranged opposite to each other in the chamber 115, and between the pair of rotary cathodes 101 and the rotary cathode 102. Blocks diffusion to the surroundings and supplies gas in the intermediate flow region, which is the transition region between the viscous flow and the molecular flow.
  • step S4 the main roll 107 runs the film 113 from the unwinding roll 116 to the winding roll 117.
  • step S5 the control unit 114 of the sputtering apparatus 100 rotates the rotary cathode 101 and the rotary cathode 102.
  • step S6 the DC power supply 110 applies electric power to the rotary cathode 101 and the rotary cathode 102, and generates plasma at high density by the effect of the magnetic field arranged between the rotary cathode 101 and the rotary cathode 102.
  • step S7 the sputtering apparatus 100 carries out a film forming step of forming a thin film on the surface of the film 113 by using gas flow sputtering using a sputter gas in an intermediate flow region.
  • step S8 the DC power supply 110 stops supplying power to the rotary cathode 101 and the rotary cathode 102 after the film forming process is completed.
  • step S9 the main roll 107 stops the running of the film 113.
  • step S10 the control unit 114 of the sputtering apparatus 100 stops the rotational operation of the rotary cathode 101 and the rotary cathode 102.
  • step S11 the sputter gas supply unit 105 stops the supply of the sputter gas from the sputter gas introduction unit 112 into the chamber 115.
  • step S12 the user introduces (vents) the atmosphere into the chamber 115.
  • step S13 the user opens the door of the sputtering apparatus 100, takes out the film-formed film 113, and ends the process.
  • the sputtering apparatus 100 in gas flow sputtering, a magnetic field is applied to discharge the magnetron to increase the density of the plasma, and the conditions for supplying the sputtering gas so as to be an intermediate flow.
  • the film can be densified while improving the film forming speed.
  • the sputtering apparatus 100 can generate a strong discharge even at a low gas pressure, form a film at a high speed, and produce a high-quality thin film having high adhesion.
  • the sputtering apparatus can use a pair of flat plate cathodes, but by using a pair of rotary cathodes, the cooling efficiency can be improved and the input power per unit area can be increased. Therefore, the sputtering apparatus 100 can further improve the film forming speed as compared with the case of using a pair of flat plate cathodes. Further, the sputtering apparatus 100 can suppress the temperature rise of the film 113 by adjusting the magnetic field arrangements of the magnet unit 103 and the magnet unit 104.
  • FIG. 5A is a schematic cross-sectional view of the sputtering apparatus according to the present modification as viewed from the front.
  • FIG. 5B is a schematic plan view of the sputtering apparatus according to the present modification as viewed from above.
  • the angle at which the gas shutoff plate is arranged is different from that of the sputtering apparatus 100.
  • Other configurations of the sputtering apparatus according to this modification are the same as the configurations of the sputtering apparatus 100.
  • the sputtering apparatus blocks the sputtering gas discharged from the sputtering gas introduction unit 112 from diffusing from between the rotary cathode 101 and the rotary cathode 102 to the surroundings.
  • a gas shutoff plate 121 which is a gas breaker, is provided.
  • the gas shutoff plate 121 is arranged from the left and right of the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102, respectively.
  • the gas shutoff plates 121 arranged on the left and right have a shape that spreads to the left and right from the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102.
  • the angle between the gas blocking plates 121 spreading to the left and right is such that the target material 109 is tangential to the surface opposite to the surface opposite to each other.
  • the gas shutoff plates 121 arranged on the left and right extend in the extending direction of the rotary cathode 101 and the rotary cathode 102.
  • the gas cutoff plate 121 is also located at a position that closes the openings at both ends of the gas cutoff plates 121 arranged on the left and right, and at a position that closes the openings at both ends in the extending direction between the rotary cathode 101 and the rotary cathode 102. It is formed. In this way, the gas shutoff plate 121 seals the space between the rotary cathode 101 and the rotary cathode 102 from the sputter gas introduction portion 112, and blocks the diffusion of the sputter gas from the space to the surroundings, thereby blocking the spatter gas. Can be flowed toward the film 113.
  • FIG. 6 is a table showing the Knudsen number K of the sputtering gas used in the sputtering apparatus 100.
  • indicates the mean free path (m) determined by the gas pressure
  • D indicates the distance (m) between TT through which the sputter gas flows.
  • the process pressure is generally in the range of the intermediate flow under the condition of 1 Pa or 10 Pa.
  • FIG. 7 is a graph showing the relationship between the pressure and the dynamic rate when the sputtering apparatus 100 is used.
  • the horizontal axis of the graph of FIG. 7 shows the pressure (Pa), and the vertical axis shows the dynamic rate (nm.m / min).
  • a thin film was produced by using the sputtering apparatus 100 under the following film forming conditions.
  • Input power 15kW Distance between T and T: 35 mm Distance between TS: 10 mm Magnet angle: 30deg
  • FIG. 8 is a graph showing X-ray diffraction of a thin film produced by using the sputtering apparatus 100.
  • the horizontal axis of the graph of FIG. 8 shows the scattering angle 2 ⁇ (°), and the vertical axis shows the X-ray intensity (cps).
  • FIG. 8 is an evaluation result of the X-ray diffraction of the film produced under the above conditions.
  • FIG. 9 is a schematic cross-sectional view showing a configuration example of the sputtering apparatus 200 according to the present embodiment.
  • the difference between the sputtering device 200 and the sputtering device 100 according to the first embodiment is that the types of magnetic poles of the pair of magnet units facing each other are different. Since the other configurations of the sputtering apparatus 200 are the same as the configurations of the sputtering apparatus 100 according to the first embodiment, the same reference numerals as those of the sputtering apparatus 100 are given, and the description thereof will be omitted.
  • the sputtering apparatus 200 is arranged inside each of a pair of rotary cathodes 201 and a rotary cathode 202 arranged opposite to each other, and a pair of rotary cathodes 201 and a rotary cathode 202.
  • a magnet unit 203 and a magnet unit 204 which are a pair of magnetic field generating units for generating a magnetic field, are provided.
  • the magnet unit 203 and the magnet unit 204 are arranged along the inner circumferences of the rotary cathode 201 and the rotary cathode 202, respectively, and generate a magnetic field near the outer peripheral surfaces of the arranged rotary cathode 201 and the rotary cathode 202 to form a magnetic field. do.
  • the magnet unit 203 and the magnet unit 204 are arranged between the rotary cathode 201 and the rotary cathode 202 so as to face each other.
  • plasma is generated in the region where the sputter gas flows, and the film-forming particles discharged from the target material 109 ride on the flow of the sputter gas and efficiently head toward the film 113, so that the film-forming speed can be improved. can.
  • each of the magnet unit 203 and the magnet unit 204 four magnets are included in each of the magnet unit 203 and the magnet unit 204.
  • the magnet unit 203 two N poles are arranged between two S poles.
  • two S poles are arranged between the two N poles.
  • the two magnets in the center and the two magnets at both ends thereof have different polarities.
  • the pair of magnet units 203 and the magnet unit 204 are arranged so that magnetic poles attracting each other face each other.
  • the sputtering apparatus 200 it is possible to have the same effect as the sputtering apparatus 100 according to the first embodiment. Further, according to the sputtering apparatus 200, since the magnetic poles of the pair of magnet units 203 and the magnet units 204 attracting each other are arranged so as to face each other, leakage of electrons traveling in the direction of the film 113 is reduced, and the film 113 during film formation is reduced. It is possible to reduce the electron incident damage to.
  • the temperature rise of the film 113 of the sputtering apparatus 200 was reduced to 1/4 of that of the sputtering apparatus 100 according to the first embodiment.
  • the film forming speed at that time was 150 nm.m / min.
  • FIG. 10 is a schematic cross-sectional view showing a configuration example of the sputtering apparatus 300 according to the present embodiment.
  • the difference between the sputtering apparatus 300 and the sputtering apparatus 100 according to the first embodiment is that a reactive gas is introduced to generate a reaction product (compound) such as an oxide film, and plasma emission is monitored.
  • a reaction product compound
  • plasma emission is monitored.
  • the other configurations of the sputtering apparatus 300 are the same as the configurations of the sputtering apparatus 100 according to the first embodiment, the same reference numerals as those of the sputtering apparatus 100 are given, and the description thereof will be omitted.
  • the sputtering apparatus 300 is a reactive gas that supplies a reactive gas such as oxygen (O 2 ) gas or nitrogen (N 2) gas to the vicinity of the film 113 in the chamber 115.
  • a supply unit 301 is provided.
  • the reactive gas supply unit 301 includes a reactive gas introduction pipe 302 for introducing the reactive gas into the chamber 115, and a reactive gas introduction unit 303 attached to the tip of the reactive gas introduction pipe 302 near the film 113. ,have.
  • oxygen (O 2 ) gas is emitted from the left and right reactive gas introduction portions 303 located between the upper portions of the rotary cathode 101 and the rotary cathode 102 and the protective plate 118 to the vicinity of the film 113. Has been introduced.
  • the sputtering apparatus 300 can monitor plasma emission as a jig between the rotary cathode 101 and the rotary cathode 102, below the film 113 in the chamber 115, to prevent leakage and diffusion of the reactive gas. It is equipped with a plasma emission monitor (PEM) 304. The sputtering apparatus 300 monitors the plasma emission by the PEM 304 and controls the flow rate of the oxygen gas supplied to the vicinity of the film 113 so that the plasma emission becomes constant.
  • PEM plasma emission monitor
  • the sputtering apparatus 300 forms an oxide film of a reaction product obtained by reacting the target material 109 with oxygen gas, which is a reactive gas, on the film 113 by reactive sputtering.
  • oxygen gas which is a reactive gas
  • the emission intensity is 20 when the plasma emission without oxygen gas flow rate is 100.
  • the sputtering apparatus 300 it is possible to have the same effect as the sputtering apparatus 100 according to the first embodiment. Further, by using the gas flow sputtering method using the sputtering apparatus 300, a large flow rate of Ar gas can be created, oxygen gas is pressed toward the film 113, and it is difficult to approach the surface of the target material 109. This makes it possible to prevent oxidation of the surface of the target material 109. As a result, the sputtering apparatus 300 can form an oxide film even with the DC power supply 110, so that it is not necessary to use a high-priced DC pulse power supply or an AC power supply whose film forming speed is lower than that of the DC power supply.
  • the sputtering apparatus 300 in the gas flow sputtering method, by making the plasma emission intensity constant by using PEM 304, a stable oxide film can be formed even with the DC power supply 110, and the film formation rate is improved at low cost. be able to.
  • a pair of cathodes whose surface is covered with a target material and placed opposite to each other, A pair of magnetic field generators arranged inside each of the pair of cathodes to generate a magnetic field, A gas supply unit that supplies gas in an intermediate flow region, which is a transition region between a viscous flow and a molecular flow, between the pair of cathodes.
  • a gas blocking section that blocks the gas supplied from the gas supply section from diffusing from between the pair of cathodes to the surroundings.
  • a sputtering device that forms a film on the surface of a base material.
  • the surface is covered with a target material, and between the pair of cathodes arranged opposite to each other, the gas is blocked from diffusing from between the pair of cathodes, and is a transition region between the viscous flow and the molecular flow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To form a film at high speed and generate a high quality thin film with high adhesion. A sputtering device 100 comprises: a pair of cathodes 101, 102 in which the surfaces thereof are coated with a target material 109 and which are disposed to face each other; a pair of magnetic field generators 103, 104 which are respectively disposed inside the pair of cathodes 101, 102 and generate a magnetic field; a gas supply part 105 which supplies gas in an intermediate flow region, which is a transition region between a viscous flow and molecular flow, between the pair of cathodes 101, 102; and a gas blocking part 106 that blocks gas supplied from the gas supply part 105 from diffusing from between the pair of cathodes 101, 102 to the surroundings, wherein a film is formed on the surface of a film 113.

Description

スパッタリング装置およびスパッタリング成膜方法Sputtering equipment and sputtering film formation method
 本技術は、スパッタリング装置およびスパッタリング成膜方法に関し、より詳細には、ガスフローを用いたマグネトロンスパッタリングにより高速成膜を行うスパッタリング装置およびスパッタリング成膜方法に関する。 The present technology relates to a sputtering apparatus and a sputtering film forming method, and more particularly to a sputtering apparatus and a sputtering film forming method for performing high-speed film formation by magnetron sputtering using a gas flow.
 従来から、金属化合物膜等の成膜方法としてスパッタリング法が知られているが、スパッタリング法で形成されるような緻密膜は成膜速度が低く、量産性に懸念があることから、蒸着法のような高い成膜速度で緻密膜を形成することが求められている。 Conventionally, the sputtering method has been known as a film forming method for a metal compound film or the like, but since a dense film formed by the sputtering method has a low film forming speed and there is a concern about mass productivity, the vapor deposition method is used. It is required to form a dense film at such a high film formation rate.
 これに対し、高速成膜の一手法としてガスフロースパッタリング法が知られている。ガスフロースパッタリング法は、一般に100Pa程度の比較的高い圧力下でスパッタリングを行い、スパッタ粒子をガスの強制流により成膜対象の基材まで輸送して堆積させる方法である。ガスフロースパッタリング法によれば、通常のスパッタリング法の成膜速度に対して10~1000倍の高速成膜が可能となるとされている。 On the other hand, the gas flow sputtering method is known as a method for high-speed film formation. The gas flow sputtering method is a method in which sputtering is generally performed under a relatively high pressure of about 100 Pa, and sputtered particles are transported to a substrate to be formed and deposited by a forced flow of gas. According to the gas flow sputtering method, it is said that high-speed film formation 10 to 1000 times faster than the film formation speed of a normal sputtering method is possible.
 ガスフロースパッタリング法を用いた技術として、例えば、特許文献1には、DC電源に代えてパルス電源を用いてパルススパッタリングを行うことにより、好ましくは対向して設置されている2枚のターゲットに対して、片方がカソードとして放電している時に、もう一方はアノードとして作用するように交互に電力を印加するデュアルカソードパルススパッタリングを行うことにより、広い範囲で安定して放電が可能となり、更なる高速成膜が可能となる、ガスフロースパッタリング装置による成膜方法が提案されている。 As a technique using the gas flow sputtering method, for example, in Patent Document 1, by performing pulse sputtering using a pulse power supply instead of the DC power supply, preferably, two targets installed facing each other are subjected to pulse sputtering. By performing dual cathode pulse sputtering in which power is alternately applied so that one acts as an anode while the other discharges as a cathode, stable discharge is possible over a wide range, and even higher speed is achieved. A film forming method using a gas flow sputtering apparatus has been proposed, which enables film formation.
 一方、高い成膜速度を可能とする技術として、マグネトロン型ロータリーカソードを備えるスパッタリング装置が知られている。例えば、特許文献2には、プラズマ処理部における2つの磁界形成部が2つのロータリーカソードとは独立して回転可能に設けられ、2つの磁界形成部の回転により該2つの磁界形成部の配置関係を調節することで、処理空間内に形成されるマグネトロンプラズマのイオンと二次電子の飛翔方向、言い換えれば基材へ飛翔するイオンおよび二次電子のエネルギーを調節することができるスパッタリング装置が提案されている。これにより、基材へのダメージを抑制しつつ処理全体として成膜レートを向上できるとされている。 On the other hand, a sputtering device equipped with a magnetron type rotary cathode is known as a technology that enables a high film formation speed. For example, in Patent Document 2, two magnetic field forming portions in the plasma processing portion are rotatably provided independently of the two rotary cathodes, and the arrangement relationship between the two magnetic field forming portions is caused by the rotation of the two magnetic field forming portions. A sputtering device capable of adjusting the flight direction of the magnetron plasma ions and secondary electrons formed in the processing space, in other words, the energy of the ions and secondary electrons flying to the substrate has been proposed. ing. As a result, it is said that the film formation rate can be improved as a whole of the treatment while suppressing damage to the base material.
特開2008-001957号公報Japanese Unexamined Patent Publication No. 2008-001957 特許第6309353号公報Japanese Patent No. 6309353
 しかしながら、特許文献1の技術では、比較的高圧力で成膜を行うため、ターゲット材料が粉になりやすく、膜化しても膜質が悪く密着性が悪いという問題がある。また、特許文献2の技術では、通常のスパッタリング法を用いているため、ガスフロースパッタリングに比べて成膜速度が遅いという問題がある。 However, in the technique of Patent Document 1, since the film is formed at a relatively high pressure, there is a problem that the target material tends to become powder, and even if the film is formed, the film quality is poor and the adhesion is poor. Further, since the technique of Patent Document 2 uses a normal sputtering method, there is a problem that the film forming speed is slower than that of gas flow sputtering.
 そこで、本技術では、高速度で成膜するとともに、高品質で密着性の高い薄膜を生成することができるスパッタリング装置を提供することを主目的とする。 Therefore, the main purpose of this technology is to provide a sputtering apparatus capable of forming a film at a high speed and producing a thin film having high quality and high adhesion.
 本技術では、表面がターゲット材料で被覆され、互いに対向配置された一対のカソードと、一対のカソードのそれぞれの内部に配置され、磁場を発生させる一対の磁場発生部と、一対のカソードの間に、粘性流と分子流との遷移領域である中間流領域のガスを供給するガス供給部と、ガス供給部から供給されるガスが、一対のカソードの間から周囲に拡散するのを遮断するガス遮断部と、を備え、基材の表面に成膜するスパッタリング装置を提供する。 In the present technology, the surface is covered with a target material, and between a pair of cathodes arranged opposite to each other, a pair of magnetic field generators arranged inside each of the pair of cathodes, and a pair of cathodes to generate a magnetic field. , A gas that blocks the gas supplied from the gas supply unit, which supplies gas in the intermediate flow region, which is the transition region between the viscous flow and the molecular flow, from diffusing from between the pair of cathodes to the surroundings. Provided is a sputtering apparatus comprising a blocking portion and forming a film on the surface of a substrate.
 また、本技術では、表面がターゲット材料で被覆され、互いに対向配置された一対のカソードの間に、一対のカソードの間からガスが周囲に拡散するのを遮断して、粘性流と分子流との遷移領域である中間流領域のガスを供給するステップと、一対のカソードの間に、磁場を発生させるステップと、を含み、基材の表面に薄膜を形成するスパッタリング成膜方法を提供する。 In addition, in this technology, the surface is covered with a target material, and between a pair of cathodes arranged opposite to each other, gas is blocked from diffusing from between the pair of cathodes to form a viscous flow and a molecular flow. Provided is a sputtering film forming method for forming a thin film on the surface of a base material, which comprises a step of supplying a gas in an intermediate flow region which is a transition region of the above and a step of generating a magnetic field between a pair of cathodes.
 本技術によれば、高速度で成膜するとともに、高品質で密着性の高い薄膜を生成することができる。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、又は上記の効果に代えて、本明細書に示されたいずれかの効果又は本明細書から把握され得る他の効果が奏されてもよい。 According to this technology, it is possible to form a film at high speed and to produce a high quality and highly adhesive thin film. It should be noted that the above effects are not necessarily limited, and in addition to or in place of the above effects, any effect shown herein or any other effect that can be grasped from the present specification may be used. It may be played.
本技術の第1実施形態に係るスパッタリング装置の構成例を示す断面模式図である。It is sectional drawing which shows the structural example of the sputtering apparatus which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係るスパッタリング装置のガス遮断板の概略構成例を示す斜視図である。It is a perspective view which shows the schematic structure example of the gas shutoff plate of the sputtering apparatus which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係るスパッタリング装置の動作例を説明する模式図である。It is a schematic diagram explaining the operation example of the sputtering apparatus which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係るスパッタリング成膜方法を示すフローチャートである。It is a flowchart which shows the sputtering film formation method which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係るスパッタリング装置の変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the sputtering apparatus which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係るスパッタリング装置に用いるスパッタガスのクヌーセン数を示す表である。It is a table which shows the Knudsen number of the sputtering gas used in the sputtering apparatus which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係るスパッタリング装置を用いた場合の圧力とダイナミックレートとの関係を示すグラフである。It is a graph which shows the relationship between the pressure and the dynamic rate when the sputtering apparatus which concerns on 1st Embodiment of this technique is used. 本技術の第1実施形態に係るスパッタリング装置を用いて生成した薄膜のX線回折を示すグラフである。It is a graph which shows the X-ray diffraction of the thin film produced by using the sputtering apparatus which concerns on 1st Embodiment of this technique. 本技術の第2実施形態に係るスパッタリング装置の構成例を示す断面模式図である。It is sectional drawing which shows the structural example of the sputtering apparatus which concerns on 2nd Embodiment of this technique. 本技術の第3実施形態に係るスパッタリング装置の構成例を示す断面模式図である。It is sectional drawing which shows the structural example of the sputtering apparatus which concerns on 3rd Embodiment of this technique.
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、いずれの実施形態も組み合わせることが可能である。また、これらにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
1.第1実施形態
(1)スパッタリング装置の構成例
(2)スパッタリング装置の動作例
(3)スパッタリング成膜方法
(4)スパッタリング装置の変形例
(5)実施例
2.第2実施形態
3.第3実施形態
Hereinafter, suitable embodiments for carrying out the present technology will be described with reference to the drawings. The embodiments described below show an example of typical embodiments of the present technology, and any embodiment can be combined. Moreover, the scope of the present technology is not narrowly interpreted by these. The explanation will be given in the following order.
1. 1. 1st Embodiment (1) Configuration example of sputtering apparatus (2) Operation example of sputtering apparatus (3) Sputtering film forming method (4) Modification example of sputtering apparatus (5) Example 2. Second embodiment 3. Third Embodiment
1.第1実施形態
(1)スパッタリング装置の構成例
 図1および図2を参照して、本技術の第1実施形態に係るスパッタリング装置100の構成例について説明する。図1は、本実施形態に係るスパッタリング装置100の構成例を示す断面模式図である。図2は、本技術の第1実施形態に係るスパッタリング装置のガス遮断板の概略構成例を示す斜視図である。スパッタリング装置100は、ガスフロースパッタリング法によって、例えば、メインロール107の側面上に配置された基材の一例であるフィルム113の表面に金属膜などの薄膜を形成する装置である。なお、基材は、フィルム113に限らず、板基材等の薄膜を成膜できるものであればよい。
1. 1. First Embodiment (1) Configuration Example of Sputtering Device With reference to FIGS. 1 and 2, a configuration example of the sputtering apparatus 100 according to the first embodiment of the present technology will be described. FIG. 1 is a schematic cross-sectional view showing a configuration example of the sputtering apparatus 100 according to the present embodiment. FIG. 2 is a perspective view showing a schematic configuration example of a gas shutoff plate of the sputtering apparatus according to the first embodiment of the present technology. The sputtering apparatus 100 is an apparatus for forming a thin film such as a metal film on the surface of a film 113 which is an example of a base material arranged on the side surface of the main roll 107 by a gas flow sputtering method. The base material is not limited to the film 113, and may be any material that can form a thin film such as a plate base material.
 図1に示すように、本実施形態に係るスパッタリング装置100は、互いに対向配置された一対のロータリーカソード101およびロータリーカソード102と、一対のロータリーカソード101およびロータリーカソード102のそれぞれの内部に配置され、磁場を発生させる一対の磁場発生部である磁石ユニット103および磁石ユニット104と、を備える。 As shown in FIG. 1, the sputtering apparatus 100 according to the present embodiment is arranged inside each of a pair of rotary cathodes 101 and a rotary cathode 102 arranged opposite to each other, and a pair of rotary cathodes 101 and a rotary cathode 102. A magnet unit 103 and a magnet unit 104, which are a pair of magnetic field generating units for generating a magnetic field, are provided.
 また、スパッタリング装置100は、一対のロータリーカソード101およびロータリーカソード102の間に、スパッタガスを供給するスパッタガス供給部105と、スパッタガス供給部105から供給されるスパッタガスがその間から周囲に拡散するのを遮断するガス遮断部であるガス遮断板106と、基材の一例である成膜用のフィルム113を保持するメインロール107と、を備える。さらに、スパッタリング装置100は、真空の処理空間を形成するチャンバ115と、スパッタ電圧を印加するスパッタ用電源であるDC電源110と、を備える。 Further, in the sputtering apparatus 100, between the pair of rotary cathodes 101 and the rotary cathode 102, the sputtering gas supply unit 105 that supplies the sputtering gas and the sputtering gas supplied from the sputtering gas supply unit 105 diffuse from between them to the surroundings. It is provided with a gas blocking plate 106 which is a gas blocking portion that shuts off the gas, and a main roll 107 that holds a film 113 for forming a film, which is an example of a substrate. Further, the sputtering apparatus 100 includes a chamber 115 that forms a vacuum processing space, and a DC power supply 110 that is a power supply for sputtering to which a sputtering voltage is applied.
 ロータリーカソード101およびロータリーカソード102は、スパッタガスの導入方向と交差する方向で、側面が互いに対向して配置されている。ロータリーカソード101およびロータリーカソード102は、全体が円柱形状に形成され、円筒形状のベース部材108と、ベース部材108の表面全体を被覆するターゲット材料109と、を備えている。 The rotary cathode 101 and the rotary cathode 102 are arranged so that their side surfaces face each other in a direction intersecting the direction in which the sputter gas is introduced. The rotary cathode 101 and the rotary cathode 102 are formed in a cylindrical shape as a whole, and include a cylindrical base member 108 and a target material 109 that covers the entire surface of the base member 108.
 ベース部材108は、例えば、導電体で形成されている。ターゲット材料109は、例えば、アルミニウムやシリコン等が用いられる。なお、ロータリーカソード101およびロータリーカソード102は、ベース部材108を有さずに、ターゲット材料109を備えていてもよい。また、ロータリーカソード101およびロータリーカソード102は、DC電源110に接続されている。 The base member 108 is made of, for example, a conductor. As the target material 109, for example, aluminum, silicon, or the like is used. The rotary cathode 101 and the rotary cathode 102 may be provided with the target material 109 without having the base member 108. Further, the rotary cathode 101 and the rotary cathode 102 are connected to the DC power supply 110.
 磁石ユニット103および磁石ユニット104は、それぞれロータリーカソード101およびロータリーカソード102の内周に沿って配置され、その配置されたロータリーカソード101およびロータリーカソード102の外周面付近に磁場を発生させて磁界を形成する。 The magnet unit 103 and the magnet unit 104 are arranged along the inner circumferences of the rotary cathode 101 and the rotary cathode 102, respectively, and generate a magnetic field near the outer peripheral surfaces of the arranged rotary cathode 101 and the rotary cathode 102 to form a magnetic field. do.
 磁石ユニット103および磁石ユニット104は、ロータリーカソード101およびロータリーカソード102間で、互いに対向して配置されている。これにより、スパッタガスが流れる領域にプラズマが発生し、ターゲット材料109から放出された成膜粒子がスパッタガスの流れに乗って効率よくフィルム113の方向に向かうため、成膜速度を向上させることができる。 The magnet unit 103 and the magnet unit 104 are arranged between the rotary cathode 101 and the rotary cathode 102 so as to face each other. As a result, plasma is generated in the region where the sputter gas flows, and the film-forming particles discharged from the target material 109 ride on the flow of the sputter gas and efficiently head toward the film 113, so that the film-forming speed can be improved. can.
 また、磁石ユニット103および磁石ユニット104は、ロータリーカソード101およびロータリーカソード102間で、フィルム113に向かって、互いに斜めに対向して配置されていてもよい。この場合、磁場の発生位置がフィルム113側により近づくことで、成膜粒子のターゲット材料109から放出される位置(ターゲット材料109がプラズマにより削られる位置)がフィルム113側に近づき、ターゲット材料109を効率よくフィルム113に付着するため、成膜速度をさらに向上させることができる。 Further, the magnet unit 103 and the magnet unit 104 may be arranged between the rotary cathode 101 and the rotary cathode 102 so as to be obliquely opposed to each other toward the film 113. In this case, when the position where the magnetic field is generated is closer to the film 113 side, the position where the film-formed particles are emitted from the target material 109 (the position where the target material 109 is scraped by plasma) is closer to the film 113 side, and the target material 109 is moved. Since it adheres efficiently to the film 113, the film forming speed can be further improved.
 本実施形態では、磁石ユニット103および磁石ユニット104の各ユニットに、4つの磁石が含まれており、一例として、2つのS極の間に2つのN極が配置されている。このように、中央の2つの磁石とその両端の2つの磁石とは、極性が異なっている。したがって、一対の磁石ユニット103および磁石ユニット104は、互いに反発する磁極が対向して配置されている。ただし、本技術に係る磁石ユニットは、1つの磁石を含んでいてもよく、4つ以外の複数の磁石を含んでいてもよい。また、配置される磁石の極性の種類は、本実施形態の場合に限られない。また、一対の磁石ユニット103および磁石ユニット104は、互いに引き合う磁極が対向して配置されていてもよい。 In the present embodiment, each unit of the magnet unit 103 and the magnet unit 104 includes four magnets, and as an example, two N poles are arranged between two S poles. As described above, the two magnets in the center and the two magnets at both ends thereof have different polarities. Therefore, in the pair of magnet units 103 and the magnet unit 104, magnetic poles that repel each other are arranged so as to face each other. However, the magnet unit according to the present technology may include one magnet or may include a plurality of magnets other than four. Further, the type of polarity of the magnets to be arranged is not limited to the case of this embodiment. Further, the pair of magnet units 103 and the magnet unit 104 may be arranged so that magnetic poles attracting each other face each other.
 スパッタガス供給部105は、不活性ガスであるアルゴンガスなどのスパッタガスをチャンバ115内に導入するスパッタガス導入管111と、スパッタガス導入管111のチャンバ115内部側の先端に取り付けられたスパッタガス導入部112と、を有している。本実施形態では、一例として、チャンバ115の下部に位置するスパッタガス導入部112からチャンバ115内の上方へアルゴン(Ar)ガスを導入している。 The sputter gas supply unit 105 includes a spatter gas introduction pipe 111 that introduces a sputter gas such as argon gas, which is an inert gas, into the chamber 115, and a spatter gas attached to the tip of the spatter gas introduction pipe 111 on the inner side of the chamber 115. It has an introduction unit 112 and. In the present embodiment, as an example, argon (Ar) gas is introduced upward into the chamber 115 from the sputter gas introduction unit 112 located at the lower part of the chamber 115.
 ここで、ガスフロースパッタリング法では、通常、100Pa程度の高圧のスパッタガスをチャンバ115内に導入する。すなわち、粘性流のスパッタガスを供給する。これに対し、本実施形態のスパッタガス供給部105は、スパッタガス導入部112からチャンバ115内の一対のロータリーカソード101およびロータリーカソード102の間に、粘性流と分子流との遷移領域である中間流領域のスパッタガスを供給する。なお、粘性流とは、分子が壁に衝突する頻度より、分子同士の衝突頻度が大きい流れをいう。一方、分子流とは、分子同士が衝突する頻度より、分子が壁に衝突する頻度が大きい流れをいう。 Here, in the gas flow sputtering method, a high-pressure sputtering gas of about 100 Pa is usually introduced into the chamber 115. That is, a viscous flow of sputter gas is supplied. On the other hand, the sputter gas supply unit 105 of the present embodiment is an intermediate region between the sputter gas introduction unit 112 and the pair of rotary cathodes 101 and the rotary cathode 102 in the chamber 115, which is a transition region between the viscous flow and the molecular flow. Supply sputter gas in the flow region. The viscous flow means a flow in which the frequency of collision between molecules is higher than the frequency of collision of molecules with the wall. On the other hand, the molecular flow means a flow in which molecules collide with a wall more frequently than molecules collide with each other.
 なお、スパッタガス供給部105のスパッタガス導入部112は、オリフィス形状に形成することができる。また、スパッタガス供給部105は、ロータリーカソード101およびロータリーカソード102の延在方向等の複数個所にスパッタガス導入部112を備え、それら複数のスパッタガス導入部112からチャンバ115内へスパッタガスを供給することもできる。 The sputter gas introduction section 112 of the sputter gas supply section 105 can be formed in an orifice shape. Further, the sputter gas supply unit 105 includes sputter gas introduction units 112 at a plurality of locations such as the extending direction of the rotary cathode 101 and the rotary cathode 102, and supplies spatter gas into the chamber 115 from the plurality of sputter gas introduction units 112. You can also do it.
 ガス遮断板106は、図1に示すように、スパッタガス導入部112の左右から、それぞれロータリーカソード101およびロータリーカソード102の側面に向かって配置されている。左右に配置されたガス遮断板106は、スパッタガス導入部112からロータリーカソード101およびロータリーカソード102の側面に向かうにつれて、左右に広がる形状をしている。この左右に広がるガス遮断板106間の角度は、ターゲット材料109が互いに対向する面に対して接線方向となるような角度とすることが、スパッタガスの流れの乱れが少ない点からも望ましい。また、左右に配置されたガス遮断板106は、ロータリーカソード101およびロータリーカソード102の延在方向に延在している。 As shown in FIG. 1, the gas shutoff plate 106 is arranged from the left and right of the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102, respectively. The gas shutoff plates 106 arranged on the left and right have a shape that spreads to the left and right from the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102. It is desirable that the angle between the gas blocking plates 106 spreading to the left and right is an angle tangential to the surfaces of the target materials 109 facing each other from the viewpoint of less turbulence in the flow of sputter gas. Further, the gas shutoff plates 106 arranged on the left and right extend in the extending direction of the rotary cathode 101 and the rotary cathode 102.
 さらに、ガス遮断板106は、図2に示すように、左右に配置されたガス遮断板106の両端開口部を塞ぐ位置、および、ロータリーカソード101とロータリーカソード102との間の延在方向の両端開口部を塞ぐ位置にも形成されている。このように、ガス遮断板106は、スパッタガス導入部112からロータリーカソード101とロータリーカソード102との間の空間を密閉し、その空間から周囲にスパッタガスが拡散するのを遮断して、スパッタガスをフィルム113に向けて流すことができる。 Further, as shown in FIG. 2, the gas cutoff plate 106 is located at positions that close the openings at both ends of the gas cutoff plates 106 arranged on the left and right, and both ends in the extending direction between the rotary cathode 101 and the rotary cathode 102. It is also formed at a position that closes the opening. In this way, the gas shutoff plate 106 seals the space between the rotary cathode 101 and the rotary cathode 102 from the sputter gas introduction portion 112, and blocks the diffusion of the sputter gas from the space to the surroundings, thereby blocking the spatter gas. Can be flowed toward the film 113.
 メインロール107は、円柱形状に形成され、ロータリーカソード101およびロータリーカソード102の上部に配置されている。また、メインロール107の側面の近傍には、フィルム113を巻き出す巻出しロール116と、フィルム113を巻き取る巻取りロール117と、が備えられている。一例として、図1の紙面に向かってメインロール107の右側に巻出しロール116が備えられ、メインロール107の左側に巻取りロール117が備えられている。 The main roll 107 is formed in a cylindrical shape and is arranged above the rotary cathode 101 and the rotary cathode 102. Further, in the vicinity of the side surface of the main roll 107, a winding roll 116 for winding the film 113 and a winding roll 117 for winding the film 113 are provided. As an example, the unwinding roll 116 is provided on the right side of the main roll 107 and the take-up roll 117 is provided on the left side of the main roll 107 toward the paper surface of FIG.
 フィルム113は、巻出しロール116から巻き出され、メインロール107の下方のロータリーカソード101およびロータリーカソード102に対向する側面上に貼り付いた形で配置され、巻取りロール117へ走行させて巻き取られる。このように、スパッタリング装置100は、巻出しロール116から巻取りロール117へフィルム113を走行させながら、メインロール107の側面上に貼り付いた形で配置させたフィルム13の表面上に成膜する。 The film 113 is unwound from the unwinding roll 116, is arranged so as to be attached to the rotary cathode 101 below the main roll 107 and the side surface facing the rotary cathode 102, and is run on the winding roll 117 to be wound. Be done. In this way, the sputtering apparatus 100 runs the film 113 from the unwinding roll 116 to the winding roll 117, and forms a film on the surface of the film 13 arranged in a form of being attached to the side surface of the main roll 107. ..
 また、ロータリーカソード101およびロータリーカソード102には、ロータリーカソード101およびロータリーカソード102の回転動作を制御する制御部114が接続されている。制御部114は、ロータリーカソード101およびロータリーカソード102の間の水平方向の間隔およびロータリーカソードとフィルム113との鉛直方向の間隔を調整する間隔調整機構(可変機構)も有している。さらに、ロータリーカソード101およびロータリーカソード102のそれぞれの上方には、メインロール107との間に互いに離間した防着板118が備えられている。防着板118は、フィルム113の必要な領域以外に成膜されることを防ぐ役割を有する。スパッタリング装置100では、DC電源110および制御部114以外の上記の構成がチャンバ115内に配置されている。 Further, the rotary cathode 101 and the rotary cathode 102 are connected to a control unit 114 that controls the rotational operation of the rotary cathode 101 and the rotary cathode 102. The control unit 114 also has an interval adjusting mechanism (variable mechanism) for adjusting the horizontal spacing between the rotary cathode 101 and the rotary cathode 102 and the vertical spacing between the rotary cathode and the film 113. Further, above each of the rotary cathode 101 and the rotary cathode 102, a protective plate 118 separated from the main roll 107 is provided. The adhesive plate 118 has a role of preventing the film from being formed in a region other than the required region of the film 113. In the sputtering apparatus 100, the above-mentioned configurations other than the DC power supply 110 and the control unit 114 are arranged in the chamber 115.
 スパッタリング装置100は、中間流領域となるように、スパッタガスであるArガスの流量とターゲット材料109間の距離を選択し、ターゲット材料109間に大流量のスパッタガスが周囲に漏れずフィルム113に向けて流れるような構造のガス遮断板106を配置している。このような構成にすることで、スパッタリングによる成膜粒子は主に左右の防着板118間のフィルム113の必要な領域に選択的に成膜され、成膜速度を向上させることができる。 The sputtering apparatus 100 selects the flow rate of Ar gas, which is a sputtering gas, and the distance between the target material 109 so as to be in the intermediate flow region, and the large flow rate of sputtering gas does not leak to the surroundings between the target material 109 and is formed on the film 113. A gas shutoff plate 106 having a structure that allows the gas to flow toward the surface is arranged. With such a configuration, the film-forming particles formed by sputtering are mainly selectively formed in the required region of the film 113 between the left and right adhesive plates 118, and the film-forming speed can be improved.
 また、スパッタリング装置100は、成膜速度を向上させるため、ターゲット材料109間距離(T-T間距離)、ターゲット材料109とフィルム113との間の距離(T-S間距離)、および、磁石ユニット103と磁石ユニット104との間の角度(マグネット角度)、のそれぞれのパラメータを最適化することができる。ここで、スパッタガスの流速を上げるためには、T-T間距離を狭めることが望ましい。ターゲット材料109から放出される成膜粒子を効率よくフィルム113に付着させるためには、T-S間距離を狭めることが望ましい。また、マグネット角度は、プラズマによるエロージョン位置がフィルム113に近づくように互いに斜めに対向して配置することが望ましい。 Further, in order to improve the film forming speed, the sputtering apparatus 100 includes a distance between the target material 109 (distance between TT), a distance between the target material 109 and the film 113 (distance between TS), and a magnet. The respective parameters of the angle between the unit 103 and the magnet unit 104 (magnet angle) can be optimized. Here, in order to increase the flow velocity of the sputter gas, it is desirable to narrow the distance between TT. In order to efficiently adhere the film-formed particles emitted from the target material 109 to the film 113, it is desirable to narrow the distance between TS and TS. Further, it is desirable that the magnet angles are arranged diagonally opposite to each other so that the erosion position due to plasma approaches the film 113.
(2)スパッタリング装置の動作例
 次に、図3を参照して、本実施形態に係るスパッタリング装置100の動作例(スパッタリングの例)について説明する。図3Aは、スパッタリング装置100を正面から見た断面模式図である。図3Bは、スパッタリング装置100を上面から見た平面模式図である。
(2) Operation Example of Sputtering Device Next, an operation example (sputtering example) of the sputtering device 100 according to the present embodiment will be described with reference to FIG. FIG. 3A is a schematic cross-sectional view of the sputtering apparatus 100 as viewed from the front. FIG. 3B is a schematic plan view of the sputtering apparatus 100 as viewed from above.
 図3Aに示すように、スパッタリング装置100を用いてガスフロースパッタリングを行う場合、スパッタガス導入管111を通ってスパッタガス導入部112から幅方向に均一に放出されたスパッタガスが、チャンバ115内のロータリーカソード101およびロータリーカソード102の間に吹き付けられる。ロータリーカソード101は、一例として、反時計回りに回転する。ロータリーカソード102は、一例として、ロータリーカソード101と逆回りの時計回りに回転する。 As shown in FIG. 3A, when gas flow sputtering is performed using the sputtering apparatus 100, the sputter gas uniformly discharged from the sputter gas introduction unit 112 through the sputter gas introduction pipe 111 in the width direction is uniformly discharged in the width direction in the chamber 115. It is sprayed between the rotary cathode 101 and the rotary cathode 102. The rotary cathode 101 rotates counterclockwise, for example. As an example, the rotary cathode 102 rotates clockwise in the counterclockwise direction to the rotary cathode 101.
 図3Aおよび図3Bに示すように、スパッタリング装置100は、スパッタガス導入部112からロータリーカソード101およびロータリーカソード102の間まで、ガス遮断板106を備えていることで、放出したスパッタガスが周囲に拡散するのを防いでいる。さらに、ガス導入部112をロータリーカソード101およびロータリーカソード102の延在方向に延在させることで、その延在方向に均一にスパッタガスを放出することができる。 As shown in FIGS. 3A and 3B, the sputtering apparatus 100 includes a gas shutoff plate 106 from the sputter gas introduction unit 112 to between the rotary cathode 101 and the rotary cathode 102, so that the released sputtering gas is around. It prevents it from spreading. Further, by extending the gas introduction unit 112 in the extending direction of the rotary cathode 101 and the rotary cathode 102, the sputter gas can be uniformly discharged in the extending direction.
 また、図3Bに示すように、本実施形態に係るスパッタガス供給部105は、一例として、ロータリーカソード101およびロータリーカソード102の延在方向にスパッタガス導入部112が3つ配置されている。ただし、本技術に係るスパッタガス供給部が有するスパッタガス導入部は、3つに限らず、1つであってもよく、2つまたは4つ以上の複数であってもよい。 Further, as shown in FIG. 3B, as an example, in the sputter gas supply unit 105 according to the present embodiment, three sputter gas introduction units 112 are arranged in the extending direction of the rotary cathode 101 and the rotary cathode 102. However, the sputter gas introduction section of the sputter gas supply section according to the present technology is not limited to three, and may be one, or may be two or four or more.
 次に、DC電源110に接続されたロータリーカソード101およびロータリーカソード102間でのマグネトロン放電で発生したプラズマによりターゲット材料109をスパッタリングし、はじき飛ばされたターゲット材料109のスパッタ粒子をスパッタガスの中間流によってフィルム等のフィルム113まで輸送する。 Next, the target material 109 is sputtered by the plasma generated by the magnetron discharge between the rotary cathode 101 and the rotary cathode 102 connected to the DC power supply 110, and the sputtered particles of the repelled target material 109 are sputtered by an intermediate flow of the sputter gas. Transport to film 113 such as film.
 そして、メインロール107を例えば、時計回りに回転させることにより、フィルム113をメインロール107の側面上を走行させながら、フィルム113の表面にスパッタ粒子を堆積させる。 Then, for example, by rotating the main roll 107 clockwise, sputter particles are deposited on the surface of the film 113 while the film 113 runs on the side surface of the main roll 107.
(3)スパッタリング成膜方法
 次に、図4を参照して、本実施形態に係るスパッタリング装置100を用いたスパッタリング成膜方法の例について説明する。図4は、本実施形態に係るスパッタリング成膜方法を示すフローチャートである。
(3) Sputtering film forming method Next, an example of a sputtering film forming method using the sputtering apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a sputtering film forming method according to the present embodiment.
 まず、ステップS1において、ユーザは、成膜用フィルムであるフィルム113を巻出しロール116に取り付けてセットし、メインロール107を経由して巻取りロール117までフィルム113を通紙する。 First, in step S1, the user attaches the film 113, which is a film-forming film, to the unwinding roll 116, sets the film 113, and passes the film 113 to the winding roll 117 via the main roll 107.
 ステップS2において、ユーザは、スパッタリング装置100の扉を閉めて、チャンバ115を真空排気する。 In step S2, the user closes the door of the sputtering apparatus 100 and evacuates the chamber 115.
 ステップS3において、スパッタガス供給部105は、スパッタガスをスパッタガス導入管111に供給し、スパッタガス導入部112からチャンバ115内へスパッタガスを放出する。より詳細には、表面がターゲット材料109で被覆され、チャンバ115内で互いに対向配置された一対のロータリーカソード101およびロータリーカソード102の間に、一対のロータリーカソード101およびロータリーカソード102の間からスパッタガスが周囲に拡散するのを遮断して、粘性流と分子流との遷移領域である中間流領域のガスを供給する。 In step S3, the sputter gas supply unit 105 supplies the sputter gas to the sputter gas introduction pipe 111, and discharges the spatter gas from the sputter gas introduction unit 112 into the chamber 115. More specifically, the surface is coated with the target material 109, and the sputter gas is formed between the pair of rotary cathodes 101 and the rotary cathode 102, which are arranged opposite to each other in the chamber 115, and between the pair of rotary cathodes 101 and the rotary cathode 102. Blocks diffusion to the surroundings and supplies gas in the intermediate flow region, which is the transition region between the viscous flow and the molecular flow.
 ステップS4において、メインロール107は、巻出しロール116から巻取りロール117へフィルム113を走行させる。 In step S4, the main roll 107 runs the film 113 from the unwinding roll 116 to the winding roll 117.
 ステップS5において、スパッタリング装置100の制御部114は、ロータリーカソード101およびロータリーカソード102を回転させる。 In step S5, the control unit 114 of the sputtering apparatus 100 rotates the rotary cathode 101 and the rotary cathode 102.
 ステップS6において、DC電源110は、ロータリーカソード101およびロータリーカソード102へ電力を投入しロータリーカソード101およびロータリーカソード102間に、配置した磁場の効果により、プラズマを高密度に発生させる。 In step S6, the DC power supply 110 applies electric power to the rotary cathode 101 and the rotary cathode 102, and generates plasma at high density by the effect of the magnetic field arranged between the rotary cathode 101 and the rotary cathode 102.
 ステップS7において、スパッタリング装置100は、中間流領域のスパッタガスによるガスフロースパッタリングを用いて、フィルム113の表面に薄膜を形成する成膜工程を実施する。 In step S7, the sputtering apparatus 100 carries out a film forming step of forming a thin film on the surface of the film 113 by using gas flow sputtering using a sputter gas in an intermediate flow region.
 ステップS8において、DC電源110は、成膜工程終了後に、ロータリーカソード101およびロータリーカソード102への電力供給を停止する。 In step S8, the DC power supply 110 stops supplying power to the rotary cathode 101 and the rotary cathode 102 after the film forming process is completed.
 ステップS9において、メインロール107は、フィルム113の走行を停止させる。 In step S9, the main roll 107 stops the running of the film 113.
 ステップS10において、スパッタリング装置100の制御部114は、ロータリーカソード101およびロータリーカソード102の回転動作を停止する。 In step S10, the control unit 114 of the sputtering apparatus 100 stops the rotational operation of the rotary cathode 101 and the rotary cathode 102.
 ステップS11において、スパッタガス供給部105は、スパッタガス導入部112からチャンバ115内へのスパッタガスの供給を停止する。 In step S11, the sputter gas supply unit 105 stops the supply of the sputter gas from the sputter gas introduction unit 112 into the chamber 115.
 ステップS12において、ユーザは、チャンバ115内に大気を導入(ベント)する。 In step S12, the user introduces (vents) the atmosphere into the chamber 115.
 ステップS13において、ユーザは、スパッタリング装置100の扉を開けて、成膜されたフィルム113を取り出し、処理を終了する。 In step S13, the user opens the door of the sputtering apparatus 100, takes out the film-formed film 113, and ends the process.
 上述の通り、本実施形態に係るスパッタリング装置100によれば、ガスフロースパッタにおいて、磁場を印加してマグネトロン放電させることでプラズマを高密度化させるとともに、中間流となるようなスパッタガスの供給条件とターゲット材料109間の距離を選択することで、成膜速度を向上させながら、膜を緻密化することができる。これにより、スパッタリング装置100は、低いガス圧でも強い放電を放ち、高速度で成膜するとともに、高品質で密着性の高い薄膜を生成することができる。 As described above, according to the sputtering apparatus 100 according to the present embodiment, in gas flow sputtering, a magnetic field is applied to discharge the magnetron to increase the density of the plasma, and the conditions for supplying the sputtering gas so as to be an intermediate flow. By selecting the distance between the target material 109 and the target material 109, the film can be densified while improving the film forming speed. As a result, the sputtering apparatus 100 can generate a strong discharge even at a low gas pressure, form a film at a high speed, and produce a high-quality thin film having high adhesion.
 また、本技術に係るスパッタリング装置は、一対の平板カソードを用いることもできるが、一対のロータリーカソードを使用することで冷却効率が上がり、単位面積当たりの投入電力を増加させることができる。このため、スパッタリング装置100は、一対の平板カソードを用いる場合に比べて、成膜速度をより向上させることができる。さらに、スパッタリング装置100は、磁石ユニット103および磁石ユニット104の磁場配置を調整することで、フィルム113の温度上昇を抑えることができる。 Further, the sputtering apparatus according to the present technology can use a pair of flat plate cathodes, but by using a pair of rotary cathodes, the cooling efficiency can be improved and the input power per unit area can be increased. Therefore, the sputtering apparatus 100 can further improve the film forming speed as compared with the case of using a pair of flat plate cathodes. Further, the sputtering apparatus 100 can suppress the temperature rise of the film 113 by adjusting the magnetic field arrangements of the magnet unit 103 and the magnet unit 104.
(4)スパッタリング装置の変形例
 次に、図5を参照して、本実施形態に係るスパッタリング装置100の変形例について説明する。図5Aは、本変形例に係るスパッタリング装置を正面から見た断面模式図である。図5Bは、本変形例に係るスパッタリング装置を上面から見た平面模式図である。本変形例に係るスパッタリング装置は、スパッタリング装置100とガス遮断板を配置する角度が相違する。本変形例に係るスパッタリング装置のその他の構成は、スパッタリング装置100の構成と同様である。
(4) Modification Example of Sputtering Device Next, a modification of the sputtering apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 5A is a schematic cross-sectional view of the sputtering apparatus according to the present modification as viewed from the front. FIG. 5B is a schematic plan view of the sputtering apparatus according to the present modification as viewed from above. In the sputtering apparatus according to this modification, the angle at which the gas shutoff plate is arranged is different from that of the sputtering apparatus 100. Other configurations of the sputtering apparatus according to this modification are the same as the configurations of the sputtering apparatus 100.
 図5Aおよび図5Bに示すように、本変形例に係るスパッタリング装置は、スパッタガス導入部112から放出されるスパッタガスが、ロータリーカソード101およびロータリーカソード102の間から周囲に拡散するのを遮断するガス遮断部であるガス遮断板121を備える。 As shown in FIGS. 5A and 5B, the sputtering apparatus according to the present modification blocks the sputtering gas discharged from the sputtering gas introduction unit 112 from diffusing from between the rotary cathode 101 and the rotary cathode 102 to the surroundings. A gas shutoff plate 121, which is a gas breaker, is provided.
 ガス遮断板121は、スパッタガス導入部112の左右から、それぞれロータリーカソード101およびロータリーカソード102の側面に向かって配置されている。左右に配置されたガス遮断板121は、スパッタガス導入部112からロータリーカソード101およびロータリーカソード102の側面に向かうにつれて、左右に広がる形状をしている。この左右に広がるガス遮断板121間の角度は、ターゲット材料109が互いに対向する面と反対側の面に対して接線方向となるような角度になっている。また、左右に配置されたガス遮断板121は、ロータリーカソード101およびロータリーカソード102の延在方向に延在している。 The gas shutoff plate 121 is arranged from the left and right of the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102, respectively. The gas shutoff plates 121 arranged on the left and right have a shape that spreads to the left and right from the sputter gas introduction portion 112 toward the side surfaces of the rotary cathode 101 and the rotary cathode 102. The angle between the gas blocking plates 121 spreading to the left and right is such that the target material 109 is tangential to the surface opposite to the surface opposite to each other. Further, the gas shutoff plates 121 arranged on the left and right extend in the extending direction of the rotary cathode 101 and the rotary cathode 102.
 さらに、ガス遮断板121は、左右に配置されたガス遮断板121の両端開口部を塞ぐ位置、および、ロータリーカソード101とロータリーカソード102との間の延在方向の両端開口部を塞ぐ位置にも形成されている。このように、ガス遮断板121は、スパッタガス導入部112からロータリーカソード101とロータリーカソード102との間の空間を密閉し、その空間から周囲にスパッタガスが拡散するのを遮断して、スパッタガスをフィルム113に向けて流すことができる。 Further, the gas cutoff plate 121 is also located at a position that closes the openings at both ends of the gas cutoff plates 121 arranged on the left and right, and at a position that closes the openings at both ends in the extending direction between the rotary cathode 101 and the rotary cathode 102. It is formed. In this way, the gas shutoff plate 121 seals the space between the rotary cathode 101 and the rotary cathode 102 from the sputter gas introduction portion 112, and blocks the diffusion of the sputter gas from the space to the surroundings, thereby blocking the spatter gas. Can be flowed toward the film 113.
 本変形例に係るスパッタリング装置を用いる場合も、スパッタリング装置100と同様の効果を有することができ、高速度で成膜するとともに高品質で密着性の高い薄膜を生成することができる。 Even when the sputtering apparatus according to this modification is used, the same effect as that of the sputtering apparatus 100 can be obtained, and a thin film having high quality and high adhesion can be produced while forming a film at a high speed.
(5)実施例
 図6から図8を参照して、本実施形態に係るスパッタリング装置100を用いて成膜した実施例について説明する。
(5) Examples With reference to FIGS. 6 to 8, an example in which a film is formed by using the sputtering apparatus 100 according to the present embodiment will be described.
 まず、図6を参照して、スパッタガスとしてのアルゴン(Ar)ガスが中間流領域となるような、Arガスの流量(プロセス圧力)とターゲット材料109間距離(T-T間距離)との関係について説明する。図6は、スパッタリング装置100に用いるスパッタガスのクヌーセン数Kを示す表である。 First, referring to FIG. 6, the flow rate (process pressure) of the Ar gas and the distance between the target materials 109 (distance between TT) such that the argon (Ar) gas as the sputter gas becomes the intermediate flow region. Explain the relationship. FIG. 6 is a table showing the Knudsen number K of the sputtering gas used in the sputtering apparatus 100.
 中間流は、粘性流/分子流を示す指数であるクヌーセン数K(K=λ/D)で表すことができる。ここで、λはガス圧で決まる平均自由行程(m)を示し、Dはスパッタガスが流れるT-T間距離(m)を示す。中間流をクヌーセン数Kで表すと、おおむね、0.01<K<0.3である。 The intermediate flow can be represented by the Knudsen number K (K = λ / D), which is an index indicating the viscous flow / molecular flow. Here, λ indicates the mean free path (m) determined by the gas pressure, and D indicates the distance (m) between TT through which the sputter gas flows. When the intermediate flow is expressed by the Knudsen number K, it is approximately 0.01 <K <0.3.
 図6に示すように、プロセス圧力(Pa)およびT-T間距離(mm)を調整してクヌーセン数Kを算出すると、プロセス圧力が1Paあるいは10Paの条件ではおおむね中間流の範囲と言える。 As shown in FIG. 6, when the Knudsen number K is calculated by adjusting the process pressure (Pa) and the distance between T and T (mm), it can be said that the process pressure is generally in the range of the intermediate flow under the condition of 1 Pa or 10 Pa.
 このように、クヌーセン数Kが中間流となるような流量条件とT-T間距離の組み合わせを選択することで、通常の低圧マグネトロン放電に対し、導入したスパッタガスがフィルム113に到達する流れの効果を加えることができ、成膜領域を限定することができる。その結果、成膜速度を向上させることができる。また、粘性流まで進むと、粉化による膜質低下が発生するが、中間流を選択することにより、膜質の低下を防止することができる。 In this way, by selecting a combination of the flow rate condition and the distance between TT so that the Knudsen number K is an intermediate flow, the flow of the introduced sputter gas reaching the film 113 with respect to the normal low-pressure magnetron discharge. The effect can be added and the film formation area can be limited. As a result, the film forming speed can be improved. Further, when the viscous flow is reached, deterioration of the film quality occurs due to pulverization, but by selecting an intermediate flow, the deterioration of the film quality can be prevented.
 次に、図7を参照して、スパッタリング装置100に用いる最適な圧力について説明する。図7は、スパッタリング装置100を用いた場合の圧力とダイナミックレートとの関係を示すグラフである。図7のグラフの横軸は、圧力(Pa)を示し、縦軸は、ダイナミックレート(nm.m/min)を示している。 Next, with reference to FIG. 7, the optimum pressure used for the sputtering apparatus 100 will be described. FIG. 7 is a graph showing the relationship between the pressure and the dynamic rate when the sputtering apparatus 100 is used. The horizontal axis of the graph of FIG. 7 shows the pressure (Pa), and the vertical axis shows the dynamic rate (nm.m / min).
 スパッタリング装置100を用いて、以下の成膜条件により、薄膜を生成した。
 投入電力:15kW
 T-T間距離:35mm
 T-S間距離:10mm
 マグネット角度:30deg
A thin film was produced by using the sputtering apparatus 100 under the following film forming conditions.
Input power: 15kW
Distance between T and T: 35 mm
Distance between TS: 10 mm
Magnet angle: 30deg
 図7に示すように、上記成膜条件で成膜した場合、圧力が1Paから10Paの間で良好な成膜速度(成膜レート)が得られた。そして、圧力が1Paのときが最もハイレートであった。 As shown in FIG. 7, when the film was formed under the above-mentioned film forming conditions, a good film forming rate (deposition rate) was obtained when the pressure was between 1 Pa and 10 Pa. The highest rate was when the pressure was 1 Pa.
 次に、図8を参照して、スパッタリング装置100を用いて生成した薄膜の評価例について説明する。図8は、スパッタリング装置100を用いて生成した薄膜のX線回折を示すグラフである。図8のグラフの横軸は、散乱角2θ(°)を示し、縦軸は、X線強度(cps)を示している。 Next, an evaluation example of a thin film produced by using the sputtering apparatus 100 will be described with reference to FIG. FIG. 8 is a graph showing X-ray diffraction of a thin film produced by using the sputtering apparatus 100. The horizontal axis of the graph of FIG. 8 shows the scattering angle 2θ (°), and the vertical axis shows the X-ray intensity (cps).
 スパッタリング装置100を用いて、コバルトークロム(CoCr)合金の円筒ターゲット材料109を使用し、図7の圧力1Paの条件で、DC電源110にて、中間流となるArガス流量とT-T間距離を選択し、25nm厚をプラスチックフィルムのフィルム113上に成膜した。図8は、上記条件により生成した膜のX線回折の評価結果である。 Using the sputtering device 100, the cylindrical target material 109 of the cobalt-chromium (CoCr) alloy is used, and under the condition of the pressure of 1 Pa in FIG. A distance was selected and a 25 nm thickness was formed on the film 113 of the plastic film. FIG. 8 is an evaluation result of the X-ray diffraction of the film produced under the above conditions.
 図8に示すように、散乱角が44°付近にC軸配向となるピークが現れている。この散乱角が44°付近でロッキングカーブ測定を行った結果、半値幅は8.5°となり結晶性も良好であることがわかった。 As shown in FIG. 8, a peak having a C-axis orientation appears near the scattering angle of 44 °. As a result of rocking curve measurement when the scattering angle was around 44 °, it was found that the half width was 8.5 ° and the crystallinity was also good.
2.第2実施形態
 次に、図9を参照して、本技術の第2実施形態に係るスパッタリング装置200の構成例について説明する。図9は、本実施形態に係るスパッタリング装置200の構成例を示す断面模式図である。スパッタリング装置200が第1実施形態に係るスパッタリング装置100と相違する点は、一対の磁石ユニットの互いに対向する磁極の種類が異なる点である。スパッタリング装置200のその他の構成は、第1実施形態に係るスパッタリング装置100の構成と同様であるため、スパッタリング装置100と同一の符号を付し、説明は省略する。
2. 2. Second Embodiment Next, with reference to FIG. 9, a configuration example of the sputtering apparatus 200 according to the second embodiment of the present technology will be described. FIG. 9 is a schematic cross-sectional view showing a configuration example of the sputtering apparatus 200 according to the present embodiment. The difference between the sputtering device 200 and the sputtering device 100 according to the first embodiment is that the types of magnetic poles of the pair of magnet units facing each other are different. Since the other configurations of the sputtering apparatus 200 are the same as the configurations of the sputtering apparatus 100 according to the first embodiment, the same reference numerals as those of the sputtering apparatus 100 are given, and the description thereof will be omitted.
 図9に示すように、本実施形態に係るスパッタリング装置200は、互いに対向配置された一対のロータリーカソード201およびロータリーカソード202と、一対のロータリーカソード201およびロータリーカソード202のそれぞれの内部に配置され、磁場を発生させる一対の磁場発生部である磁石ユニット203および磁石ユニット204と、を備える。 As shown in FIG. 9, the sputtering apparatus 200 according to the present embodiment is arranged inside each of a pair of rotary cathodes 201 and a rotary cathode 202 arranged opposite to each other, and a pair of rotary cathodes 201 and a rotary cathode 202. A magnet unit 203 and a magnet unit 204, which are a pair of magnetic field generating units for generating a magnetic field, are provided.
 磁石ユニット203および磁石ユニット204は、それぞれロータリーカソード201およびロータリーカソード202の内周に沿って配置され、その配置されたロータリーカソード201およびロータリーカソード202の外周面付近に磁場を発生させて磁界を形成する。 The magnet unit 203 and the magnet unit 204 are arranged along the inner circumferences of the rotary cathode 201 and the rotary cathode 202, respectively, and generate a magnetic field near the outer peripheral surfaces of the arranged rotary cathode 201 and the rotary cathode 202 to form a magnetic field. do.
 磁石ユニット203および磁石ユニット204は、ロータリーカソード201およびロータリーカソード202間で、互いに対向して配置されている。これにより、スパッタガスが流れる領域にプラズマが発生し、ターゲット材料109から放出された成膜粒子がスパッタガスの流れに乗って効率よくフィルム113の方向に向かうため、成膜速度を向上させることができる。 The magnet unit 203 and the magnet unit 204 are arranged between the rotary cathode 201 and the rotary cathode 202 so as to face each other. As a result, plasma is generated in the region where the sputter gas flows, and the film-forming particles discharged from the target material 109 ride on the flow of the sputter gas and efficiently head toward the film 113, so that the film-forming speed can be improved. can.
 本実施形態では、磁石ユニット203および磁石ユニット204の各ユニットに、4つの磁石が含まれている。おり、一例として、磁石ユニット203は、2つのS極の間に2つのN極が配置されている。また、磁石ユニット204は、2つのN極の間に2つのS極が配置されている。このように、中央の2つの磁石とその両端の2つの磁石とは、極性が異なっている。また、一対の磁石ユニット203および磁石ユニット204は、互いに引き合う磁極が対向して配置されている。 In this embodiment, four magnets are included in each of the magnet unit 203 and the magnet unit 204. As an example, in the magnet unit 203, two N poles are arranged between two S poles. Further, in the magnet unit 204, two S poles are arranged between the two N poles. As described above, the two magnets in the center and the two magnets at both ends thereof have different polarities. Further, the pair of magnet units 203 and the magnet unit 204 are arranged so that magnetic poles attracting each other face each other.
 本実施形態に係るスパッタリング装置200によれば、第1実施形態に係るスパッタリング装置100と同様の効果を有することができる。さらに、スパッタリング装置200によれば、一対の磁石ユニット203および磁石ユニット204の互いに引き合う磁極が対向して配置されているため、フィルム113方向へ進む電子の漏れが低減され、成膜中のフィルム113への電子入射ダメージを低減させることができる。 According to the sputtering apparatus 200 according to the present embodiment, it is possible to have the same effect as the sputtering apparatus 100 according to the first embodiment. Further, according to the sputtering apparatus 200, since the magnetic poles of the pair of magnet units 203 and the magnet units 204 attracting each other are arranged so as to face each other, leakage of electrons traveling in the direction of the film 113 is reduced, and the film 113 during film formation is reduced. It is possible to reduce the electron incident damage to.
 その結果、スパッタリング装置200のフィルム113の温度上昇が、第1実施形態に係るスパッタリング装置100に比べて1/4となった。また、その際の成膜速度は、150nm.m/minとなった。 As a result, the temperature rise of the film 113 of the sputtering apparatus 200 was reduced to 1/4 of that of the sputtering apparatus 100 according to the first embodiment. The film forming speed at that time was 150 nm.m / min.
3.第3実施形態
 次に、図10を参照して、本技術の第3実施形態に係るスパッタリング装置300の構成例について説明する。図10は、本実施形態に係るスパッタリング装置300の構成例を示す断面模式図である。スパッタリング装置300が第1実施形態に係るスパッタリング装置100と相違する点は、酸化膜等の反応生成物(化合物)を生成するため、反応性ガスを導入し、プラズマ発光を監視する点である。スパッタリング装置300のその他の構成は、第1実施形態に係るスパッタリング装置100の構成と同様であるため、スパッタリング装置100と同一の符号を付し、説明は省略する。
3. 3. Third Embodiment Next, with reference to FIG. 10, a configuration example of the sputtering apparatus 300 according to the third embodiment of the present technology will be described. FIG. 10 is a schematic cross-sectional view showing a configuration example of the sputtering apparatus 300 according to the present embodiment. The difference between the sputtering apparatus 300 and the sputtering apparatus 100 according to the first embodiment is that a reactive gas is introduced to generate a reaction product (compound) such as an oxide film, and plasma emission is monitored. Since the other configurations of the sputtering apparatus 300 are the same as the configurations of the sputtering apparatus 100 according to the first embodiment, the same reference numerals as those of the sputtering apparatus 100 are given, and the description thereof will be omitted.
 図10に示すように、本実施形態に係るスパッタリング装置300は、チャンバ115内のフィルム113の近傍へ酸素(O2)ガスまたは窒素(N2)ガス等の反応性ガスを供給する反応性ガス供給部301を備える。 As shown in FIG. 10, the sputtering apparatus 300 according to the present embodiment is a reactive gas that supplies a reactive gas such as oxygen (O 2 ) gas or nitrogen (N 2) gas to the vicinity of the film 113 in the chamber 115. A supply unit 301 is provided.
 反応性ガス供給部301は、反応性ガスをチャンバ115内に導入する反応性ガス導入管302と、反応性ガス導入管302のフィルム113近傍側の先端に取り付けられた反応性ガス導入部303と、を有している。本実施形態では、一例として、ロータリーカソード101およびロータリーカソード102のそれぞれの上部と防着板118との間に位置する左右の反応性ガス導入部303からフィルム113の近傍へ酸素(O2)ガスを導入している。 The reactive gas supply unit 301 includes a reactive gas introduction pipe 302 for introducing the reactive gas into the chamber 115, and a reactive gas introduction unit 303 attached to the tip of the reactive gas introduction pipe 302 near the film 113. ,have. In the present embodiment, as an example, oxygen (O 2 ) gas is emitted from the left and right reactive gas introduction portions 303 located between the upper portions of the rotary cathode 101 and the rotary cathode 102 and the protective plate 118 to the vicinity of the film 113. Has been introduced.
 また、スパッタリング装置300は、ロータリーカソード101およびロータリーカソード102の間であって、チャンバ115内のフィルム113の下方に、反応性ガスの漏れや拡散を防ぐ治具として、プラズマ発光のモニタが可能であるプラズマエミッションモニタ(PEM)304を備えている。スパッタリング装置300は、PEM304により、プラズマ発光を監視して、プラズマ発光が一定となるようにフィルム113近傍へ供給される酸素ガスの流量を制御する。 Further, the sputtering apparatus 300 can monitor plasma emission as a jig between the rotary cathode 101 and the rotary cathode 102, below the film 113 in the chamber 115, to prevent leakage and diffusion of the reactive gas. It is equipped with a plasma emission monitor (PEM) 304. The sputtering apparatus 300 monitors the plasma emission by the PEM 304 and controls the flow rate of the oxygen gas supplied to the vicinity of the film 113 so that the plasma emission becomes constant.
 スパッタリング装置300は、一例として、反応性スパッタリングによりフィルム113上にターゲット材料109と反応性ガスである酸素ガスとが反応した反応生成物の酸化膜を形成する。本実施形態では、タングステン(W)の円筒ターゲット材料109を使用し、酸化タングステン(WO3)膜を形成した結果、酸素ガス流量なしの状態のプラズマ発光を100とした場合、発光強度が20となるように酸素ガス流量に対しフィードバックをかけることで、膜吸収が発生せず、最も成膜速度の高い条件が得られた。 As an example, the sputtering apparatus 300 forms an oxide film of a reaction product obtained by reacting the target material 109 with oxygen gas, which is a reactive gas, on the film 113 by reactive sputtering. In this embodiment, as a result of forming a tungsten oxide (WO 3 ) film using a tungsten (W) cylindrical target material 109, the emission intensity is 20 when the plasma emission without oxygen gas flow rate is 100. By giving feedback to the oxygen gas flow rate so as to be, film absorption did not occur and the condition with the highest film formation rate was obtained.
 本実施形態に係るスパッタリング装置300によれば、第1実施形態に係るスパッタリング装置100と同様の効果を有することができる。さらに、スパッタリング装置300を用いて、ガスフロースパッタリング法を使用することにより、大流量のArガスの流れをつくることができ、酸素ガスがフィルム113方向に押し付けられ、ターゲット材料109の表面に近づきにくくなることでターゲット材料109の表面の酸化を防止することができる。これにより、スパッタリング装置300は、DC電源110でも酸化膜の形成が可能となるため、DC電源に比べ成膜速度が落ちる高価格のDCパルス電源やAC電源を使用する必要がない。 According to the sputtering apparatus 300 according to the present embodiment, it is possible to have the same effect as the sputtering apparatus 100 according to the first embodiment. Further, by using the gas flow sputtering method using the sputtering apparatus 300, a large flow rate of Ar gas can be created, oxygen gas is pressed toward the film 113, and it is difficult to approach the surface of the target material 109. This makes it possible to prevent oxidation of the surface of the target material 109. As a result, the sputtering apparatus 300 can form an oxide film even with the DC power supply 110, so that it is not necessary to use a high-priced DC pulse power supply or an AC power supply whose film forming speed is lower than that of the DC power supply.
 したがって、スパッタリング装置300によれば、ガスフロースパッタリング法において、PEM304を用いてプラズマ発光強度を一定にすることにより、DC電源110でも安定した酸化膜形成ができ、低コストで成膜速度を向上させることができる。 Therefore, according to the sputtering apparatus 300, in the gas flow sputtering method, by making the plasma emission intensity constant by using PEM 304, a stable oxide film can be formed even with the DC power supply 110, and the film formation rate is improved at low cost. be able to.
 なお、本技術では、以下の構成を取ることができる。
(1)
 表面がターゲット材料で被覆され、互いに対向配置された一対のカソードと、
 前記一対のカソードのそれぞれの内部に配置され、磁場を発生させる一対の磁場発生部と、
 前記一対のカソードの間に、粘性流と分子流との遷移領域である中間流領域のガスを供給するガス供給部と、
 前記ガス供給部から供給されるガスが、前記一対のカソードの間から周囲に拡散するのを遮断するガス遮断部と、
を備え、基材の表面に成膜するスパッタリング装置。
(2)
 前記カソードは、ロータリーカソードである、(1)に記載のスパッタリング装置。
(3)
 前記一対のカソードは、互いの距離が調整可能である、(1)または(2)に記載のスパッタリング装置。
(4)
 前記一対の磁場発生部は、互いに対向して配置されている、(1)から(3)のいずれか一つに記載のスパッタリング装置。
(5)
 前記一対の磁場発生部は、互いに斜めに対向して配置されている、(1)から(3)のいずれか一つに記載のスパッタリング装置。
(6)
 前記一対の磁場発生部は、一対の磁石である、(1)から(5)のいずれか一つに記載のスパッタリング装置。
(7)
 前記一対の磁石は、互いに反発する磁極が対向して配置されている、(6)に記載のスパッタリング装置。
(8)
 前記一対の磁石は、互いに引き合う磁極が対向して配置されている、(6)に記載のスパッタリング装置。
(9)
 前記ガス供給部は、オリフィス形状に形成されている、(1)から(8)のいずれか一つに記載のスパッタリング装置。
(10)
 前記ガス供給部は、複数個所からガスを供給する、(1)から(9)のいずれか一つに記載のスパッタリング装置。
(11)
 前記ガス遮断部は、ガス遮断板である、(1)から(10)のいずれか一つに記載のスパッタリング装置。
(12)
 前記基材の近傍へ反応性ガスを供給する反応性ガス供給部をさらに備える、(1)から(11)のいずれか一つに記載のスパッタリング装置。
(13)
 DC電源により電力を印加する、(12)に記載のスパッタリング装置。
(14)
 表面がターゲット材料で被覆され、互いに対向配置された一対のカソードの間に、前記一対のカソードの間からガスが周囲に拡散するのを遮断して、粘性流と分子流との遷移領域である中間流領域のガスを供給するステップと、
 前記一対のカソードの間に、磁場を発生させるステップと、
を含み、基材の表面に薄膜を形成するスパッタリング成膜方法。
In this technology, the following configurations can be adopted.
(1)
A pair of cathodes whose surface is covered with a target material and placed opposite to each other,
A pair of magnetic field generators arranged inside each of the pair of cathodes to generate a magnetic field,
A gas supply unit that supplies gas in an intermediate flow region, which is a transition region between a viscous flow and a molecular flow, between the pair of cathodes.
A gas blocking section that blocks the gas supplied from the gas supply section from diffusing from between the pair of cathodes to the surroundings.
A sputtering device that forms a film on the surface of a base material.
(2)
The sputtering apparatus according to (1), wherein the cathode is a rotary cathode.
(3)
The sputtering apparatus according to (1) or (2), wherein the pair of cathodes have adjustable distances from each other.
(4)
The sputtering apparatus according to any one of (1) to (3), wherein the pair of magnetic field generating units are arranged so as to face each other.
(5)
The sputtering apparatus according to any one of (1) to (3), wherein the pair of magnetic field generating portions are arranged diagonally opposite to each other.
(6)
The sputtering apparatus according to any one of (1) to (5), wherein the pair of magnetic field generating units are a pair of magnets.
(7)
The sputtering apparatus according to (6), wherein the pair of magnets have magnetic poles that repel each other arranged so as to face each other.
(8)
The sputtering apparatus according to (6), wherein the pair of magnets are arranged so that magnetic poles attracting each other face each other.
(9)
The sputtering apparatus according to any one of (1) to (8), wherein the gas supply unit is formed in an orifice shape.
(10)
The sputtering apparatus according to any one of (1) to (9), wherein the gas supply unit supplies gas from a plurality of places.
(11)
The sputtering apparatus according to any one of (1) to (10), wherein the gas shutoff unit is a gas shutoff plate.
(12)
The sputtering apparatus according to any one of (1) to (11), further comprising a reactive gas supply unit that supplies a reactive gas to the vicinity of the substrate.
(13)
The sputtering apparatus according to (12), wherein electric power is applied by a DC power supply.
(14)
The surface is covered with a target material, and between the pair of cathodes arranged opposite to each other, the gas is blocked from diffusing from between the pair of cathodes, and is a transition region between the viscous flow and the molecular flow. The step of supplying gas in the intermediate flow region and
A step of generating a magnetic field between the pair of cathodes,
A sputtering film formation method for forming a thin film on the surface of a base material.
100、200、300 スパッタリング装置
101、102、201、202 ロータリーカソード
103、104、203、204 磁石ユニット
105 スパッタガス供給部
106 ガス遮断板
107 メインロール
108 ベース部材
109 ターゲット材料
110 DC電源
111 スパッタガス導入管
112 スパッタガス導入部
113 フィルム(基材)
114 制御部
115 チャンバ
116 巻出しロール
117 巻取りロール
118 防着板
301 反応性ガス供給部
302 反応性ガス導入管
303 反応性ガスの導入部
304 PEM
100, 200, 300 Sputtering device 101, 102, 201, 202 Rotary cathode 103, 104, 203, 204 Magnet unit 105 Sputter gas supply unit 106 Gas cutoff plate 107 Main roll 108 Base member 109 Target material 110 DC power supply 111 Sputter gas introduction Tube 112 Sputter gas introduction part 113 Film (base material)
114 Control unit 115 Chamber 116 Unwinding roll 117 Unwinding roll 118 Anti-bonding plate 301 Reactive gas supply unit 302 Reactive gas introduction pipe 303 Reactive gas introduction unit 304 PEM

Claims (14)

  1.  表面がターゲット材料で被覆され、互いに対向配置された一対のカソードと、
     前記一対のカソードのそれぞれの内部に配置され、磁場を発生させる一対の磁場発生部と、
     前記一対のカソードの間に、粘性流と分子流との遷移領域である中間流領域のガスを供給するガス供給部と、
     前記ガス供給部から供給されるガスが、前記一対のカソードの間から周囲に拡散するのを遮断するガス遮断部と、
    を備え、基材の表面に成膜するスパッタリング装置。
    A pair of cathodes whose surface is covered with a target material and placed opposite to each other,
    A pair of magnetic field generators arranged inside each of the pair of cathodes to generate a magnetic field,
    A gas supply unit that supplies gas in an intermediate flow region, which is a transition region between a viscous flow and a molecular flow, between the pair of cathodes.
    A gas blocking section that blocks the gas supplied from the gas supply section from diffusing from between the pair of cathodes to the surroundings.
    A sputtering device that forms a film on the surface of a base material.
  2.  前記カソードは、ロータリーカソードである、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the cathode is a rotary cathode.
  3.  前記一対のカソードは、互いの距離が調整可能である、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the pair of cathodes are adjustable in distance from each other.
  4.  前記一対の磁場発生部は、互いに対向して配置されている、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the pair of magnetic field generating units are arranged so as to face each other.
  5.  前記一対の磁場発生部は、互いに斜めに対向して配置されている、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the pair of magnetic field generating portions are arranged diagonally facing each other.
  6.  前記一対の磁場発生部は、一対の磁石である、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the pair of magnetic field generating units are a pair of magnets.
  7.  前記一対の磁石は、互いに反発する磁極が対向して配置されている、請求項6に記載のスパッタリング装置。 The sputtering apparatus according to claim 6, wherein the pair of magnets have magnetic poles that repel each other arranged so as to face each other.
  8.  前記一対の磁石は、互いに引き合う磁極が対向して配置されている、請求項6に記載のスパッタリング装置。 The sputtering apparatus according to claim 6, wherein the pair of magnets are arranged so that magnetic poles attracting each other face each other.
  9.  前記ガス供給部は、オリフィス形状に形成されている、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the gas supply unit is formed in an orifice shape.
  10.  前記ガス供給部は、複数個所からガスを供給する、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the gas supply unit supplies gas from a plurality of locations.
  11.  前記ガス遮断部は、ガス遮断板である、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the gas shutoff unit is a gas shutoff plate.
  12.  前記基材の近傍へ反応性ガスを供給する反応性ガス供給部をさらに備える、請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, further comprising a reactive gas supply unit that supplies a reactive gas to the vicinity of the base material.
  13.  DC電源により電力を印加する、請求項12に記載のスパッタリング装置。 The sputtering apparatus according to claim 12, wherein electric power is applied by a DC power supply.
  14.  表面がターゲット材料で被覆され、互いに対向配置された一対のカソードの間に、前記一対のカソードの間からガスが周囲に拡散するのを遮断して、粘性流と分子流との遷移領域である中間流領域のガスを供給するステップと、
     前記一対のカソードの間に、磁場を発生させるステップと、
    を含み、基材の表面に薄膜を形成するスパッタリング成膜方法。
    The surface is covered with a target material, and between the pair of cathodes arranged opposite to each other, the gas is blocked from diffusing from between the pair of cathodes, and is a transition region between the viscous flow and the molecular flow. The step of supplying gas in the intermediate flow region and
    A step of generating a magnetic field between the pair of cathodes,
    A sputtering film formation method for forming a thin film on the surface of a base material.
PCT/JP2021/019306 2020-07-07 2021-05-21 Sputtering apparatus and sputtering film forming method WO2022009536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534934A JPWO2022009536A1 (en) 2020-07-07 2021-05-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-117084 2020-07-07
JP2020117084 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022009536A1 true WO2022009536A1 (en) 2022-01-13

Family

ID=79552903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019306 WO2022009536A1 (en) 2020-07-07 2021-05-21 Sputtering apparatus and sputtering film forming method

Country Status (2)

Country Link
JP (1) JPWO2022009536A1 (en)
WO (1) WO2022009536A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214427B2 (en) * 1986-08-11 1990-04-09 Shaapu Kk
JP2005082849A (en) * 2003-09-08 2005-03-31 Anelva Corp Plasma treatment device
JP2007186774A (en) * 2006-01-16 2007-07-26 Bridgestone Corp Film-forming method and apparatus
JP2015232158A (en) * 2014-06-10 2015-12-24 日東電工株式会社 Sputter apparatus, long film with ito film, and manufacturing method for long film with ito film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214427B2 (en) * 1986-08-11 1990-04-09 Shaapu Kk
JP2005082849A (en) * 2003-09-08 2005-03-31 Anelva Corp Plasma treatment device
JP2007186774A (en) * 2006-01-16 2007-07-26 Bridgestone Corp Film-forming method and apparatus
JP2015232158A (en) * 2014-06-10 2015-12-24 日東電工株式会社 Sputter apparatus, long film with ito film, and manufacturing method for long film with ito film

Also Published As

Publication number Publication date
JPWO2022009536A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
EP1184483B1 (en) Thin-film formation system and thin-film formation process
US6113752A (en) Method and device for coating substrate
JP6101238B2 (en) Coating apparatus for coating a substrate and method for coating a substrate
WO2006038407A2 (en) Vacuum film forming apparatus
US4863581A (en) Hollow cathode gun and deposition device for ion plating process
US20080110749A1 (en) Arc source and magnet configuration
JP2005048260A (en) Reactive sputtering method
TW201437402A (en) Deposition apparatus with gas supply and method for depositing material
US5595792A (en) Method and apparatus for producing magnetic recording medium
KR101724375B1 (en) Nano-structure forming apparatus
WO2022009536A1 (en) Sputtering apparatus and sputtering film forming method
US20180066356A1 (en) Method for depositing a layer using a magnetron sputtering device
JPH07238370A (en) Sputtering film forming device
KR101696838B1 (en) Sputtering apparatus for forming nano-structure
JP2021513004A (en) Deposition device, method of coating flexible substrate, and flexible substrate with coating
JP2006249558A (en) Vapor deposition apparatus
JP2001081550A (en) Reactive sputtering system, and method of film deposition
JPH0878333A (en) Plasma apparatus for formation of film
JP4019457B2 (en) Arc type evaporation source
JP2009144252A (en) Reactive sputtering device and reactive sputtering method
JP2004285445A (en) Sputtering method and apparatus
KR101883369B1 (en) Device for coating Multilayer Thin Film
JP2009275251A (en) Film deposition apparatus and film deposition method
JPS6116346B2 (en)
JPH07292468A (en) Sputtering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838846

Country of ref document: EP

Kind code of ref document: A1