JPH0214427B2 - - Google Patents

Info

Publication number
JPH0214427B2
JPH0214427B2 JP18822286A JP18822286A JPH0214427B2 JP H0214427 B2 JPH0214427 B2 JP H0214427B2 JP 18822286 A JP18822286 A JP 18822286A JP 18822286 A JP18822286 A JP 18822286A JP H0214427 B2 JPH0214427 B2 JP H0214427B2
Authority
JP
Japan
Prior art keywords
cathode
gas
sputtering
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18822286A
Other languages
Japanese (ja)
Other versions
JPS6345367A (en
Inventor
Kyoshi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP18822286A priority Critical patent/JPS6345367A/en
Publication of JPS6345367A publication Critical patent/JPS6345367A/en
Publication of JPH0214427B2 publication Critical patent/JPH0214427B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属、半導体、絶縁体等の各種膜の
形成に利用される輸送型スパツタリング成膜法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a transport sputtering film forming method used for forming various films such as metals, semiconductors, and insulators.

(従来の技術) 従来、基板上に各種物質をスパツタして膜を形
成するスパツタリング法には、原理上2つの方
式、すなわちプラズマスパツタリング法とイオン
ビームスパツタリング法が考えられている。さら
に、これらのスパツタリング法は電子の封じ込め
方法や電極の形状等によつて種々のスパツタリン
グ装置に区分されている。そして、これらのスパ
ツタリング装置では雰囲気ガスの圧力が102Pa
(パスカル)程度以下の雰囲気中でスパツタリン
グ及び膜形成が行われている。
(Prior Art) Conventionally, two methods have been considered in principle for the sputtering method for forming a film by sputtering various substances onto a substrate, namely, the plasma sputtering method and the ion beam sputtering method. Furthermore, these sputtering methods are classified into various sputtering apparatuses depending on the method of confining electrons, the shape of the electrodes, and the like. In these sputtering devices, the atmospheric gas pressure is 10 2 Pa.
Sputtering and film formation are performed in an atmosphere of (Pascal) or less.

(発明が解決しようとする問題点) 従来のスパツタリング装置では、陰極からスパ
ツタされた原子であるスパツタ粒子は、雰囲気ガ
ス中を散乱過程あるいは拡散過程を経て飛来し、
これらの過程に支配されて膜形成がなされる。こ
のため、102Pa程度以上の高圧力下ではスパツタ
リング成膜ができない。また、102Pa程度以下の
雰囲気中で膜形成を行うので、スパツタ粒子の平
均自由行程が長くなるので、高エネルギーのイオ
ン電子、また中性原子が基板面上に入射するの
で、形成された膜に損傷を与える場合がある。さ
らに、スパツタ粒子も平均自由行程が長いために
真空槽内で広い範囲にわたりスパツタ粒子が飛ぶ
ので、基板上への材料の回収率を高くすることが
難しいという問題がある。さらに、近時ガスセン
サや磁気メモリ媒体等に用いられる各種超微粒子
を生成するためには、従来のスパツタリング法を
利用することができない場合が多い。
(Problems to be Solved by the Invention) In conventional sputtering equipment, sputter particles, which are atoms sputtered from a cathode, fly through an atmospheric gas through a scattering process or a diffusion process.
Film formation is controlled by these processes. For this reason, sputtering film formation cannot be performed under high pressures of about 10 2 Pa or higher. In addition, since the film is formed in an atmosphere of about 10 2 Pa or less, the mean free path of the sputtered particles becomes long, so high-energy ions, electrons, and neutral atoms are incident on the substrate surface. May damage the membrane. Furthermore, since the spatter particles also have a long mean free path, they fly over a wide range within the vacuum chamber, making it difficult to increase the recovery rate of the material onto the substrate. Furthermore, in order to generate various ultrafine particles used in recent gas sensors, magnetic memory media, etc., conventional sputtering methods cannot often be used.

(問題点を解決するための手段) 本発明に係るスパツタリング成膜法は、中空形
状になされた陽極内に、同じく中空形状になされ
たスパツタすべき原子からなる陰極を内挿して放
電機構を構成し、該陰極の一端側から他端側に設
けた基板へ雰囲気ガスを導入し、陰極内部で生成
されたスパツタ粒子を前記雰囲気ガスの流れによ
り基板側へ輸送する方法である。
(Means for Solving the Problems) The sputtering film forming method according to the present invention constructs a discharge mechanism by inserting a hollow cathode made of atoms to be sputtered into a hollow anode. In this method, an atmospheric gas is introduced from one end of the cathode to a substrate provided at the other end, and spatter particles generated inside the cathode are transported to the substrate by the flow of the atmospheric gas.

(作用) 陽極と陰極間は、例えば2重構造になされてお
り、これらの間に電圧が印加され放電が行われ
る。この陰極内に雰囲気ガス(例えばArガス)
を導入すると、イオン化されたガス成分が電界に
加速されて陰極に衝突しスパツタ原子をはじき出
す。かかる状態において、雰囲気ガスの流れに沿
つて陰極からスパツタされたスパツタ粒子が輸送
され、基板上に堆積される。
(Function) The anode and cathode have, for example, a double structure, and a voltage is applied between them to cause discharge. There is an atmospheric gas (e.g. Ar gas) inside this cathode.
When introduced, ionized gas components are accelerated by the electric field and collide with the cathode, kicking out spatter atoms. In this state, sputtered particles sputtered from the cathode are transported along the flow of atmospheric gas and deposited on the substrate.

(実施例) 以下、本発明の実施例について図面を参照して
説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明に係る輸送型スパツタリング
成膜法に供されるスパツタリング装置の実施例を
示す概略図である。
FIG. 1 is a schematic diagram showing an embodiment of a sputtering apparatus used in the transport type sputtering film forming method according to the present invention.

真空槽1は2つの排気系を有するとともに、雰
囲気ガス(本例ではArガス)の導入系を有して
いる。排気系としては、本例では高真空用の予備
排気系としてバルブ2の開閉によつて真空槽1内
を排気するオイル拡散ポンプ3と、バルブ4の開
閉によつて排気する低真空用の大容量排気系であ
る油回転ポンプ5が設けられている。
The vacuum chamber 1 has two exhaust systems as well as an introduction system for atmospheric gas (Ar gas in this example). In this example, the evacuation system includes an oil diffusion pump 3 as a preliminary evacuation system for high vacuum, which evacuates the inside of the vacuum chamber 1 by opening and closing valve 2, and a large pump for low vacuum, which evacuates the inside of vacuum chamber 1 by opening and closing valve 4. An oil rotary pump 5, which is a capacity exhaust system, is provided.

スパツタすべき金属原子からなる陰極6は、円
筒形になされている。この陰極6は、同じく円筒
形になされた陽極7と絶縁体(例えばアルミナ
等)8を介して一定間隔を保持して内挿されてい
る。なお、陰極6及び陽極7の形状は本例の如く
円筒形の場合に限らず中空形状であればよい。直
流電源9は陰極6と陽極7間で放電を起こすため
の電源で、陰極6側を負電位とし、陽極7を接地
電位とする電圧が印加されている。一方、Arガ
スの導入系は陰極6の一端側(本例では上端側)
に設けたニードルバルブ10の開閉によつて導入
されるようになされている。陰極6の他端側(本
例では下端側)には、所定間隔をおいて、膜を堆
積すべき基板11が基板ホルダ12上に載置され
て設けられている。陰極6と基板11との間に
は、シヤツター14が設けられており、このシヤ
ツター14の開閉によつて膜堆積の開始タイミン
グ及び堆積量の調整がなされる。さらに、真空槽
1内の圧力を確認するための真空計15及び導入
ガスの圧力を計測するための圧力計16がそれぞ
れ設けられている。
The cathode 6 consisting of metal atoms to be sputtered is cylindrical. This cathode 6 is interposed with an anode 7, which is also cylindrical, and an insulator (eg, alumina) 8 interposed therebetween at a constant distance. Note that the shape of the cathode 6 and the anode 7 is not limited to the cylindrical shape as in this example, but may be any hollow shape. The DC power supply 9 is a power supply for causing a discharge between the cathode 6 and the anode 7, and a voltage is applied that sets the cathode 6 side at a negative potential and the anode 7 at a ground potential. On the other hand, the Ar gas introduction system is on one end side of the cathode 6 (in this example, the upper end side)
It is designed to be introduced by opening and closing a needle valve 10 provided in the. On the other end side (lower end side in this example) of the cathode 6, a substrate 11 on which a film is to be deposited is placed on a substrate holder 12 at a predetermined interval. A shutter 14 is provided between the cathode 6 and the substrate 11, and opening and closing of the shutter 14 adjusts the timing of starting film deposition and the amount of deposition. Furthermore, a vacuum gauge 15 for checking the pressure inside the vacuum chamber 1 and a pressure gauge 16 for measuring the pressure of the introduced gas are provided, respectively.

第2図は、前記陰極6の形状を詳細に示す断面
図である。
FIG. 2 is a sectional view showing the shape of the cathode 6 in detail.

本例の陰極6は軸方向に沿つて向い合せに小孔
17が複数個穿設されている。この小孔17は、
陰極6内のプラズマ電位を陰極6の軸方向にわた
つて一定の値に保ち、均一なスパツタ侵食を行わ
せる働きをする。すなわち、陰極6と陽極7間の
放電によつて生成された電子がある一定の割合で
この小孔17を通して陽極7側に流れ込むことに
より、陰極6内の放電が維持されるのである。
In the cathode 6 of this example, a plurality of small holes 17 are formed facing each other along the axial direction. This small hole 17 is
It serves to maintain the plasma potential within the cathode 6 at a constant value across the axial direction of the cathode 6 and to perform uniform spatter erosion. That is, the electrons generated by the discharge between the cathode 6 and the anode 7 flow into the anode 7 side through the small holes 17 at a certain rate, thereby maintaining the discharge within the cathode 6.

前記雰囲気ガスであるArガスには高純度なガ
スを使用し、一定の流量で導入し、陰極6と陽極
7との間で放電を発生させ持続させる作用を果た
すとともに、イオン化されたArガスが陰極6の
内面に衝突し、陰極原子をスパツタさせ、さらに
このスパツタされた粒子を基板11側に輸送する
働きを有する。
A high-purity Ar gas is used as the atmospheric gas, and it is introduced at a constant flow rate to generate and sustain a discharge between the cathode 6 and anode 7, and the ionized Ar gas It collides with the inner surface of the cathode 6, sputters cathode atoms, and has the function of transporting the sputtered particles to the substrate 11 side.

陰極6と陽極7との放電が開始することにより
発生するプラズマは、陰極6の内周面側と外周面
側の双方の領域に存在するが、陰極6の内周面側
ではγ電子の閉じ込め作用により、外周面側に比
べてバルブ密度が高くなる。この結果、陰極6に
入射する正イオン(アルゴンイオン)の量は、陰
極6の内周面側の方が多くなり、スパツタ侵食も
内周面側の方が多くなる。つまり、陰極6の内周
面がおもにスパツタされることになり、このスパ
ツタされた粒子がArガスの流れに乗つて基板1
1上に輸送されることになる。
Plasma generated by the start of discharge between the cathode 6 and the anode 7 exists on both the inner and outer peripheral surfaces of the cathode 6, but on the inner peripheral surface of the cathode 6, γ electrons are confined. Due to this action, the bulb density becomes higher than that on the outer peripheral surface side. As a result, the amount of positive ions (argon ions) incident on the cathode 6 is greater on the inner peripheral surface side of the cathode 6, and spatter erosion is also greater on the inner peripheral surface side. In other words, the inner circumferential surface of the cathode 6 is mainly sputtered, and the sputtered particles ride the flow of Ar gas to the substrate 1.
1 will be transported.

前記陰極6と陽極7との放電を維持するための
圧力は、陰極6と陽極7間の距離に関係するが、
本例のスパツタリング装置では、陰極径に比べ陰
極長を長くしており、スパツタ粒子の平均自由行
程がこの長さに比べて十分小さくなるようにAr
ガスの圧力を決定しているので、スパツタ粒子は
陰極6から外へ流出することがほとんどない。そ
こで、この陰極6内に高速でArガスを導入する
ことにより、その流れにスパツタ粒子をのせて外
部へ放出させている。
The pressure for maintaining the discharge between the cathode 6 and the anode 7 is related to the distance between the cathode 6 and the anode 7,
In the sputtering device of this example, the cathode length is longer than the cathode diameter, and Ar
Since the gas pressure is determined, almost no spatter particles flow out from the cathode 6. Therefore, by introducing Ar gas into the cathode 6 at high speed, spatter particles are carried by the flow and released to the outside.

陰極6内に導入されるArガスの流れは、スパ
ツタ粒子を外部へ押し出すためにいわゆる粘性流
の働きをすることが好ましい。このために例えば
陰極6内の圧力が300Pa以上とすると、その時の
平均自由行程は10-2cm程度以下となるので、例え
ば陰極内径を数mmとすればよい。そしてこの時、
真空槽1内のArガスの圧力は、陰極6内の圧力
より1桁程度低い値になつている。すなわち、
Arガスは粘性流となつて、陰極6内を通過し、
圧力の十分低い領域へ噴出している状態になつて
いる。
It is preferable that the flow of Ar gas introduced into the cathode 6 acts as a so-called viscous flow in order to push spatter particles to the outside. For this purpose, for example, if the pressure inside the cathode 6 is 300 Pa or more, the mean free path at that time will be about 10 -2 cm or less, so the inner diameter of the cathode may be set to several mm, for example. And at this time,
The pressure of Ar gas in the vacuum chamber 1 is about one digit lower than the pressure in the cathode 6. That is,
Ar gas becomes a viscous flow and passes through the cathode 6,
It is now in a state where it is ejecting into an area where the pressure is sufficiently low.

上記構成からなるスパツタリング装置におい
て、基板11上に膜を堆積するためには、まず真
空槽1内を前記オイル拡散ポンプ3の作動によつ
て十分排気して、不純物の影響を少なくした後に
前記ニードルバルブ10を開き、高純度のArガ
スを導入するとともに、前記油回転ポンプ5を作
動させ大容量の排気を行い、Arガスの流れを設
定する。次に、前記直流電源9を印加し、陰極6
を負電位とする放電を開始し、前記Arガスのイ
オン化とともに、陰極6にアルゴンイオンを衝突
させ、スパツタを開始する。そして、同じくAr
ガスの流れにより、このスパツタ粒子を下方へ輸
送させる。そして、この輸送状態が定常状態にな
つたのを一定時間後確認すると、前記シヤツター
14を開いて基板11上に膜を形成する。
In the sputtering apparatus having the above configuration, in order to deposit a film on the substrate 11, the inside of the vacuum chamber 1 is first sufficiently evacuated by operating the oil diffusion pump 3 to reduce the influence of impurities, and then the needle The valve 10 is opened to introduce high-purity Ar gas, and the oil rotary pump 5 is operated to exhaust a large amount of air to set the flow of the Ar gas. Next, the DC power source 9 is applied, and the cathode 6
A discharge with a negative potential is started, and as the Ar gas is ionized, argon ions collide with the cathode 6 to start sputtering. And also Ar
The gas flow transports the spatter particles downward. When it is confirmed that the transportation state has reached a steady state after a certain period of time, the shutter 14 is opened to form a film on the substrate 11.

次に、上述したスパツタリング装置における実
験例をグラフを参照して説明する。
Next, an experimental example using the above-mentioned sputtering apparatus will be explained with reference to graphs.

第3図ないし第5図に示すグラフを参照して説
明する。なお、以下に示す実験では、陰極の材料
を銅(Cu)によつて作成し、陰極内径を8mm、
陽極内径を20mm、小孔17のピツチ間隔を10mm、
小孔17の内径を5mmに設定している。
This will be explained with reference to the graphs shown in FIGS. 3 to 5. In the experiment shown below, the cathode material was made of copper (Cu), and the inner diameter of the cathode was 8 mm.
The inner diameter of the anode is 20 mm, the pitch interval of small holes 17 is 10 mm,
The inner diameter of the small hole 17 is set to 5 mm.

第3図は、前記直流電源9の印加電圧とこの電
圧による放電電流の関係を示すグラフであり、こ
のグラフによれば、印加電圧が350ボルト以下の
比較的低電圧で大きな放電電流が得られており、
この時に陰極6内に高いイオン化が行われている
のが理解される。
FIG. 3 is a graph showing the relationship between the applied voltage of the DC power supply 9 and the discharge current due to this voltage. According to this graph, a large discharge current can be obtained with a relatively low applied voltage of 350 volts or less. and
It is understood that high ionization occurs within the cathode 6 at this time.

なお、第3図ではガス導入口のアルゴン圧力を
540Paとし、真空槽1内の圧力を20Paとしてお
り、グラフ20,21,22は陰極6の全長l
(第2図参照)をそれぞれ100mm、150mm、300mmに
変更した場合の特性を示している。
In addition, in Figure 3, the argon pressure at the gas inlet is
540Pa, and the pressure inside the vacuum chamber 1 is 20Pa, and graphs 20, 21, and 22 show the total length l of the cathode 6.
(See Figure 2) is changed to 100mm, 150mm, and 300mm, respectively.

第4図は、入力電力(印加電圧×放電電流)に
対するスパツタ膜の堆積速度(Depositi on
rate、単位Å/min)を示しており、このグラフ
はガス導入口のArガス圧力を540Paとし、陰極6
と基板11間の距離を1cmとした場合であり、グ
ラフ23,24,25はそれぞれ前記陰極6の全
長lが150mm、100mm、300mmの場合を示している。
同図によれば、比較的低入力電力でも高速でスパ
ツタ膜の形成が確認された。
Figure 4 shows the deposition rate of the sputtered film relative to the input power (applied voltage x discharge current).
This graph shows the Ar gas pressure at the gas inlet port being 540Pa, and the cathode 6
Graphs 23, 24, and 25 show cases where the total length l of the cathode 6 is 150 mm, 100 mm, and 300 mm, respectively.
According to the figure, it was confirmed that spatter films were formed at high speed even with relatively low input power.

第5図は、スパツタ膜の堆積速度のArガス圧
力の依存性を示すグラフである。
FIG. 5 is a graph showing the dependence of the sputtered film deposition rate on the Ar gas pressure.

陰極6と基板11の距離を1cmとし、グラフ2
6はl=100mm、入力電力55w、グラフ27はl
=300、入力電力160w、グラフ28はl=150mm、
入力電力80wの場合をそれぞれ示している。ま
た、これらの3つの特性と同じ条件でArの流れ
がない場合におけるスパツタ膜の堆積速度はそれ
ぞれ零に近いので、Arガスの流れが本例におけ
る膜形成に重要な条件となつているのがわかる。
The distance between the cathode 6 and the substrate 11 is 1 cm, and graph 2
6 is l=100mm, input power is 55w, graph 27 is l
= 300, input power 160w, graph 28 is l = 150mm,
Each figure shows the case where the input power is 80W. Furthermore, under the same conditions as these three characteristics, the deposition rate of the sputtered film in the absence of Ar flow is close to zero, so the flow of Ar gas is an important condition for film formation in this example. Recognize.

なお、上述した実験例では陰極6をCuによつ
て作成し、Cu膜を生成する場合を例示したが、
この他にFe膜、Ni膜や他の物質についても同様
にスパツタ膜を生成することができる。また、上
述した実施例では陰極6と陽極7とを2重筒構造
に構成しているので、スパツタ粒子は陰極6の下
方だけに輸送され、一定範囲に限つて膜堆積を行
うことができる。
In addition, in the above-mentioned experimental example, the case where the cathode 6 is made of Cu and a Cu film is generated is illustrated.
In addition, sputtered films can be similarly produced using Fe films, Ni films, and other materials. Further, in the above-described embodiment, the cathode 6 and the anode 7 are configured in a double cylinder structure, so that the spatter particles are transported only below the cathode 6, and film deposition can be performed only in a certain range.

また、上述した実験例の他に本例の輸送型スパ
ツタリング成膜法を用いることで超微粒子が生成
されるのを確認した。すなわち、放電に要する入
力電力を増した場合に生成される膜を電子顕微鏡
で観察すると、この粒径が数10Åの超微粒子が生
成されていた。これは、スパツタ粒子がArガス
に輸送されている間に相互に合体して、超微粒子
が生成されたと考えられる。よつて、本例のスパ
ツタリング装置のスパツタ条件をコントロールす
れば、スパツタ粒子が相互に合体して超微粒子が
生成される条件と、合体せずに原子上で基板11
まで到達する条件とを適宜変更することができる
ので、超微粒子と通常のスパツタ粒子の生成切換
を容易に行うことができる。
In addition to the experimental examples described above, it was also confirmed that ultrafine particles were produced by using the transport sputtering film forming method of this example. That is, when the film produced when the input power required for discharge was increased was observed using an electron microscope, it was found that ultrafine particles with a particle size of several tens of angstroms were produced. This is considered to be because the spatter particles coalesced with each other while being transported by Ar gas, and ultrafine particles were generated. Therefore, by controlling the sputtering conditions of the sputtering apparatus of this example, it is possible to create conditions where the sputtered particles coalesce with each other to produce ultrafine particles, and conditions where the sputtered particles do not coalesce and form ultrafine particles on the substrate 11.
Since the conditions for reaching this point can be changed as appropriate, it is possible to easily switch between the production of ultrafine particles and normal sputter particles.

(発明の効果) 以上述べたように、本発明によれば、従来より
も高圧力下で高速スパツタ膜の作成ができる。こ
のため、原子イオン等の平均自由行程が短い状態
でスパツタを行うことができるので、成長膜面に
高エネルギー粒子が入射せず、膜の損傷が防止さ
れる。また、このとき平均自由行程が短いので、
スパツタ粒子は基板に対し2次元的な広がりをも
つて入射して、いわゆるステツプカバレツジがよ
い。さらに、スパツタ粒子は雰囲気ガスの流れで
輸送されるので、膜の堆積場所を任意にコントロ
ールできる。また、陽極と陰極間に入力する電力
を制御することで、超微粒子の生成も可能となつ
た。
(Effects of the Invention) As described above, according to the present invention, a sputtered film can be formed at high speed under a higher pressure than before. Therefore, since sputtering can be performed in a state where the mean free path of atomic ions or the like is short, high-energy particles do not enter the surface of the grown film, and damage to the film is prevented. Also, since the mean free path is short at this time,
The sputter particles are incident on the substrate with a two-dimensional spread, resulting in good so-called step coverage. Furthermore, since the spatter particles are transported by the flow of atmospheric gas, the location where the film is deposited can be controlled as desired. Furthermore, by controlling the power input between the anode and cathode, it has become possible to generate ultrafine particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る輸送型スパツタリング成
膜法に供されるスパツタリング装置の全体構成を
示すブロツク図、第2図は陽極と陰極の形状を詳
細に示す断面図、第3図ないし第5図は実験例を
示すグラフであり、第3図は印加電圧と放電電流
の関係を例示するグラフ、第4図は入力電力とス
パツタ膜の堆積速度の関係を例示するグラフ、第
5図はガス導入口のAr圧力とスパツタ膜の堆積
速度の関係を例示するグラフである。 1…真空槽、3…オイル拡散ポンプ、5…油回
転ポンプ、6…陰極、7…陽極、11…基板、1
7…小孔。
FIG. 1 is a block diagram showing the overall configuration of a sputtering apparatus used in the transport type sputtering film forming method according to the present invention, FIG. 2 is a sectional view showing details of the shapes of an anode and a cathode, and FIGS. 3 to 5 The figures are graphs showing experimental examples, Fig. 3 is a graph illustrating the relationship between applied voltage and discharge current, Fig. 4 is a graph illustrating the relationship between input power and sputtering film deposition rate, and Fig. 5 is a graph illustrating the relationship between applied voltage and discharge current. 3 is a graph illustrating the relationship between the Ar pressure at the inlet and the deposition rate of a sputtered film. 1... Vacuum chamber, 3... Oil diffusion pump, 5... Oil rotary pump, 6... Cathode, 7... Anode, 11... Substrate, 1
7...Small hole.

Claims (1)

【特許請求の範囲】[Claims] 1 中空形状になされた陽極内に、同じく中空形
状になされたスパツタすべき原子からなる陰極を
内挿して放電機構を構成し、該陰極の一端側から
他端側に設けた基板へ雰囲気ガスを導入し、陰極
内部で生成されたスパツタ粒子を前記雰囲気ガス
の流れにより基板側へ輸送することを特徴とする
輸送型スパツタリング成膜法。
1 A discharge mechanism is constructed by inserting a hollow cathode made of atoms to be sputtered into a hollow anode, and an atmospheric gas is introduced from one end of the cathode to a substrate provided at the other end. A transport type sputtering film forming method characterized in that the sputter particles generated inside the cathode are transported to the substrate side by the flow of the atmospheric gas.
JP18822286A 1986-08-11 1986-08-11 Film formation by transporting type sputtering Granted JPS6345367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18822286A JPS6345367A (en) 1986-08-11 1986-08-11 Film formation by transporting type sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18822286A JPS6345367A (en) 1986-08-11 1986-08-11 Film formation by transporting type sputtering

Publications (2)

Publication Number Publication Date
JPS6345367A JPS6345367A (en) 1988-02-26
JPH0214427B2 true JPH0214427B2 (en) 1990-04-09

Family

ID=16219908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18822286A Granted JPS6345367A (en) 1986-08-11 1986-08-11 Film formation by transporting type sputtering

Country Status (1)

Country Link
JP (1) JPS6345367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399833U (en) * 1990-01-31 1991-10-18
JP2007138293A (en) 2005-11-14 2007-06-07 Sulzer Metco Coatings Bv Method for coating of base body and also workpiece
WO2022009536A1 (en) * 2020-07-07 2022-01-13 ソニーグループ株式会社 Sputtering apparatus and sputtering film forming method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037853B3 (en) 2009-08-18 2011-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gas flow sputtering source
SE535381C2 (en) * 2010-02-24 2012-07-17 Plasmadvance Ab Plasma sputtering process to produce particles
CN103751305B (en) * 2013-12-11 2016-03-30 内蒙古元和药业股份有限公司 A kind of medicine for the treatment of rheumatoid arthritis and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399833U (en) * 1990-01-31 1991-10-18
JP2007138293A (en) 2005-11-14 2007-06-07 Sulzer Metco Coatings Bv Method for coating of base body and also workpiece
WO2022009536A1 (en) * 2020-07-07 2022-01-13 ソニーグループ株式会社 Sputtering apparatus and sputtering film forming method

Also Published As

Publication number Publication date
JPS6345367A (en) 1988-02-26

Similar Documents

Publication Publication Date Title
EP1554412B1 (en) Plasma enhanced chemical vapor deposition apparatus
US6664739B1 (en) Enhanced electron emissive surfaces for a thin film deposition system using ion sources
JP2824502B2 (en) Sputtering apparatus and sputtering deposition method using charged particles
Amano et al. Thin film deposition using low‐energy ion beams. I. System specification and design
US6765216B2 (en) Method and apparatus for producing atomic flows of molecular gases
US20110247928A1 (en) Sputtering apparatus and sputtering method
US5899666A (en) Ion drag vacuum pump
Duarte et al. Influence of electronegative gas on the efficiency of conventional and hollow cathode magnetron sputtering systems
JPH0214427B2 (en)
JP2000303166A (en) Vapor depositing source, vapor deposition device and vapor deposition method
US4264813A (en) High intensity ion source using ionic conductors
JP2001192829A (en) Ecr plasma enhanced cvd system for carbon nanotube thin film deposition, and method of deposition for the thin film
Karpov et al. Numerical simulation of low pressure gas metal arc plasma
US20220013324A1 (en) Single beam plasma source
US3152752A (en) Apparatus and method of removing organic vapors from low pressure vacuum systems
JP3409881B2 (en) RF discharge ion source
JPS63307254A (en) Apparatus for forming thin oxide film
JPS5812339B2 (en) Ion etching method
JPS594045Y2 (en) Ionization device for thin film production
JPH0228597Y2 (en)
Korolev et al. Equilibrium gas pressure in various operating modes of ion-plasma accelerators
JPH03129652A (en) Ion source device
DD146625A1 (en) DEVICE FOR ION-PROTECTED COATING AND IONING OF SUBSTRATES
JPH0372068A (en) Solid ion source
JPS6154112B2 (en)