JPS6337188A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS6337188A
JPS6337188A JP18222186A JP18222186A JPS6337188A JP S6337188 A JPS6337188 A JP S6337188A JP 18222186 A JP18222186 A JP 18222186A JP 18222186 A JP18222186 A JP 18222186A JP S6337188 A JPS6337188 A JP S6337188A
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
compound
phase
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18222186A
Other languages
Japanese (ja)
Other versions
JPH0781143B2 (en
Inventor
Hiroyuki Onishi
博之 大西
Tsuyoshi Kamimura
強 上村
Takao Sakurai
櫻井 孝男
Ryoichi Higuchi
樋口 量一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Panasonic Holdings Corp
Original Assignee
Ajinomoto Co Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Matsushita Electric Industrial Co Ltd filed Critical Ajinomoto Co Inc
Priority to JP18222186A priority Critical patent/JPH0781143B2/en
Publication of JPS6337188A publication Critical patent/JPS6337188A/en
Publication of JPH0781143B2 publication Critical patent/JPH0781143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain a ferroelectric liquid crystal composition having high spontaneous polarization, long pitch and wide application temperature range, containing a novel liquid crystal compound having a chiral part not showing racemic modification and a liquid crystal compound showing a nonchiral smectic C phase. CONSTITUTION:Smectic liquid crystal showing ferroelectricity is blended with (A) one or more liquid crystal compounds which are shown by formula I [X is R-, RO- or RCOO- (R is alkyl)] and have a chiral part not showing racemic modification and (B) one or more liquid crystal compounds [e.g. compounds shown by formula II and formula III (R and R' are alkyl and alkoxy)] exhibiting a nonchiral smectic C phase to give the aimed liquid crystal composition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な液晶物質を含有する液晶組成物に係わり
、特に強誘電性液晶材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to liquid crystal compositions containing novel liquid crystal materials, and in particular to ferroelectric liquid crystal materials.

従来の技術 近年液晶表示は、腕時計、電卓等だけでなく映像機器に
も広く使われるようになり、液晶カラーテレビも市場に
出始めている。現在カラー表示用液晶パネルはネマチッ
ク液晶を用いたものがその主流を占めている。しかし、
そのネマチック液晶の諸特性は理想的とは言い難く多く
の問題を含んでいる。強誘電性液晶はその速い応答速度
、メモリー性等ネマチック液晶にはない諸特性を有して
おりデイスプレィ装置への応用が考えられ多方面から研
究が進められている。(オプトロニクス、1983、N
o、9)以下図面をみなから強誘電性液晶について説明
する。第1)図は強誘電性液晶分子の模式図である。強
誘電性液晶は通常スメクチック液晶と呼ばれる層構造を
有する液晶で、液晶分子は層法線方向に対してθだけ傾
いた構造をとっている。また、通常強誘電性液晶分子は
、ラセミ体でない光学活性な液晶分子によって構成され
ている。
2. Description of the Related Art In recent years, liquid crystal displays have come to be widely used not only in wristwatches, calculators, etc., but also in video equipment, and liquid crystal color televisions have also begun to appear on the market. Currently, the mainstream color display liquid crystal panels are those using nematic liquid crystals. but,
The characteristics of nematic liquid crystals are far from ideal and include many problems. Ferroelectric liquid crystals have various properties that nematic liquid crystals do not have, such as fast response speed and memory properties, and are being studied in a variety of fields for potential applications in display devices. (Optronics, 1983, N
o, 9) The ferroelectric liquid crystal will be explained below with reference to the drawings. Figure 1) is a schematic diagram of ferroelectric liquid crystal molecules. A ferroelectric liquid crystal is usually a liquid crystal having a layered structure called a smectic liquid crystal, and the liquid crystal molecules have a structure tilted by θ with respect to the normal direction of the layers. Furthermore, ferroelectric liquid crystal molecules are usually composed of optically active liquid crystal molecules that are not racemic.

第1)図に於て、7は液晶分子、8は自発分極、9はC
ダイレクタ−1IOはコーン、1)は層構造、12は層
法線方向、13は傾き角θを示している。
In Figure 1), 7 is a liquid crystal molecule, 8 is spontaneous polarization, and 9 is C
Director 1IO is a cone, 1) is a layered structure, 12 is a layer normal direction, and 13 is an inclination angle θ.

第1)図に示すように、強誘電性液晶分子は自発分極を
有しており、カイラルスメクチックC相に於いては、第
1)図の一円錐形10 (コーン)の外側を自由に動く
ことができる0層毎に分子長軸の方向は少しだけずれて
おり全体としてはねしれ構造をとっている0次に強誘電
性液晶の表示原理について述べる。第12図は強誘電性
液晶の動作原理図で有る。第12図(alは電圧無印加
の状態、第12図(blは紙面裏から表方向に電圧を印
加した場合、第12図(C)は逆方向に電圧を印加した
場合の動作原理図である。14は層法線に対して分子長
軸が+θ度傾いた液晶分子、15は一θ度傾いた液晶分
子、16は紙面表方向を向いている双極子モーメント、
17は紙面裏方向を向いている双極子モーメント、18
は2枚の偏光板の方向である。強誘電性液晶を透明電極
を有したガラス基板に挾みそのパネルの厚を螺旋ピッチ
以下にすると第12図ta+のように螺旋がほどけ層に
対して分子が+θ度傾いた領域と一〇度傾いた領域にわ
かれる。上下電極間紙面裏から表方向に電圧を印加する
ことにより第12図+b)のようにセル全体が+θ度傾
いたモノドメインになる。また、逆電圧を印加すると第
12図(C1のようにセル全体が−〇度傾いたモノドメ
インになる。従って、電気光学効果による複屈折または
2色性を利用すれば+θ度傾いた2つの状態により明暗
を表すことができる。
1) As shown in Figure 1, ferroelectric liquid crystal molecules have spontaneous polarization, and in the chiral smectic C phase, they move freely outside the cone 10 in Figure 1). The display principle of a zero-order ferroelectric liquid crystal, in which the direction of the long axis of the molecules is slightly shifted for each zero layer and has an overall bouncing structure, will be described. FIG. 12 is a diagram showing the operating principle of a ferroelectric liquid crystal. Figure 12 (al is a state in which no voltage is applied, Figure 12 (bl is a diagram of the operating principle when a voltage is applied from the back to the front of the page, and Figure 12 (C) is a diagram of the operating principle when a voltage is applied in the opposite direction. 14 is a liquid crystal molecule whose long axis of the molecule is tilted by +θ degree with respect to the layer normal, 15 is a liquid crystal molecule whose molecular axis is tilted by 1θ degree, 16 is a dipole moment pointing toward the surface of the paper,
17 is the dipole moment facing toward the back of the paper, 18
is the direction of the two polarizing plates. When a ferroelectric liquid crystal is sandwiched between glass substrates with transparent electrodes and the thickness of the panel is made less than the helical pitch, the helix unwinds as shown in Figure 12 ta+, and the area where the molecules are tilted by +θ degrees with respect to the layer is 10 degrees. Divided into tilted areas. By applying a voltage between the upper and lower electrodes from the back side of the paper toward the front side, the entire cell becomes a monodomain tilted by +θ degrees as shown in FIG. 12+b). Furthermore, when a reverse voltage is applied, the entire cell becomes a monodomain tilted by -0 degrees as shown in Figure 12 (C1).Therefore, if birefringence or dichroism due to the electro-optic effect is used, two domains tilted by +θ degrees can be created. It can be expressed as light or dark depending on the state.

強誘電性液晶をデイスプレィデバイスに応用する場合、
液晶材料に要求される条件として以下のものがあげられ
る。
When applying ferroelectric liquid crystal to display devices,
The following conditions are required for liquid crystal materials.

fl)  室温を含む広い温度範囲で強誘電性液晶相(
たとえばカイラルスメクチックC相)を示す。
fl) Ferroelectric liquid crystal phase (
For example, chiral smectic C phase).

(2)強誘電性液晶の電界に対する応答速度τは、τ=
η/Ps−E 但し、η;粘度 PS;自発分極 E;印加電場 で与えられる。この為、数μsecオーダーの高速応答
を実現するためには、大きな自発分極をもつことが必要
である。
(2) The response speed τ of the ferroelectric liquid crystal to the electric field is τ=
η/Ps-E where η; viscosity PS; spontaneous polarization E; given by applied electric field. Therefore, in order to achieve a high-speed response on the order of several microseconds, it is necessary to have a large spontaneous polarization.

(3)先述したように、強誘電性液晶の光学応答は、安
定な2状B (bistable 5tate)により
初めて実現される。C1erkらによると、この状態を
実現するためには、セルギヤツブdを螺旋ピッチル以下
にし螺旋をほどく必要がある。エヌ、ニー、クラーク、
ニス、ティー、ラガヴアル;アプル、フィズ、レフト、
、36 899(1980) (N、  A、  C1
erk、  S、 T、  Lag−erwall; 
ApH,Phys、 Lett、、二 899(198
0))この為、セル作成上作成容易なセルギャップの厚
いセルを利用するためには、強誘電性液晶の螺旋ピッチ
を長くする必要がある。
(3) As mentioned above, the optical response of a ferroelectric liquid crystal is first realized by a stable 2-state B (bistable 5-state). According to C1erk et al., in order to achieve this state, it is necessary to make the cell gear d less than the helical pitch and unwind the helix. N, Knee, Clark
Varnish, Tea, Raghaval; Apple, Fizz, Left;
, 36 899 (1980) (N, A, C1
erk, S, T, Lag-erwall;
APH, Phys, Lett, 2 899 (198
0)) Therefore, in order to utilize a cell with a thick cell gap that is easy to fabricate, it is necessary to increase the helical pitch of the ferroelectric liquid crystal.

(4)強誘電性液晶の配向状態は、液晶材料の相系列に
よって異なり、特に強誘電性液晶相の高温側にスメクチ
ックA相(SmA)及びコレステリック相(Ch)を有
する液晶材料が良好な配向状態が得られると考えられて
いる。即ち、強誘電性液晶材料の相系列が、たとえばカ
イラルスメクチックC相の場合水 l s o−*Ch−*SmA−”SmC*但し、Is
o;等方性液体 Ch;コレステリック相 SmA ;スメクチックA相 SmC* ;カイラルスメクチックC相であることが望
ましい。
(4) The alignment state of ferroelectric liquid crystal varies depending on the phase series of the liquid crystal material, and in particular, liquid crystal materials having smectic A phase (SmA) and cholesteric phase (Ch) on the high temperature side of the ferroelectric liquid crystal phase exhibit good alignment. It is believed that the state can be obtained. That is, if the phase series of the ferroelectric liquid crystal material is, for example, chiral smectic C phase, water Is o-*Ch-*SmA-"SmC*However, Is
o; Isotropic liquid Ch; Cholesteric phase SmA; Smectic A phase SmC*; Chiral smectic C phase is desirable.

更に、上記のような相系列を持つ液晶材料の中でもCh
相のピッチが長いものの方が配向状態が良好であると考
えられている。
Furthermore, among the liquid crystal materials having the above phase series, Ch
It is believed that the longer the phase pitch, the better the orientation state.

以上述べた条件以外にも液晶分子の傾き角θ等に対する
様々な要求がある。
In addition to the conditions described above, there are various requirements regarding the tilt angle θ of liquid crystal molecules, etc.

従来の強誘電性液晶材料は温度範囲だけをとりあげてみ
ても実用的な材料は数少なく、上記の条件をすべて満た
し実用に耐え得る材料は皆無に等しいのが現状であった
There are only a few conventional ferroelectric liquid crystal materials that are practical in terms of temperature range, and at present there are almost no materials that meet all of the above conditions and can be put to practical use.

以下に従来の強誘電性液晶材料の1例を示す。An example of a conventional ferroelectric liquid crystal material is shown below.

(+)P−デシルオキシヘンジリデンp′アミノ2−メ
チルブチルシンナメイト(+ DOBAMBC)C,H
3 I s o→SmA−3mC*→SmG*120℃  
91℃   60℃ 但し、SmG+に;カイラルスメクチックC相P s 
= 4〜5 n C τ=数百μsec〜数m5ec 発明が解決しようとする問題点 しかしながら、従来の強誘電性液晶材料は、その温度範
囲だけをとりあげても実用的なものは少なく先述の4つ
の条件を総て満たし即デイスプレィデバイスに応用でき
る液晶材料は皆無に等しいのが現状である。又温度範囲
の拡大の為には多(の種類の強誘電性液晶材料を混合し
てやる必要が有る。このとき先述の4つの条件を満たず
ためには多くの強誘電性液晶材料単体のコレステリック
相およびカイラルスメクチックC相それぞれに於けるピ
ッチの左右の向き、大きさ、自発分極の極性等を総て考
慮しながら混合しなければならず、実用的な強誘電性液
晶組成物は得にくいという問題点があった。
(+) P-decyloxyhenzylidene p'amino 2-methylbutyl cinnamate (+ DOBAMBC) C,H
3 Iso→SmA-3mC*→SmG*120℃
91℃ 60℃ However, for SmG+; chiral smectic C phase P s
= 4 to 5 n C τ = several hundred μsec to several m5 ec Problems to be Solved by the Invention However, there are few conventional ferroelectric liquid crystal materials that are practical even within the temperature range, and the above-mentioned 4 At present, there are almost no liquid crystal materials that meet all of these conditions and can be immediately applied to display devices. In addition, in order to expand the temperature range, it is necessary to mix many different types of ferroelectric liquid crystal materials. The problem is that it is difficult to obtain a practical ferroelectric liquid crystal composition because mixing must be done while taking into consideration the left and right direction of pitch, size, polarity of spontaneous polarization, etc. in each of the chiral smectic C phase and chiral smectic C phase. There was a point.

問題点を解決するための手段 上記の問題点を解決するために本発明は、自発分掘が大
きい強誘電性液晶材料に非カイラルである(即ちねじれ
構造、自発分極を全く有さない)スメクチックC相を示
す液晶材料を混合するか、或いは自発分極が大きい強誘
電性液晶材料にまず捩れの向きが逆であるような液晶材
料を混合してらせんのピッチの長い強誘電性液晶組成物
を作成し、このピッチの長い液晶組成物に非カイラルで
ある(即ちねじれ構造、自発分極を全く存さない)スメ
クチックC相を示す液晶材料を混合することにより広い
温度範囲で強誘電性液晶相を示し、良好な配向が得られ
、数十μsecオーダーの高速応答可能な強誘電性液晶
材料を容易に得ることができる。
Means for Solving the Problems In order to solve the above problems, the present invention provides a smectic material having a non-chiral structure (that is, having no twisted structure and no spontaneous polarization) in a ferroelectric liquid crystal material with large spontaneous polarization. A ferroelectric liquid crystal composition with a long helical pitch is produced by mixing a liquid crystal material exhibiting C phase, or by first mixing a liquid crystal material with a twist direction opposite to a ferroelectric liquid crystal material with large spontaneous polarization. By mixing this long-pitch liquid crystal composition with a liquid crystal material exhibiting a smectic C phase that is non-chiral (i.e., has no twisted structure or spontaneous polarization), a ferroelectric liquid crystal phase can be produced over a wide temperature range. It is possible to easily obtain a ferroelectric liquid crystal material that exhibits good alignment and is capable of high-speed response on the order of several tens of microseconds.

作用 −Sに、液晶の温度範囲を拡大する為には、2種類以上
の分子形状の異なる液晶化合物を混合することが必要で
ある。ところが、強誘電性液晶材料を混合する際にはそ
の化合物の自発分極の極性、強誘電性液晶相の捩れの向
き、コレステリック相の捩れの向き等の物質定数を考慮
にいれ混合しなければいけない。この為、捩れ構造、自
発分極を全く有さない非カイラルなスメクチックC相を
温度範囲拡大の為にもちいれば、捩れの向き及び自発分
極の極性等の物質定数を考慮することなしに温度範囲の
広い液晶組成物を容易に得ることができる。非カイラル
なスメクチックC相を示す液晶化合物を強誘電性液晶化
合物に混合する場合その自発分極は第9図に示すように
非カイラル成分の増加と共に直線的に減少するため自発
分極の小さい強誘電性液晶化合物に非カイラルな液晶化
合物を混合するとその混合物の自発分極は極端に小さく
なってしまう。本発明の場合は、自発分極の非常に大き
な強誘電性液晶化合物に非カイラルな液晶化合物を混合
する為、その自発分極の減少はかなり抑えられ比較的自
発分権の大きい強誘電性液晶組成物が容易に得られる。
In effect-S, in order to expand the temperature range of liquid crystal, it is necessary to mix two or more types of liquid crystal compounds with different molecular shapes. However, when mixing ferroelectric liquid crystal materials, it is necessary to take into account material constants such as the polarity of the spontaneous polarization of the compound, the direction of twist of the ferroelectric liquid crystal phase, and the direction of twist of the cholesteric phase. . Therefore, if the non-chiral smectic C phase, which has no twisted structure or spontaneous polarization, is used to expand the temperature range, the temperature range can be expanded without considering material constants such as the direction of twist and the polarity of spontaneous polarization. A wide range of liquid crystal compositions can be easily obtained. When a liquid crystal compound exhibiting a non-chiral smectic C phase is mixed with a ferroelectric liquid crystal compound, its spontaneous polarization decreases linearly as the non-chiral component increases, as shown in Figure 9, resulting in a ferroelectric compound with small spontaneous polarization. When a non-chiral liquid crystal compound is mixed with a liquid crystal compound, the spontaneous polarization of the mixture becomes extremely small. In the case of the present invention, since a non-chiral liquid crystal compound is mixed with a ferroelectric liquid crystal compound that has a very large spontaneous polarization, the decrease in the spontaneous polarization is considerably suppressed, and a ferroelectric liquid crystal composition that has a relatively large spontaneous polarization is created. easily obtained.

螺旋軸の捩れ方向は、カイラル部の絶対的立体配置とベ
ンゼン環からカイラル中心までの分子数が偶数か奇数か
で決定されると考えられている。エム、ツカモトティ。
The twist direction of the helical axis is thought to be determined by the absolute configuration of the chiral moiety and whether the number of molecules from the benzene ring to the chiral center is even or odd. M, Tsukamototi.

オオツカ、ケイ、モリモト、ソイ。ムラカミ;ジャパン
、ジエイ、アプル、フィズ、・1土1307  (19
75)(M、 Tukamoto、T、0tsuka。
Otsuka, Kei, Morimoto, Soi. Murakami; Japan, JE, Apple, Fizz, 1 Sat 1307 (19
75) (M, Tukamoto, T, Otsuka.

K、 Morin+oto、Y、MurakaIli;
Japan、J、 Appl。
K, Morin+oto, Y, MurakaIli;
Japan, J., Appl.

Phys、、1土 1301   (1975))即ち
カイラル中心の絶対立体配置が5体でありベンゼン環か
らカイラル中心までの原子数が偶数であれば捩れの方向
は右であり奇数であれば左である。又、カイラル中心の
絶対立体配置がR体であれば逆になる。一般にピンチを
伸すには、2つの方法が考えられる。1つは強誘電性液
晶材料にカイラルを持たない液晶材料を混合する方法と
、涙れの方向が逆である液晶材料を混合する方法である
。後者の方法によれば小量逆捩れの液晶化合物を添加す
るだけでピンチの長い強誘電性液晶材料が容易に得られ
るが混合に際しては、自発分極の極性も考慮に入れる必
要がある。一方前者の方法によると、ピッチの長い強誘
電性液晶組成物を得るためには、非カイラルな液晶化合
物の添加量は多くなるが自発分極の極性等は考慮する必
要がないため容易にピッチの長い強誘電性液晶組成物を
得ることができる。又、自発分極の極性が同一であり且
つらせんの捩れ方向が逆であるような液晶材料を混合し
ある程度ピッチを伸した液晶組成物に非カイラルの液晶
材料を混合すれば小量の非カイラル成分の添加で自発分
極の大きな、ピンチの長い、温度範囲の広い強誘電性液
晶組成物が容易に得られる。
Phys., 1 Sat. 1301 (1975)) That is, if the absolute configuration of the chiral center is 5-body, and the number of atoms from the benzene ring to the chiral center is an even number, the direction of torsion is to the right, and if it is an odd number, it is to the left. . Moreover, if the absolute configuration of the chiral center is R-configuration, the configuration is reversed. Generally speaking, there are two methods to extend the pinch. One method is to mix a non-chiral liquid crystal material with a ferroelectric liquid crystal material, and the other is to mix a liquid crystal material whose tear direction is opposite to the ferroelectric liquid crystal material. According to the latter method, a ferroelectric liquid crystal material with a long pinch can be easily obtained by simply adding a small amount of a reversely twisted liquid crystal compound, but it is necessary to take into account the polarity of spontaneous polarization when mixing. On the other hand, according to the former method, in order to obtain a ferroelectric liquid crystal composition with a long pitch, the amount of a non-chiral liquid crystal compound added is large, but it is not necessary to consider the polarity of spontaneous polarization, so it is easy to change the pitch. A long ferroelectric liquid crystal composition can be obtained. In addition, if a non-chiral liquid crystal material is mixed with a liquid crystal composition in which the polarity of the spontaneous polarization is the same and the helical twist direction is opposite, and the pitch is stretched to some extent, a small amount of the non-chiral component can be obtained. By adding , a ferroelectric liquid crystal composition with large spontaneous polarization, long pinch, and wide temperature range can be easily obtained.

実施例 本発明の実施例を図を用いて説明する。最初に本実施例
において、その強誘電性液晶材料の応答特性を測定した
液晶セルの構造を第6図に示す。
Embodiment An embodiment of the present invention will be described with reference to the drawings. First, FIG. 6 shows the structure of a liquid crystal cell in which the response characteristics of the ferroelectric liquid crystal material were measured in this example.

ここで、1は偏光板、2はガラス基板、3は透明電掻、
4はラビングにより配向処理を施した有機高分子膜、5
は強誘電性液晶層、6はセル厚を一定に保つためのスペ
ーサーを表している。このような構造のセルに1I1)
誘電性液晶材料を封入しその応答特性及び自発分極を測
定した。自発分極については三角波法を用いて測定を行
った。
Here, 1 is a polarizing plate, 2 is a glass substrate, 3 is a transparent electric scraper,
4 is an organic polymer film subjected to alignment treatment by rubbing, 5
6 represents a ferroelectric liquid crystal layer, and 6 represents a spacer for keeping the cell thickness constant. For cells with this structure, 1I1)
A dielectric liquid crystal material was encapsulated and its response characteristics and spontaneous polarization were measured. Spontaneous polarization was measured using the triangular wave method.

又、相転位温度については、偏光顕微鏡によるtext
ure観察及びDSCにより行い、Sc*相のピッチは
セル厚100ミクロンの配向処理を施したセルを用い、
ch相のピッチはch相を示さない化合物についてはネ
マチック液晶と混合することによりch相とし厚さ5ミ
リの配向処理を施したガラス基板を用いた模型セルを用
い通常法により測定を行った。
In addition, regarding the phase transition temperature, the text
The pitch of the Sc* phase was determined by ure observation and DSC, using an oriented cell with a cell thickness of 100 microns.
The pitch of the ch phase was measured by a conventional method using a model cell using a glass substrate with a thickness of 5 mm that had been subjected to an orientation treatment. Compounds that did not exhibit a ch phase were made into a ch phase by mixing with nematic liquid crystal.

実施例1 特許請求の範囲第1項記載の化合物N)の;リイラル部
の立体配置が2S、3SでありXがオクトキシ基である
化合物(V)に非カイラルの化合物として、−形式が特
許請求の範囲第4項記載の化合物(If)で表されるフ
ェニルピリミジン系の化合物3種類からなるスメクチッ
クC相を示す液晶混合物(Vl)を混合した4成分混合
系について相転位温度、自発分極、ピッチの長さ、応答
速度を測定した。以下の表1に非カイラル物質の構造と
混合比をしめした。第1図に液晶混合物(Vl)と化合
物(V)の相図を、第2図に25℃における自発分極と
20Vpp印加時に於ける応答速度の4度依存を示した
。第1図より全組成範囲にわたって53℃付近から10
℃付近まで室温を含む広い温度範囲でカイラルスメクチ
ックC相を示している。又、第2図より自発分権の値は
非カイラル成分の増加と共にほぼ直線的に減少している
が、カイラル成分が25wt%になっても10nC以上
の比較的大きな自発分極をもっている。25℃に於ける
zovppの電圧印加時の応答速度は非カイラル成分が
増加してもあまり遅くなっておらずカイラル成分が25
−t%において33μSecという高速応答を示してい
る。またこの組成においてピッチはかなり長くなってお
り配向状態は良好であった。又、上記以外の組成の化合
物についても良好な配向が得られた。
Example 1 Compound (V) in which the configuration of the rear moiety is 2S, 3S and X is an octoxy group of the compound N) according to claim 1, is a non-chiral compound, and the - format is claimed as a patent. Phase transition temperature, spontaneous polarization, and pitch for a four-component mixed system containing a liquid crystal mixture (Vl) exhibiting a smectic C phase consisting of three types of phenylpyrimidine compounds represented by the compound (If) described in item 4. The length and response speed were measured. Table 1 below shows the structure and mixing ratio of the non-chiral substance. FIG. 1 shows the phase diagram of the liquid crystal mixture (Vl) and compound (V), and FIG. 2 shows the spontaneous polarization at 25° C. and the 4 degree dependence of the response speed when 20 Vpp is applied. From Figure 1, over the entire composition range, from around 53°C to 10°C.
It exhibits a chiral smectic C phase over a wide temperature range including room temperature up to around ℃. Moreover, as shown in FIG. 2, the value of spontaneous polarization decreases almost linearly as the non-chiral component increases, but even when the chiral component reaches 25 wt%, it still has a relatively large spontaneous polarization of 10 nC or more. The response speed of zovpp when voltage is applied at 25°C does not slow down much even if the non-chiral component increases;
-t% shows a high-speed response of 33 μSec. Further, in this composition, the pitch was considerably long and the orientation state was good. Good orientation was also obtained with compounds having compositions other than those mentioned above.

表1 混合物(Vl)の成分 実施例2 特許請求の範囲第1項記載の化合物(1)のカイラル部
の立体配置が23,33でありXがオクトキシ基である
化合物(V)に非カイラルの化合物として、−形式が特
許請求の範囲第5項記載の化合物(II[)で表される
エステル系の化合物4種類からなるスメクチックC相を
示す液晶混合物(■)を混合した5成分混合系について
相転位温度、自発分極、ピッチの長さ、応答速度を測定
した。以下の表2に非カイラル物質の構造と混合比をし
めした。第3図に液晶混合物(■)と化合物(V)の相
図を、第4図に25℃における自発分極と2ovpp印
加時に於ける応答速度のン、壱度依存を示した。第2閏
より全組成範囲にわたって50℃付近から室温を含む広
い温度範囲でカイラルスメクチックC相を示している。
Table 1 Component Example 2 of Mixture (Vl) Compound (V) in which the chiral moiety of compound (1) according to claim 1 has a configuration of 23,33 and X is an octoxy group has a non-chiral Regarding a five-component mixed system in which a liquid crystal mixture (■) exhibiting a smectic C phase consisting of four types of ester compounds represented by the compound (II[) according to claim 5 as a compound is mixed. Phase transition temperature, spontaneous polarization, pitch length, and response speed were measured. Table 2 below shows the structure and mixing ratio of the non-chiral substances. FIG. 3 shows the phase diagram of the liquid crystal mixture (■) and compound (V), and FIG. 4 shows the spontaneous polarization at 25° C. and the dependence of the response speed upon application of 2 ovpp. From the second leap, the chiral smectic C phase is exhibited over a wide temperature range from around 50° C. to room temperature over the entire composition range.

又、第4図より自発分極の値は非カイラル成分の増加と
共にほぼ直線的に減少しているが、カイラル成分が25
wt%になっても10nC以上の比較的大きな自発分極
をもっている。25℃に於ける2ovppの電圧印加時
の応答速度は非カイラル成分が増加すると遅くなる傾向
があるが、カイラル成分が5Qwt%において53 μ
sec 、25wt%において95μsecという高速
応答を示している。またこれらの組成においてピッチは
かなり長くなっており配向状態は良好であった。又、上
記以外の組成の化合物についても良好な配向が得られた
Also, from Figure 4, the value of spontaneous polarization decreases almost linearly as the non-chiral component increases, but when the chiral component increases to 25
Even at wt%, it has a relatively large spontaneous polarization of 10 nC or more. The response speed when applying a voltage of 2ovpp at 25°C tends to slow down as the non-chiral component increases;
It shows a high-speed response of 95 μsec at 25 wt%. Furthermore, in these compositions, the pitch was considerably long and the orientation state was good. Good orientation was also obtained with compounds having compositions other than those mentioned above.

表2 混合物(■)の成分 実施例3 特許請求の範囲第1項記載の化合物N)のカイラル部の
立体配置が23,3SでありXがオクトキシ基である化
合物(V)のらせんの捩れ方向は右である為逆捩れの左
涙れの化合物として特許請求の範囲第7項記載の化合物
(IV)のRがオクトキシ基である化合物(■)を用い
、非カイラルの化合物として、−S弐が特許請求の範囲
第3項記載の化合物(II)で表されるフェニルピリミ
ジン系の化合物2種類と一般式が特許請求の範囲第4項
記載の化合物(lI[)で表されるエステル系の化合物
4種類とからなるスメクチックC相を示す液晶混合物<
rx>を混合した8成分混合系について相転位温度、自
発分極、ピッチの長さ、応答速度を測定した。以下の表
3に非カイラル物質の構造と混合比をしめした。又、測
定を行った混合系の組成は、化合物(■)が25wt%
、混合物(IX)が75−t%であった。この混合物を
もちいて作成した液晶パネルの配向状態は非常に良好で
あった。
Table 2 Component Example 3 of the mixture (■) Helical twist direction of the compound (V) in which the configuration of the chiral moiety of the compound N) described in claim 1 is 23,3S and X is an octoxy group is right, so the compound (■) in which R is an octoxy group in the compound (IV) described in claim 7 is used as a compound with a left tear of reverse twist, and -S2 is used as a non-chiral compound. are two types of phenylpyrimidine compounds represented by the compound (II) described in claim 3 and an ester type compound whose general formula is represented by the compound (lI[) described in claim 4. A liquid crystal mixture exhibiting a smectic C phase consisting of four types of compounds
The phase transition temperature, spontaneous polarization, pitch length, and response speed were measured for the 8-component mixed system in which .rx> was mixed. Table 3 below shows the structures and mixing ratios of the non-chiral substances. In addition, the composition of the mixed system in which the measurement was performed was that the compound (■) was 25 wt%.
, mixture (IX) was 75-t%. The alignment state of the liquid crystal panel produced using this mixture was very good.

以下に測定結果をしめす。The measurement results are shown below.

転移温度 ISO→Ch−4SmA→SmC*→C69℃ 62℃
  49℃  −15℃融点;5℃ 自発分極;6.5nC(33℃) ch相のピッチ;無限大 SmC+に相のピッチ;無限大 応答速度;85μsec  (25℃、40V)(以 
下 余 白) 表3 混合物(IX)の成分 実施例4 特許請求の範囲第1項記載の化合物(1)のカイラル部
の立体配置が23,3SでありXがヘプタノイルオキシ
基である化合物(X)に非カイラル物質として特許請求
の範囲第4項記載の一般式(II)で表されるフェニル
ピリミジン系の化合物3種類を混合したスメクチックC
相を示す混合物(Vl)を用いた4成分系についてピン
チの長さを測定し、この液晶組成物を用いた液晶表示装
置の応答特性を測定した。以下に測定の結果を示す。
Transition temperature ISO→Ch-4SmA→SmC*→C69℃ 62℃
49℃ -15℃ Melting point; 5℃ Spontaneous polarization; 6.5nC (33℃) Pitch of ch phase; Infinite SmC+ phase pitch; Infinite response speed; 85μsec (25℃, 40V) (below)
(lower margin) Table 3 Component Example 4 of Mixture (IX) Compound (1) according to claim 1, in which the configuration of the chiral moiety is 23,3S and X is a heptanoyloxy group ( Smectic C in which X) is mixed with three types of phenylpyrimidine compounds represented by the general formula (II) described in claim 4 as non-chiral substances.
The pinch length was measured for a four-component system using a mixture (Vl) exhibiting a phase, and the response characteristics of a liquid crystal display device using this liquid crystal composition were measured. The measurement results are shown below.

非カイラル化合物の構造と組成は表1にしめした。The structure and composition of the achiral compound are shown in Table 1.

又、測定を行った混合系の組成は、化合物(X)が25
i1t%、混合物(V[)が75wt%であった。
In addition, the composition of the mixed system in which the measurement was performed was that compound (X) was 25
i1t%, and the mixture (V[) was 75wt%.

この混合物をもちいて作成した液晶セルの配向状態は非
常に良好であった。以下に測定結果をしめす。
The alignment state of the liquid crystal cell prepared using this mixture was very good. The measurement results are shown below.

実施例5 特許請求の範囲第1項記載の化合物(+)のカイラル部
の立体配置が23,3SでありXがヘプタノイルオキシ
基である化合物(X)のらせんのねじれ方向は右である
為、逆ねじれの化合物としてねじれ方向が左の化合物(
IV)のカイラル部の立体配置が3体でありR゛がオク
トキシ基である化合物(■)を用いピッチを伸した液晶
材料に非カイラル物質として特許請求の範囲第4項記載
のフェニルピリミジン系の化合物2種類と特許請求の範
囲第5項記載のエステル系の化合物4種類を混合したス
メクチックC相を示す混合物(IX)を用いた8成分系
について相転移温度、とノ千の長さ、自発分極、応答速
度について測定を行った。
Example 5 The configuration of the chiral moiety of the compound (+) described in claim 1 is 23,3S, and the twist direction of the helix of the compound (X) in which X is a heptanoyloxy group is to the right. , a compound with the twist direction on the left as a compound with a reverse twist (
The phenylpyrimidine-based compound described in claim 4 as a non-chiral substance is added to the liquid crystal material in which the pitch is extended using the compound (■) in which the chiral part of IV) has a 3-configuration and R' is an octoxy group. For an eight-component system using a mixture (IX) showing a smectic C phase, which is a mixture of two types of compounds and four types of ester compounds described in claim 5, the phase transition temperature, the length of Tonosen, and the spontaneous Polarization and response speed were measured.

用いた非カイラル混合物の構造と組成は表3にしめした
。化合物(X)のピッチは化合物(■)を75−t%い
れると発散する。そこで、カイラル化合物としって化合
物(X)が25wt%、化合物(■)が75−t%の混
合物(XI)を用いた。第5図に混合物(■)と混合物
(IX)の相図を、第6図に25℃に於ける自発分極と
44Vppの電圧印加時の応答速度の濃度依存をしめし
た。第5図より全組成範囲にわたり55℃−45℃付近
から室温を含む広い温度範囲でカイラルスメクチックC
相を示しており、特に混合物(IX)が25−t%にお
いては、53℃から13℃までカイラルスメクチックC
相をしめしており第6図よりこの組成での応答速度は1
00μSecという高速応答を示した。又、この組成に
おいてピッチはかなり長くなっており配向状態は非常に
良好であった。又、上記以外の組成の化合物についても
良好な配向を示した。
The structure and composition of the achiral mixture used are shown in Table 3. The pitch of compound (X) diverges when 75-t% of compound (■) is added. Therefore, a mixture (XI) containing 25 wt% of compound (X) and 75-t% of compound (■) was used as a chiral compound. FIG. 5 shows the phase diagram of the mixture (■) and the mixture (IX), and FIG. 6 shows the concentration dependence of the spontaneous polarization at 25° C. and the response speed when a voltage of 44 Vpp is applied. From Figure 5, chiral smectic C
In particular, at 25-t% of mixture (IX), chiral smectic C from 53°C to 13°C
Figure 6 shows that the response speed for this composition is 1.
It showed a high-speed response of 00 μSec. Further, in this composition, the pitch was considerably long and the orientation state was very good. Further, compounds having compositions other than those mentioned above also showed good orientation.

実施例6 特許請求の範囲第1項記載の化合物(1)のカイラル部
の立体配置が2S、3SでありXがヘプタノイルオキシ
基である化合物(X)及び化合物(V)のらせんのねじ
れ方向は右である為、逆ねじれの化合物としてねじれ方
向が左の化合物(IV)のカイラル部の立体配置が3体
でありR。
Example 6 Helical twist direction of compound (X) and compound (V) in which the configuration of the chiral moiety of compound (1) according to claim 1 is 2S or 3S and X is a heptanoyloxy group is on the right, so the configuration of the chiral moiety of compound (IV), whose twist direction is on the left, is R as a compound with a reverse twist.

がオクトキシ基である化合物(■)を用いピッチを伸し
た液晶材料に非カイラル物質として特許請求の範囲第4
項記載のフェニルピリミジン系の化合物2種類と特許請
求の範囲第5項記載のエステル系の化合物し種類を混合
したスメクチックC相を示す混合物(IX)を用いた日
成分系について相転移温度、ピッチの長さ、自発分極、
応答速度について測定を行った。用いた非カイラル混合
物の構造と組成は表2にしめした。化合物(V)と化合
物(X)の混合比は50wt%としこの混合物のピッチ
は化合物(■)を75−t%いれると発散する。そこで
、カイラル化合物として化合物(V)+化合物(X)が
25−t%、化合物(■)が75wt%の混合物(Xn
)を用い、た。この組成のカイラル物質に50−t%の
非カイラル混合物(IX)を混合した液晶組成物の転移
温度、ピッチ、自発分極、応答速度について測定をおこ
なった。以下にその結果を示す。又、この組成の液晶組
成物をもちいて作成した液晶パネルの配向状態は非常に
良好であった。
Claim 4 as a non-chiral substance in a liquid crystal material whose pitch is expanded using a compound (■) in which is an octoxy group.
The phase transition temperature and pitch of the Nichisei system using a mixture (IX) exhibiting a smectic C phase, which is a mixture of two types of phenylpyrimidine compounds described in Claim 5 and the ester type compound described in Claim 5. length, spontaneous polarization,
The response speed was measured. The structure and composition of the achiral mixture used are shown in Table 2. The mixing ratio of Compound (V) and Compound (X) is 50 wt%, and the pitch of this mixture diverges when 75-t% of Compound (■) is added. Therefore, as a chiral compound, a mixture (Xn
) was used. The transition temperature, pitch, spontaneous polarization, and response speed of a liquid crystal composition prepared by mixing a chiral substance having this composition with 50-t% of a non-chiral mixture (IX) were measured. The results are shown below. Furthermore, the alignment state of the liquid crystal panel prepared using the liquid crystal composition having this composition was very good.

転移温度 I s o →Ch−4SmA=SmC*=C67,5
℃ 59℃  50℃  −15,6℃融点;2.6℃ 自発分i; 15.4nC(25℃) ch相のピンチ;無限大 SmC+に相のピッチ;無限大 応答速度;30μ5ee(25℃44 Vpp)実施例
7 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が23.33でありRがノニルオキシカルボ
ニルオキシ基である化合物(XIII)のらせんのねじ
れ方向は右である為、逆ねじれの化合物としてねじれ方
向が左の化合物(TV)のカイラル部の立体配置が8体
でありR゛がオクトキシ基である化合物(■)を用いピ
ンチを伸した液晶材料に非カイラル物質として特許請求
の範囲第4項記載のフェニルピリミジン系の化合物2種
類と特許請求の範囲第5項記載のエステル系の化合物4
種類を混合したスメクチックC相を示す混合物(IX)
を用いた。用いた非カイラル混合物の構造と組成は表3
にしめした。化合物(X[l)のピッチは化合物(■)
を75wt%いれると発散する。
Transition temperature I s o → Ch-4SmA=SmC*=C67,5
°C 59 °C 50 °C -15,6 °C Melting point; 2.6 °C Spontaneous fraction i; 15.4 nC (25 °C) Ch phase pinch; infinite SmC+ phase pitch; infinite response speed; 30 μ5ee (25 °C 44 Vpp) Example 7 The helical twist direction of compound (XIII) in which the chiral moiety of compound (I) according to claim 1 is 23.33 and R is a nonyloxycarbonyloxy group is right Therefore, as a compound with a reverse twist, a compound (TV) whose twist direction is on the left has an 8-configuration of the chiral moiety and a compound (■) where R is an octoxy group is used to create a pinch-stretched liquid crystal material. Two types of phenylpyrimidine compounds as described in claim 4 and ester compound 4 as described in claim 5 as chiral substances
Mixture showing smectic C phase with mixed types (IX)
was used. Table 3 shows the structure and composition of the achiral mixture used.
I made it. The pitch of compound (X[l) is compound (■)
When 75wt% of is added, it diverges.

そこで、カイラル化合物として化合物(XI[[)が2
5−1%、化合物(■)が75−t%の混合物(XIV
)を用いた。第7図に混合物(IX)と混合物(XIV
)の相図を、第8図に25℃に於ける応答速度をしめし
た。測定に用いた混合物の組成は、化合物(XI[)1
2.5wt%、化合物(XII[)が37.5wt%、
混合物(IX)が50−1%であった。以下に転移温度
、ピッチ、自発分極、応答速度の測定結果を示す。又、
この組成においてピッチはかなり長くなっており配向状
態は非常に良好であった。
Therefore, as a chiral compound, the compound (XI[[) is 2
A mixture of 5-1% and 75-t% of compound (■) (XIV
) was used. Figure 7 shows mixture (IX) and mixture (XIV).
), and Figure 8 shows the response speed at 25°C. The composition of the mixture used in the measurement was compound (XI[)1
2.5 wt%, 37.5 wt% of compound (XII[),
Mixture (IX) was 50-1%. The measurement results of transition temperature, pitch, spontaneous polarization, and response speed are shown below. or,
In this composition, the pitch was considerably long and the orientation state was very good.

又、上記以外の組成の化合物についても良好な配向を示
した。
Further, compounds having compositions other than those mentioned above also showed good orientation.

転移温度 Iso−4Ch−4SmA→SmC*→C57,6℃ 
53℃  34℃  −24℃融点、−7.5℃ 自発分1i;9.15nC(25℃) ch相のピッチ;無限大 SmC*相のピッチ;無限大 応答速度;45μsec  (25℃、40Vpp)実
施例8 特許請求の範囲第1項記載の化合物(1)のカイラル部
の立体配置が23.33でありRがノニルオキシカルボ
ニルオキシ基である化合物(XIII)及び化合物(V
)のらせんのねじれ方向は右である為、逆ねじれの化合
物としてねしれ方向が左の化合物(IV)のカイラル部
の立体配置が8体でありR゛がオクトキシ基である化合
物(■)を用いピッチを伸した液晶材料に非カイラル物
質として特許請求の範囲第4項記載のフェニルピリミジ
ン系の化合物2種類と特許請求の範囲第5項記載のエス
テル系の化合物4種類を混合したスメクチックC相を示
す混合物(■)を用いた日成分系について相転移温度、
ピッチの長さ、自発分極、応答速度について測定を行っ
た。用いた非カイラル混合物の構造と組成は表3にしめ
した。化合物(X I[[>と化合物(V)の混合比は
50−t%としこの混合物のピッチは化合物(■)を7
5wt%いれると発散する。そこで、カイラル化合物と
して化合物(XIII)十化合物(V)が25匈t%、
化合物(■)が75wt%の混合物を用いた。この組成
のカイラル物質に50wt%の非カイラル混合物(IX
)を混合した液晶組成物の転移温度、ピッチについて測
定をおこなった。以下にその結果を示す。又、この組成
の液晶組成物をもちいて作成した液晶パネルの配向状態
は非常に良好であった。
Transition temperature Iso-4Ch-4SmA→SmC*→C57,6℃
53℃ 34℃ -24℃ melting point, -7.5℃ Spontaneous fraction 1i; 9.15nC (25℃) Pitch of ch phase; infinite pitch of SmC* phase; infinite response speed; 45μsec (25℃, 40Vpp) Example 8 Compound (XIII) and compound (V
), the twist direction of the helix is to the right, so the compound (■) whose chiral moiety has an 8-body configuration and R゛ is an octoxy group of compound (IV) whose helix direction is on the left can be considered as a compound with a reverse twist. A smectic C phase obtained by mixing two types of phenylpyrimidine compounds described in claim 4 and four types of ester compounds described in claim 5 as non-chiral substances in a liquid crystal material whose pitch has been stretched. The phase transition temperature for the Nikon system using a mixture (■) showing
The pitch length, spontaneous polarization, and response speed were measured. The structure and composition of the achiral mixture used are shown in Table 3. The mixing ratio of compound (X I[[> and compound (V) is 50-t%, and the pitch of this mixture is 7
If you add 5wt%, it will diverge. Therefore, 25 t% of compound (XIII) and compound (V) as chiral compounds,
A mixture containing 75 wt% of compound (■) was used. Add 50 wt% of a non-chiral mixture (IX
) were mixed and the transition temperature and pitch of the liquid crystal composition were measured. The results are shown below. Furthermore, the alignment state of the liquid crystal panel prepared using the liquid crystal composition having this composition was very good.

転移温度 I  s  o−ec h−*SmA−”SmC*−=
C66,7℃  59℃   51℃   −9℃ch
相のピッチ;無限大 SmC*相のピッチ;無限大 発明の効果 以上のように本発明は自発分極の大きい強誘電性液晶材
料に非カイラルの液晶材料を混合するかあるいは、自発
分極の大きい強誘電性液晶材料に逆ねじれの液晶材料を
混合してピンチをのばしたものに非カイラルの液晶材料
を混合することにより、自発分権の大きい高速応答可能
な強誘電性液晶材料を提供するものである。
Transition temperature I so-ec h-*SmA-"SmC*-=
C66,7℃ 59℃ 51℃ -9℃ch
Phase pitch: Infinite SmC By mixing a dielectric liquid crystal material with a reverse-twisted liquid crystal material and stretching the pinch, and then mixing a non-chiral liquid crystal material, a ferroelectric liquid crystal material with large spontaneous decentralization and capable of high-speed response is provided. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における混合系の相図、第2
図は本発明の実施例1における強誘電性液晶セルの応答
速度と自発分極の濃度依存の特性図、第3図は本発明の
実施例2における混合系の相図、第4図は本発明の実施
例2における強誘電性液晶セルの応答速度と自発分極の
4度依存の特性図、第5図は本発明の実施例5における
混合系の相図、第6図は本発明の実施例5における強誘
電性液晶セルの応答速度と自発分極の濃度依存の特性図
、第7図は本発明の実施例7における混合系の相図、第
8図は本発明の実施例7における強誘電性液晶セルの応
答特性図、第9図はカイラル物質に非カイラル物質を混
合した時の自発分極の濃度依存の特性図、第10図は強
誘電性液晶セルの構成図、第1)図は強誘電性液晶の模
式図、第12図は強誘電性液晶の動作原理を示した模式
図である。 1・・・・・・偏光板、2・・・・・・上下のガラス基
板、3・・・・・・透明電極、4・・・・・・配向処理
を施した有機配向膜、5・・・・・・強誘電性液晶相、
6・・・・・・セル厚を一定に保つためのスペーサー、
7・・・・・・強誘電性液晶分子、8・・・・・・自発
分極、9・・・・・・Cダイレクタ−510・・・・・
・コーン、1)・・・・・・層、12・・・・・・層法
線、13・・・・・・分子の層法線に対する傾き角θ、
14・・・・・・層法線に対して分子の長軸が+θ傾い
た液晶分子、15・・・・・・層法線に対して分子の長
軸が−θ傾いた液晶分子、16・・・・・・紙面表方向
を向いている双橿子モーメント、17・・・・・・紙面
裏方向を向いている双掻子モーメント、18・・・・・
・2枚の偏光板の方向。 代理人の氏名 弁理士 中尾敏男 ばか1名含弗州亀(
?tc/ctrl+ 自勇5づ’1m  (nc10n2) 第9区 カイラル員分の皇! γ0 第5図 〔×〕の1予γ。 第6図 第7図 OSOノθ0 (Xll13の重量2 第8図 (乙tsecン 甲7S社〔仲〕 第10図 第1)図
Figure 1 is the phase diagram of the mixed system in Example 1 of the present invention, and Figure 2 is the phase diagram of the mixed system in Example 1 of the present invention.
The figure is a characteristic diagram of the concentration dependence of response speed and spontaneous polarization of a ferroelectric liquid crystal cell in Example 1 of the present invention, Figure 3 is a phase diagram of a mixed system in Example 2 of the present invention, and Figure 4 is a graph of the present invention. Figure 5 is a phase diagram of the mixed system in Example 5 of the present invention, and Figure 6 is an example of the present invention. Figure 7 is the phase diagram of the mixed system in Example 7 of the present invention, and Figure 8 is the characteristic diagram of the concentration dependence of the response speed and spontaneous polarization of the ferroelectric liquid crystal cell in Example 7 of the present invention. Figure 9 is a characteristic diagram of the concentration dependence of spontaneous polarization when a non-chiral substance is mixed with a chiral substance. Figure 10 is a diagram of the configuration of a ferroelectric liquid crystal cell. A schematic diagram of a ferroelectric liquid crystal. FIG. 12 is a schematic diagram showing the operating principle of a ferroelectric liquid crystal. 1... Polarizing plate, 2... Upper and lower glass substrates, 3... Transparent electrode, 4... Organic alignment film subjected to alignment treatment, 5... ...ferroelectric liquid crystal phase,
6...Spacer to keep cell thickness constant,
7... Ferroelectric liquid crystal molecules, 8... Spontaneous polarization, 9... C director-510...
・Cone, 1)...Layer, 12...Layer normal, 13...Tilt angle θ of the molecule with respect to the layer normal,
14...Liquid crystal molecules whose long axis of the molecule is tilted by +θ with respect to the layer normal, 15...Liquid crystal molecule whose long axis of the molecule is tilted by −θ with respect to the layer normal, 16・・・・・・Double rod moment facing toward the front of the page, 17・・・・・・Double rod moment facing toward the back of the page, 18……
・Direction of the two polarizing plates. Name of agent: Patent attorney Toshio Nakao (including one idiot)
? tc/ctrl+Jiyō 5zu'1m (nc10n2) The Emperor of the 9th Ward Kairal members! γ0 1 pregamma of Fig. 5 [x]. Fig.6 Fig.7

Claims (9)

【特許請求の範囲】[Claims] (1)強誘電性を示すスメクチック液晶に於て、一般式 ▲数式、化学式、表等があります▼……( I ) (但し、式中XはR−、RO−、RCOO−、ROCO
O−のいずれかであり、Rはアルキル基を示す)で表さ
れるカイラル部がラセミ体をなさない液晶化合物と非カ
イラルなスメクチックC相を示す液晶化合物をそれぞれ
1種類以上含有することを特徴とする液晶組成物。
(1) In smectic liquid crystals that exhibit ferroelectricity, there are general formulas ▲mathematical formulas, chemical formulas, tables, etc.▼……(I) (However, in the formula, X is R-, RO-, RCOO-, ROCO
O-, R represents an alkyl group) The chiral moiety is characterized by containing one or more types of each of a liquid crystal compound that does not form a racemate and a liquid crystal compound that exhibits a non-chiral smectic C phase. A liquid crystal composition.
(2)強誘電性を示すスメクチック液晶に於て、一般式 ▲数式、化学式、表等があります▼……( I ) (但し、式中XはR−、RO−、RCOO−、ROCO
O−のいずれかであり、Rはアルキル基を示す)で表さ
れるカイラル部がラセミ体をなさない液晶化合物にこの
化合物とらせんの捩れ方向が逆である化合物を混合して
なる液晶組成物と非カイラルなスメクチックC相を示す
液晶化合物をそれぞれ1種類以上含有することを特徴と
する特許請求の範囲第1項記載の液晶組成物。
(2) In smectic liquid crystals that exhibit ferroelectricity, there are general formulas ▲mathematical formulas, chemical formulas, tables, etc.▼……(I) (However, in the formula, X is R-, RO-, RCOO-, ROCO
A liquid crystal composition obtained by mixing a non-racemic liquid crystal compound in which the chiral moiety represented by O- (R represents an alkyl group) with a compound in which the helical twist direction is opposite to this compound. 2. The liquid crystal composition according to claim 1, comprising at least one type of liquid crystal compound exhibiting a non-chiral smectic C phase.
(3)強誘電性を示すスメクチック液晶に於て、一般式 ▲数式、化学式、表等があります▼……( I ) (但し、式中XはR−、RO−、RCOO−、ROCO
O−のいずれかであり、Rはアルキル基を示す)で表さ
れるカイラル部がラセミ体をなさない液晶化合物にこの
化合物とらせんの捩れ方向が逆であり且つ自発分極の極
性が同一である化合物を混合してなる液晶組成物と非カ
イラルなスメクチックC相を示す液晶化合物をそれぞれ
1種類以上含有することを特徴とする特許請求の範囲第
1項、第2項のいずれかに記載の液晶組成物。
(3) In smectic liquid crystals that exhibit ferroelectricity, there are general formulas ▲mathematical formulas, chemical formulas, tables, etc.▼……(I) (However, in the formula, X is R-, RO-, RCOO-, ROCO
A liquid crystal compound in which the chiral moiety represented by O- (R represents an alkyl group) is a non-racemic liquid crystal compound in which the helical twist direction is opposite to this compound and the polarity of spontaneous polarization is the same. The liquid crystal according to any one of claims 1 and 2, which contains a liquid crystal composition formed by mixing compounds and one or more types of liquid crystal compounds each exhibiting a non-chiral smectic C phase. Composition.
(4)前記非カイラルなスメクチックC相を示す液晶化
合物の少なくとも1種類が、一般式 ▲数式、化学式、表等があります▼……(II) (但し、式中R、R’はそれぞれアルキル基またはアル
コキシ基を示す)で表されることを特徴とする特許請求
の範囲第1項、第2項、第3項のいずれかに記載の液晶
組成物。
(4) At least one type of liquid crystal compound exhibiting the non-chiral smectic C phase has a general formula ▲A mathematical formula, a chemical formula, a table, etc.▼...(II) (However, in the formula, R and R' are each an alkyl group. or an alkoxy group) according to any one of claims 1, 2, and 3.
(5)前記非カイラルなスメクチックC相を示す液晶化
合物の少なくとも1種類が、一般式 ▲数式、化学式、表等があります▼……(III) (但し、式中R、R’はそれぞれアルキル基またはアル
コキシ基を示す)で表されることを特徴とする特許請求
の範囲第1項、第2項、第3項のいずれかに記載の液晶
組成物。
(5) At least one type of liquid crystal compound exhibiting the non-chiral smectic C phase has a general formula ▲ Numerical formula, chemical formula, table, etc. ▼... (III) (However, in the formula, R and R' are each an alkyl group. or an alkoxy group) according to any one of claims 1, 2, and 3.
(6)前記非カイラルなスメクチックC相を示す液晶化
合物が少なくとも、一般式 ▲数式、化学式、表等があります▼……(II) ▲数式、化学式、表等があります▼……(III) (但し、式中R、R’、R”、R”はそれぞれアルキル
基またはアルコキシ基を示す)で表される組成物を含む
ことを特徴とする特許請求の範囲第1項、第2項、第3
項、第4項、第5項のいずれかに記載の液晶組成物。
(6) The liquid crystal compound exhibiting the non-chiral smectic C phase has at least a general formula ▲A mathematical formula, a chemical formula, a table, etc.▼...(II) ▲A mathematical formula, a chemical formula, a table, etc.▼...(III) However, claims 1, 2, and 2 are characterized in that they include a composition represented by the following formula: R, R', R'', and R'' each represent an alkyl group or an alkoxy group. 3
The liquid crystal composition according to any one of Items 1, 4, and 5.
(7)前記非カイラルなスメクチックC相を示す液晶化
合物の少なくとも1種類が、一般式 ▲数式、化学式、表等があります▼……(II) (但し、式中R、R’はそれぞれアルキル基またはアル
コキシ基を示す)で表され前記化合物( I )とらせん
のねじれ方向が逆の化合物の少なくとも1種類が一般式 ▲数式、化学式、表等があります▼……(IV) (但し、式中Rはアルキル基、又はアルコキシ基を示す
)で表されるカイラル部がラセミ体をなさない液晶化合
物であることを特徴とする特許請求の範囲第1項、第2
項、第3項、第4項のいずれかに記載の液晶組成物。
(7) At least one type of liquid crystal compound exhibiting the non-chiral smectic C phase has a general formula ▲A mathematical formula, a chemical formula, a table, etc.▼...(II) (However, in the formula, R and R' are each an alkyl group. or an alkoxy group) and has a helical twist direction opposite to that of the compound (I), at least one type of compound has a general formula ▲ Numerical formula, chemical formula, table, etc. ▼... (IV) (However, in the formula Claims 1 and 2 are characterized in that the chiral moiety represented by R represents an alkyl group or an alkoxy group does not form a racemate.
The liquid crystal composition according to any one of Items 1, 3, and 4.
(8)前記非カイラルなスメクチックC相を示す液晶化
合物の少なくとも1種類が、一般式 ▲数式、化学式、表等があります▼……(III) (但し、式中R、R’はアルキル基またはアルコキシ基
を示す)で表され前記化合物( I )とらせんのねじれ
方向が逆の化合物の少なくとも1種類が一般式 ▲数式、化学式、表等があります▼……(IV) (但し、式中Rはアルキル基、アルコキシ基を示す)で
表されるカイラル部がラセミ体をなさない液晶化合物で
あることを特徴とする特許請求の範囲第1項、第2項、
第3項、第5項のいずれかに記載の液晶組成物。
(8) At least one type of liquid crystal compound exhibiting the non-chiral smectic C phase has a general formula ▲ Numerical formula, chemical formula, table, etc. ▼ ... (III) (However, in the formula, R and R' are an alkyl group or At least one type of compound represented by (representing an alkoxy group) whose helical twist direction is opposite to that of compound (I) has a general formula ▲ Numerical formula, chemical formula, table, etc. ▼...(IV) (However, in the formula R is a liquid crystal compound in which the chiral moiety represented by (represents an alkyl group or an alkoxy group) does not form a racemate,
The liquid crystal composition according to any one of Items 3 and 5.
(9)前記非カイラルなスメクチックC相を示す液晶化
合物が少なくとも、一般式 ▲数式、化学式、表等があります▼……(II) ▲数式、化学式、表等があります▼……(III) (但し、式中R、R’、R”、Rはそれぞれアルキル基
またはアルコキシ基を示す)で表される組成物を含み、
前記化合物( I )とらせんのねじれ方向が逆の化合物
の少なくとも1種類が一般式 ▲数式、化学式、表等があります▼……(IV) (但し、式中Rはアルキル基、アルコキシ基を示す)で
表されるカイラル部がラセミ体をなさない液晶化合物で
あることを特徴とする特許請求の範囲第1項、第2項、
第3項、第4項、第5項、第6項のいずれかに記載の液
晶組成物。
(9) The liquid crystal compound exhibiting the non-chiral smectic C phase has at least a general formula ▲A mathematical formula, a chemical formula, a table, etc.▼...(II) ▲A mathematical formula, a chemical formula, a table, etc.▼...(III) However, it includes a composition represented by the formula (R, R', R'', R each represents an alkyl group or an alkoxy group),
At least one type of compound whose helical twist direction is opposite to that of the compound (I) has a general formula▲A mathematical formula, a chemical formula, a table, etc.▼...(IV) (However, in the formula, R represents an alkyl group or an alkoxy group. ) The chiral moiety represented by is a liquid crystal compound that does not form a racemate, claims 1 and 2,
The liquid crystal composition according to any one of Item 3, Item 4, Item 5, and Item 6.
JP18222186A 1986-08-01 1986-08-01 Liquid crystal composition Expired - Lifetime JPH0781143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18222186A JPH0781143B2 (en) 1986-08-01 1986-08-01 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18222186A JPH0781143B2 (en) 1986-08-01 1986-08-01 Liquid crystal composition

Publications (2)

Publication Number Publication Date
JPS6337188A true JPS6337188A (en) 1988-02-17
JPH0781143B2 JPH0781143B2 (en) 1995-08-30

Family

ID=16114461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18222186A Expired - Lifetime JPH0781143B2 (en) 1986-08-01 1986-08-01 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH0781143B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254421A (en) * 1987-04-13 1988-10-21 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS63256688A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPH01101390A (en) * 1987-10-15 1989-04-19 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254421A (en) * 1987-04-13 1988-10-21 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS63256688A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPH01101390A (en) * 1987-10-15 1989-04-19 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal composition

Also Published As

Publication number Publication date
JPH0781143B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
JPH07113112B2 (en) Ferroelectric chiral smectic liquid crystal composition
JPH01213390A (en) Ferroelectric liquid crystal composition and liquid crystal display element
JPS61195187A (en) Ferroelectric chiral smectic liquid crystal composition
JPS62205189A (en) Liquid crystal display device
JPH01139689A (en) Ferroelectric liquid crystal composition
JPS6337188A (en) Liquid crystal composition
JPS6337186A (en) Liquid crystal composition
JPS62205190A (en) Liquid crystal composition
JPS6337187A (en) Liquid crystal display device
JPS6337193A (en) Liquid crystal display device
JPS6337190A (en) Liquid crystal composition
JPS63256688A (en) Liquid crystal composition
JP2953624B2 (en) Ferroelectric liquid crystal composition
JPS6337189A (en) Liquid crystal display device
JPS6337191A (en) Liquid crystal composition
JP2958046B2 (en) Ferroelectric liquid crystal composition
JPH01198682A (en) Liquid crystal display device
JP2563553B2 (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPS6337192A (en) Liquid crystal display device
JPS63254421A (en) Liquid crystal display device
JPS63191891A (en) Liquid crystal display device
JPH01152186A (en) Ferroelectric liquid crystal display
JPH01101390A (en) Ferroelectric liquid crystal composition
JPH07116440B2 (en) Liquid crystal composition and liquid crystal display device
JPS63191890A (en) Liquid crystal composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term