JPS6334421B2 - - Google Patents

Info

Publication number
JPS6334421B2
JPS6334421B2 JP57125508A JP12550882A JPS6334421B2 JP S6334421 B2 JPS6334421 B2 JP S6334421B2 JP 57125508 A JP57125508 A JP 57125508A JP 12550882 A JP12550882 A JP 12550882A JP S6334421 B2 JPS6334421 B2 JP S6334421B2
Authority
JP
Japan
Prior art keywords
refractive index
light
optical fiber
measured
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57125508A
Other languages
Japanese (ja)
Other versions
JPS5915841A (en
Inventor
Gyu Kashima
Izumi Mikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12550882A priority Critical patent/JPS5915841A/en
Publication of JPS5915841A publication Critical patent/JPS5915841A/en
Publication of JPS6334421B2 publication Critical patent/JPS6334421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は光フアイバを用いて被測定物の屈折
率を測定する屈折率測定方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractive index measuring method for measuring the refractive index of an object to be measured using an optical fiber.

従来においては、屈折率を測定するには、最小
偏角法、アツベの屈折計、液浸法、各種干渉計な
どを用いて行なわれていた。しかし、これらの方
法は何れも構成が大がかりであり、狭い場所(局
所)の屈折率測定が困難であり、試作作りも困難
である等の欠点があつた。
Conventionally, the refractive index has been measured using the minimum deviation angle method, Atsube's refractometer, immersion method, various interferometers, and the like. However, all of these methods have drawbacks such as large-scale construction, difficulty in measuring the refractive index in a narrow place (local area), and difficulty in making a prototype.

この発明は光フアイバを用い、光フアイバと被
測定物体との境界から反射する光信号と入射光と
の比を測定することを特徴とし、その目的は簡便
で局所的な場所の屈折率測定を可能とする屈折率
測定方法を実現するにある。
This invention is characterized by using an optical fiber to measure the ratio of the optical signal reflected from the boundary between the optical fiber and the object to be measured and the incident light, and its purpose is to easily and locally measure the refractive index. The objective is to realize a refractive index measurement method that makes it possible.

実施例 第1図はこの発明の実施例を示し、この例では
それぞれ波長λ1〜λnの光を出力する例えばレー
ザの光源11〜1nが設けられる。このn個の光
源11〜1nから光パルスを光フアイバ2の一端
に光方向性結合器3を介して入射することができ
るようにされる。光フアイバ2の他端は例えば液
体の被測定物4と接触される。この光フアイバ2
の他端で反射した反射光は光方向性結合器3を介
して検出部5に入射される。
Embodiment FIG. 1 shows an embodiment of the present invention, in which light sources 1 1 to 1n, such as lasers, which output light having wavelengths λ 1 to λn, respectively, are provided. Light pulses from these n light sources 1 1 to 1 n can be input to one end of the optical fiber 2 via the optical directional coupler 3 . The other end of the optical fiber 2 is brought into contact with, for example, a liquid object 4 to be measured. This optical fiber 2
The reflected light reflected at the other end enters the detection section 5 via the optical directional coupler 3.

この構成において光パルスが光フアイバ2に入
射されると、光フアイバ2を伝搬した光パルスは
光フアイバ2及び被測定物4の境界で反射され、
この反射光は光フアイバ2を逆方向に伝搬して検
出部5に入射する。検出部5は光を電気信号に変
換する受光素子及びオシロスコープなどで構成さ
れる。検出部5に入射される光の検出出力は第2
図に示すように反射光パルスが被測定物4に入射
した時点に電気的パルス6が得られる。なお光フ
アイバ2内で光源側から被測定物4側へ伝搬する
光パルスはレイレイ散乱により、その一部は検出
部5に入射され、そのレイレイ散乱の検出光は第
2図に線7で示すように時間の経過と共に減少す
る。
In this configuration, when a light pulse is incident on the optical fiber 2, the light pulse propagated through the optical fiber 2 is reflected at the boundary between the optical fiber 2 and the object to be measured 4,
This reflected light propagates in the opposite direction through the optical fiber 2 and enters the detection section 5 . The detection unit 5 includes a light receiving element that converts light into an electrical signal, an oscilloscope, and the like. The detection output of the light incident on the detection unit 5 is the second
As shown in the figure, an electrical pulse 6 is obtained when the reflected light pulse is incident on the object to be measured 4. Note that the light pulse propagating from the light source side to the measured object 4 side within the optical fiber 2 is caused by Ray-Ray scattering, and a part of it is incident on the detection unit 5, and the detected light of the Ray-Ray scattering is shown by line 7 in FIG. decreases over time.

反射パルス6の光反射量Rは、 R=−10log10(PR/Pi)(dB) (1) である。こゝでPiは入射光パワー、PRは反射光
パワーである。この反射量Rと屈折率は次式で関
係づけられる。
The amount of light reflection R of the reflected pulse 6 is R=-10log 10 (P R /Pi) (dB) (1). Here, Pi is the incident light power and P R is the reflected light power. The amount of reflection R and the refractive index are related by the following equation.

R=−10log10〔(n−nf2/(n+nf)2〕(dB)(2) こゝでnは被測定物4の屈折率、nfは光フアイ
バ2のコア部の屈折率である。
R=-10log 10 [(n-n f ) 2 / (n+nf) 2 ] (dB) (2) Here, n is the refractive index of the object to be measured 4, and nf is the refractive index of the core part of the optical fiber 2. be.

第3図に0.8μmの波長の光を光フアイバ2に入
射した時の各種屈折率nの被測定物4からの反射
量Rの測定例を示す。実線は式(2)による反射量R
を示し、光フアイバ2は石英系のものを使用し
た。図中の黒丸は式(1)で測定した反射量Rであ
る。これから反射量Rを測定することにより、被
測定物4の屈折率nを求めることができる。しか
し、第3図からわかるように、同一の反射量Rに
対して2つの屈折率nが対応する。例えばR=−
35dBのとき、n=1.415とn=1.52となりこれら
の何れかの判別がつかない。
FIG. 3 shows an example of measuring the amount of reflection R from the object to be measured 4 having various refractive indexes n when light with a wavelength of 0.8 μm is incident on the optical fiber 2. The solid line is the reflection amount R according to equation (2)
The optical fiber 2 was made of quartz. The black circle in the figure is the amount of reflection R measured using equation (1). By measuring the amount of reflection R from this, the refractive index n of the object to be measured 4 can be determined. However, as can be seen from FIG. 3, two refractive indices n correspond to the same amount of reflection R. For example, R=-
At 35 dB, n=1.415 and n=1.52, and it is difficult to distinguish between these two.

この判別をつけるため、異なる波長をもつ複数
個の光源をもちいる。説明のため以下それぞれ波
長λ1とλ2の光を出す2個の光源11,12を用い
る。光フアイバ2のコア部の屈折率は一般に波長
によつて変化する。例えば石英系の光フアイバで
は第4図に示すように波長が長くなると屈折率が
小さくなる。2個の波長の光を使用して屈折率n
を測定する例を第5図を参照して説明する。第5
図において実線は波長λ1の反射量R−屈折率n特
性を、点線は波長λ2の反射量R−屈折率n特性で
ある。例えば波長λ1の光の反射量がR1のとき、
屈折率はn1またはn2となつた時に、同一の被測定
物に対し他の波長λ2の光で測定し、反射量がR2
ならば屈折率はn1であり、反射量がR3ならば屈
折率はn2と判定できる。より多くの波長の光を用
いることで判別の正確さ及び精度の向上が期待で
きる。
To make this distinction, multiple light sources with different wavelengths are used. For the purpose of explanation, two light sources 1 1 and 1 2 that emit light with wavelengths λ 1 and λ 2 respectively will be used below. The refractive index of the core portion of the optical fiber 2 generally changes depending on the wavelength. For example, in the case of a quartz-based optical fiber, as shown in FIG. 4, the refractive index decreases as the wavelength increases. Using light of two wavelengths, the refractive index n
An example of measuring will be explained with reference to FIG. Fifth
In the figure, the solid line represents the reflection amount R vs. refractive index n characteristic for the wavelength λ 1 , and the dotted line represents the reflection amount R vs. refractive index n characteristic for the wavelength λ 2 . For example, when the amount of reflection of light with wavelength λ 1 is R 1 ,
When the refractive index is n 1 or n 2 , the same measured object is measured with light of another wavelength λ 2 , and the amount of reflection is R 2
Then, the refractive index can be determined to be n 1 , and if the amount of reflection is R 3 , the refractive index can be determined to be n 2 . By using light of more wavelengths, it can be expected that the accuracy and precision of discrimination will be improved.

第6図にこの発明の他の一実施例を示す。光源
1〜1nからの各波長λ1〜λnの光は光合波器8
に同時に入射され、これら合波された光は光方向
性結合器3を介して光フアイバ2に入射される。
光フアイバ2を伝搬したこれら波長λ1〜λnの光
は光フアイバ2の被測定物4との接触端で反射さ
れ、その反射光は光源側に光フアイバ2を伝搬
し、光方向性結合器3にて光源よりの入射光と分
離されて光分波器9に到達し、各波長λ1〜λnの
成分に分離されて検出部51〜5nに供給される。
このようにして各波長λ1〜λnの反射量R1〜Rnを
測定し、これらより、被測定物4の屈折率を求め
る。なお光源11〜1nより光フアイバ2への入
射は光パルスでも連続光でもよい、光パルスの場
合は光方向性結合器3の構成が簡単なものとする
ことができる。
FIG. 6 shows another embodiment of the invention. The light of each wavelength λ 1 to λn from the light sources 1 1 to 1n is sent to an optical multiplexer 8
The multiplexed lights are input to the optical fiber 2 via the optical directional coupler 3.
The light with wavelengths λ 1 to λn propagated through the optical fiber 2 is reflected at the contact end of the optical fiber 2 with the object to be measured 4, and the reflected light propagates through the optical fiber 2 to the light source side and is connected to the optical directional coupler. 3, the light is separated from the incident light from the light source and reaches the optical demultiplexer 9, where it is separated into components of wavelengths λ 1 to λn and supplied to the detection units 5 1 to 5n.
In this way, the reflection amounts R 1 to Rn of each wavelength λ 1 to λn are measured, and the refractive index of the object to be measured 4 is determined from these. Incidentally, the light input from the light sources 1 1 to 1 n to the optical fiber 2 may be a light pulse or a continuous light. In the case of a light pulse, the structure of the optical directional coupler 3 can be made simple.

以上説明したように、この発明によれば光フア
イバを用い、光フアイバと被測定物体との境界か
らの反射光を測定することにより屈折率を測定す
るものであるから、簡便で局所的な場所での屈折
率測定も可能である。また、被測定物体の屈折率
の温度特性なども容易に測定することができる。
As explained above, according to the present invention, the refractive index is measured by using an optical fiber and measuring the reflected light from the boundary between the optical fiber and the object to be measured. It is also possible to measure the refractive index at Furthermore, the temperature characteristics of the refractive index of the object to be measured can be easily measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による屈折率測定方法の一例
を示すブロツク図、第2図は検出部で検出された
出力−時間特性を示す図、第3図は反射量−屈折
率特性の測定例を示す図、第4図は石英系光フア
イバの屈折率波長特性を示す図、第5図は複数波
長による屈折率の判定を説明するための反射量−
屈折率特性図、第6図はこの発明による屈折率測
定方法の他の例を示すブロツク図である。 11〜1n:光源、2:光フアイバ、3:光方
向性結合器、4:被測定物、5,51〜5n:反
射光検出部、8:光合波器、9:光分波器。
Figure 1 is a block diagram showing an example of the refractive index measuring method according to the present invention, Figure 2 is a diagram showing the output-time characteristic detected by the detection section, and Figure 3 is an example of measuring the reflection amount-refractive index characteristic. Figure 4 is a diagram showing the refractive index wavelength characteristics of a silica-based optical fiber, and Figure 5 is a diagram showing the amount of reflection to explain the determination of refractive index using multiple wavelengths.
The refractive index characteristic diagram, FIG. 6, is a block diagram showing another example of the refractive index measuring method according to the present invention. 1 1 to 1n: light source, 2: optical fiber, 3: optical directional coupler, 4: object to be measured, 5, 5 1 to 5n: reflected light detection unit, 8: optical multiplexer, 9: optical demultiplexer .

Claims (1)

【特許請求の範囲】[Claims] 1 互いに異なる波長の複数の光信号を光フアイ
バの一端に入射し、その光フアイバの他端を被測
定物と接触させ、その光フアイバと被測定物との
接触端面で反射されて光フアイバを伝ぱんして来
た反射光のレベルを検出し、上記各波長における
反射量−屈折率特性曲線を参照して上記複数の光
信号に対する各反射光のレベルから上記被測定物
の屈折率を決定する屈折率測定方法。
1. A plurality of optical signals with different wavelengths are input into one end of an optical fiber, the other end of the optical fiber is brought into contact with an object to be measured, and the optical signals are reflected from the contact end surface between the optical fiber and the object to be measured, and the optical fiber is Detect the level of the reflected light that has propagated, and determine the refractive index of the object to be measured from the level of each reflected light for the plurality of optical signals by referring to the reflection amount-refractive index characteristic curve at each of the wavelengths. refractive index measurement method.
JP12550882A 1982-07-19 1982-07-19 Refractive index measuring apparatus Granted JPS5915841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12550882A JPS5915841A (en) 1982-07-19 1982-07-19 Refractive index measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12550882A JPS5915841A (en) 1982-07-19 1982-07-19 Refractive index measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5915841A JPS5915841A (en) 1984-01-26
JPS6334421B2 true JPS6334421B2 (en) 1988-07-11

Family

ID=14911858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12550882A Granted JPS5915841A (en) 1982-07-19 1982-07-19 Refractive index measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5915841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04336064A (en) * 1991-05-10 1992-11-24 Paramount Bed Co Ltd Patient transferring bed

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524128B2 (en) * 1986-09-16 1996-08-14 スタンレー電気株式会社 Curve prism type liquid refractometer
JPH07119633B2 (en) * 1986-11-07 1995-12-20 株式会社竹中工務店 Drainage
JPH01257245A (en) * 1987-09-22 1989-10-13 Nkk Corp Measuring apparatus for mixing ratio of fuel for internal combustion engine
JP2008089565A (en) * 2006-09-06 2008-04-17 Toyohashi Univ Of Technology Optical fiber plant sensing device and its method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116188A (en) * 1977-03-19 1978-10-11 Touhoku Rikoo Kk Refractive index measuring device
JPS5489680A (en) * 1977-12-26 1979-07-16 Matsushita Electric Ind Co Ltd Optical measuring method and optical measuring apparatus
JPS5690244A (en) * 1979-12-25 1981-07-22 Nippon Sheet Glass Co Ltd Refraction index meter for liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116188A (en) * 1977-03-19 1978-10-11 Touhoku Rikoo Kk Refractive index measuring device
JPS5489680A (en) * 1977-12-26 1979-07-16 Matsushita Electric Ind Co Ltd Optical measuring method and optical measuring apparatus
JPS5690244A (en) * 1979-12-25 1981-07-22 Nippon Sheet Glass Co Ltd Refraction index meter for liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04336064A (en) * 1991-05-10 1992-11-24 Paramount Bed Co Ltd Patient transferring bed

Also Published As

Publication number Publication date
JPS5915841A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
ATE27489T1 (en) FIBER OPTIC MEASUREMENT DEVICE.
CA1290589C (en) Sensing strain and temperature
JPH0364812B2 (en)
US6618536B1 (en) Integrated optical waveguide system
CA1267790A (en) Fiber optic doppler anemometer
JPH02116716A (en) Fiber optical sensor
KR930016767A (en) Measurement method of fiber optical force by birefringence of stress-induced single mode photoelectric tube
EP1265062B1 (en) Chromatic-dispersion measuring apparatus and method for optical fibres
EP0260894A1 (en) Optical fibre measuring system
JPH1164119A (en) Optical fiber thermal distorsion sensor and thermal distorsion measuring device
JPS6334421B2 (en)
JP2001201407A (en) Wavelength measuring device
JPH03107702A (en) Photosensor having multimode interference
JPH0549057B2 (en)
JPH0354292B2 (en)
JP2657018B2 (en) Optical Connector Return Loss Measurement System
JP3063138B2 (en) Waveguide type wavelength measuring device
GB2207236A (en) Sensing temperature or pressure distribution
JPS6330739A (en) Method for measuring back scattering of optical fiber
JPS59226832A (en) Optical ic sensor
JPS62159027A (en) Detecting device for degree of deterioration of oil
GB2150687A (en) Fibre optic sensor
JPS6066137A (en) Liquid refractive index sensor head
JPH0510833A (en) Fiber for temperature sensor
SU1027562A1 (en) Method of measuring transitional attenuation between two channels of optical fibrebranching