JPS59226832A - Optical ic sensor - Google Patents

Optical ic sensor

Info

Publication number
JPS59226832A
JPS59226832A JP58101495A JP10149583A JPS59226832A JP S59226832 A JPS59226832 A JP S59226832A JP 58101495 A JP58101495 A JP 58101495A JP 10149583 A JP10149583 A JP 10149583A JP S59226832 A JPS59226832 A JP S59226832A
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
waveguide
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58101495A
Other languages
Japanese (ja)
Other versions
JPH0376693B2 (en
Inventor
Akira Ote
明 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58101495A priority Critical patent/JPS59226832A/en
Publication of JPS59226832A publication Critical patent/JPS59226832A/en
Publication of JPH0376693B2 publication Critical patent/JPH0376693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Integrated Circuits (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain an inexpensive optical IC sensor which is handled easily by coupling one optical fiber with an optical IC element and coupling a light source and a photodetector with the other terminal of the optical fiber optically. CONSTITUTION:The optical IC element 3 has the 1st and the 2nd optical waveguides 31 and 32 and is provided with reflecting plates 34 at the other terminal of each waveguide. Light from a light source 1 is guided to the 1st and the 2nd optical waveguides 31 and 32 of the optical IC element 3 through the optical waveguide 51 of an optical demultiplexing and multiplexing element 5 and the optical fiber 2. The light beams guided to the other-side terminals of the waveguides 31 and 32 are reflected by the reflecting plates 34 to return through the same waveguides 31 and 32, and interfere with each other at one optical waveguide to be transmitted to the photodetector 4. The intensity P of the signal light detected by the photodetector 4 corresponds to the difference in optical length or refractive index between the optical waveguides 31 and 32, and a physical quantity to be measured is known from the intensity. Thus, the inexpensive optical IC sensor which is handled easily is obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、光IC素子を利用して温度や歪、磁界等の各
種物理量を検出する光IC七ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an optical IC sensor that detects various physical quantities such as temperature, strain, and magnetic field using optical IC elements.

更に詳しくは、本発明はLiNb0 などの光学結晶に
T1などを拡散した光導波路を形成した光IC素子を用
い、光導波路を通る光の強度や位相等が、被測定物理量
に応じて変化することを利用した光ICセンヶに関する
ものである。
More specifically, the present invention uses an optical IC device in which an optical waveguide in which T1 or the like is diffused is formed in an optical crystal such as LiNb0, and the intensity, phase, etc. of light passing through the optical waveguide change depending on the physical quantity to be measured. This article relates to an optical IC sensor that utilizes.

〔従来技術〕[Prior art]

第1図は、従来公知の光ICi利用したセンブの一例を
示す構成プロ/り図である。この装置は、光源1からの
光を、光フアイバ2工を介して光IC素子5に供給し、
ここがらの信号光を光ファイバ22を介して受光素子4
に伝送するように構成されている。光IC素子乙には2
本の光導波路31.32が形成されるとともに、一方の
光導波路31に物理量変化が与えられるもので、受光素
子4で検出される光の強さ、又は位相変化から物理量を
知ることができる。
FIG. 1 is a configuration diagram showing an example of a conventionally known module using optical ICi. This device supplies light from a light source 1 to an optical IC element 5 via an optical fiber 2,
These signal lights are sent to the light receiving element 4 via the optical fiber 22.
is configured to transmit to. Optical IC element B has 2
Two optical waveguides 31 and 32 are formed, and a physical quantity change is applied to one of the optical waveguides 31, and the physical quantity can be determined from the intensity or phase change of the light detected by the light receiving element 4.

このような構成の従来装置においては、光音供給する光
ファイバ21と、信号光を伝送する光ファイバ22との
2本の光ファイバを必要とし、検出端であるところの光
IC素子を遠隔地に設置する揚台、取扱いが煩しいうえ
に、計装コストが高くなる等の問題点があった。
A conventional device with such a configuration requires two optical fibers, the optical fiber 21 for supplying optical sound and the optical fiber 22 for transmitting signal light, and the optical IC element, which is the detection end, is connected to a remote location. There were problems such as the lifting platform installed on the ground, which was cumbersome to handle, and increased instrumentation costs.

〔本発明の目的〕[Object of the present invention]

ここにおいて、本発明は従来技術における問題点を解決
するためになされたもので、光IC素子との間が1本の
光7アイバで結合される装置を実現しようとするもので
ある。
The present invention has been made to solve the problems in the prior art, and is intended to realize a device that is coupled to an optical IC element by one optical fiber.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は一1光学結晶に光導波路を作るとと
もにこの光導波路に反射部を設け、被測定物理量に応じ
て変化する光路差変化を光の干渉により検出する光IC
素子と、この光IC素子に一端が結合し光の供給と信号
光の伝送を行なう1本の光ファイバと、この光7フィバ
の他端に光学的に結合する光源及び受光素子とで構成さ
れる。
The device according to the present invention is an optical IC that creates an optical waveguide in an optical crystal, provides a reflecting part in the optical waveguide, and detects a change in optical path difference that changes depending on a physical quantity to be measured by interference of light.
It consists of an optical IC element, an optical fiber whose one end is coupled to the optical IC element for supplying light and transmitting signal light, and a light source and a light receiving element which are optically coupled to the other end of the optical IC element. Ru.

〔実施例の説明〕[Explanation of Examples]

第2図は本発明に係る装置の一例を示す構成説明図であ
る。この図において、1はコヒーレント光を出射する光
源、4は受光素子、5は、光源1と受光素子4にそれぞ
れ結合する2つの光導波路51、52が形成された光分
岐結合素子である。5は被測定物理量を検出する検出端
に設置した光IC素子である。この光IC素子3は、例
えばニオブ酸リチウム等の光学結晶載板30に、例えば
T1等を拡散イ して第1j第2の光導波路31.32を形成するとさ・
に、各光導波路の他端に反射板34をそれぞれ設けて構
成されている。また、第1の光導波路31には、被測定
物理量33が与えられ、その長さあるいは屈折率が被測
定物理量に応じて変化するようになっている。2は光分
岐結合素子5と光IC素子3とを結ぶ光ファイバで、光
源1がらの光を光IC素子3の各光導波路31.32に
導びくとともに、ここからの反射光を受光素子4釦導ひ
く。
FIG. 2 is a configuration explanatory diagram showing an example of the apparatus according to the present invention. In this figure, 1 is a light source that emits coherent light, 4 is a light receiving element, and 5 is an optical branching and coupling element in which two optical waveguides 51 and 52 are formed, which are coupled to the light source 1 and the light receiving element 4, respectively. Reference numeral 5 denotes an optical IC element installed at the detection end for detecting the physical quantity to be measured. This optical IC element 3 is constructed by diffusing, for example, T1 on an optical crystal mounting plate 30 made of, for example, lithium niobate to form a 1j-th second optical waveguide 31, 32.
In addition, a reflecting plate 34 is provided at the other end of each optical waveguide. Further, the first optical waveguide 31 is provided with a physical quantity to be measured 33, and its length or refractive index changes depending on the physical quantity to be measured. Reference numeral 2 denotes an optical fiber connecting the optical branching/coupling element 5 and the optical IC element 3, which guides the light from the light source 1 to each optical waveguide 31, 32 of the optical IC element 3, and transmits the reflected light from there to the light receiving element 4. Pull the button.

このように構成した装置の動作は次の通シである。光源
1からの光は、光分岐結合素子5の光導波路51及び光
ファイバ2を通って、光IC素子3の第11第2の光導
波路31.32に導びがれる。ここ4゜ で、第1.第2光導波路3.1.32の光路長をそれぞ
れLl、 L2.屈折率をそれぞれN1p N2とする
と、第1の光導波路31にのみ被測定物理量33が与え
ら九ているので、L□及び又はN1のみが、この被測定
物理−htに応じて変化することとなる。各光導波路3
1゜32の他端に導びがれた光は、反射板34で反射し
、同じ光導波路31.32’((戻り、ひとつの光導波
路の部分で干渉し、これが41号光として、光ファイバ
2を通り、受光素子4側に伝送される。よって、受光素
子4で検出される信号光の強度Pは、(1)式%式% )(1) ただし、 2π Δφ“r (2N1L1−2N2L2)po:Δφ= 
(+のときの光強度 λ0:光源10波長 (り式から明らかな様に、受光素子4で検出される信号
光の強度Pは、第1.第2の光導波路31゜32の光路
長変化または屈折率変化に対応するもので、これから、
第1の光導波路31に与えられている被測定物理量を知
ることができる。
The operation of the device configured as described above is as follows. The light from the light source 1 passes through the optical waveguide 51 of the optical branching/coupling element 5 and the optical fiber 2, and is guided to the eleventh and second optical waveguides 31 and 32 of the optical IC element 3. Here at 4 degrees, the first. The optical path lengths of the second optical waveguides 3.1.32 are Ll, L2. When the refractive index is N1p and N2, respectively, since the physical quantity to be measured 33 is given only to the first optical waveguide 31, only L□ and/or N1 changes according to the physical quantity to be measured -ht. Become. Each optical waveguide 3
The light guided to the other end of 1°32 is reflected by the reflection plate 34 and passes through the same optical waveguide 31. It passes through the fiber 2 and is transmitted to the light receiving element 4 side. Therefore, the intensity P of the signal light detected by the light receiving element 4 is expressed as follows: 2N2L2)po:Δφ=
(Light intensity λ0 when +: light source 10 wavelength (As is clear from the equation, the intensity P of the signal light detected by the light receiving element 4 is the change in the optical path length of the first and second optical waveguides 31° and 32. Or, it corresponds to the change in refractive index, and from now on,
The measured physical quantity given to the first optical waveguide 31 can be known.

第3図は本発明の第2の実施例を示す構成説明図である
。この実施例においては、波長λ1.λ2の2種の光を
、光源11.12から光IC素子3側に供給するととも
に、光IC素子3に波長λ2の光を導びく第3.第4の
光導波路36.37を形成させ、この光− IC素子から光ファイバ2を通って戻ってくる信号1゜
光を、波長λ4.λ2をそれぞれ通過させるフィルタ5
5、56を介して受光素子41.42で検出するように
したものである。光IC素子3において、第1.第2の
光導波路31.32には、波長λ1の光がそれぞれ導ひ
かれ、第1の光導波路31に被測定物理量33が与えら
れている。38.39は、波長λ4.λ2を通過させる
フィルタである。
FIG. 3 is a configuration explanatory diagram showing a second embodiment of the present invention. In this embodiment, the wavelength λ1. Two types of light with wavelength λ2 are supplied from the light sources 11 and 12 to the optical IC element 3 side, and a third light source 11.12 which guides the light with wavelength λ2 to the optical IC element 3. A fourth optical waveguide 36, 37 is formed, and the signal 1° light returning from this optical IC element through the optical fiber 2 is transmitted at a wavelength of λ4. Filters 5 each passing λ2
5 and 56, and are detected by light receiving elements 41 and 42. In the optical IC element 3, the first. Light of wavelength λ1 is guided to the second optical waveguides 31 and 32, respectively, and the physical quantity to be measured 33 is provided to the first optical waveguide 31. 38.39 is the wavelength λ4. This is a filter that allows λ2 to pass.

この実施例においては、受光素子41で検出される波長
λ1の信号光の強度Pは、被測定物理量及び、光ファイ
バ2の伝送条件等の変化に応じて変化する。一方、受光
素子42で検出される波長λ2の信号光の強度は、被測
定物理量とは無関係で、光ファイバ2の伝送条件等の影
響を受けて変化する。従って、各受光素子41.42か
ら得られる信号を利用し、例えば除算演算等の処理を行
なうことによって、光ファイバ2の伝送条件等の影響を
受けず、被測定物理量を知ることができる。
In this embodiment, the intensity P of the signal light having the wavelength λ1 detected by the light receiving element 41 changes depending on changes in the physical quantity to be measured, the transmission conditions of the optical fiber 2, and the like. On the other hand, the intensity of the signal light having the wavelength λ2 detected by the light receiving element 42 is independent of the physical quantity to be measured and changes under the influence of the transmission conditions of the optical fiber 2 and the like. Therefore, by using the signals obtained from each light-receiving element 41, 42 and performing processing such as a division operation, it is possible to know the physical quantity to be measured without being affected by the transmission conditions of the optical fiber 2, etc.

なお、被測定物理量としては、熱、カ、輻射。The physical quantities to be measured are heat, force, and radiation.

磁気変化、湿度などが考えられ、これらの測定物理量に
応じて、光IC素子6や第1の光導波路31の構造が適
当に選定式れる。例えは、輻射を測定する場合には、第
1の光導波路付近に黒体を塗り、磁気変化測定の場合に
は、磁性材料を設置し、また、湿度変化測定の場合には
、吸湿剤を用いるなど、構造上の工夫がなされる。
Magnetic changes, humidity, etc. are considered, and the structures of the optical IC element 6 and the first optical waveguide 31 are appropriately selected depending on these measured physical quantities. For example, when measuring radiation, a black body is painted near the first optical waveguide, when measuring magnetic changes, a magnetic material is installed, and when measuring humidity changes, a moisture absorbent is applied. Structural improvements have been made, such as using

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば検出端となる光I
C素子には1本の光ファイバが結合するもで、取扱いが
簡単で、計装コストが安価な光IC七ンプが実現できる
。また、本発明の第2の実施例によれば、光ファイバの
伝送条件の変化による影響を受けない装置が実現できる
As explained above, according to the present invention, the light I serving as the detection end
A single optical fiber is coupled to the C element, making it possible to realize an optical IC amplifier that is easy to handle and has low instrumentation costs. Furthermore, according to the second embodiment of the present invention, it is possible to realize a device that is not affected by changes in optical fiber transmission conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の一例を示す4(17成ブロック図、
第2図及び第3図は本発明に係る装置の一例を示す構成
説明図である。 1、11.12・・・光源、4.41.42・・・受光
素子、2・・・光ファイバ、3・・・光IC素子、31
.32・・・第1.第2の光導波路、33・・・被測定
物理量、34・・・反射板、5・・・光分岐結合素子。
FIG. 1 shows an example of the prior art.
FIGS. 2 and 3 are configuration explanatory diagrams showing an example of the apparatus according to the present invention. 1, 11.12... Light source, 4.41.42... Light receiving element, 2... Optical fiber, 3... Optical IC element, 31
.. 32...1st. 2nd optical waveguide, 33... physical quantity to be measured, 34... reflecting plate, 5... optical branching and coupling element.

Claims (1)

【特許請求の範囲】 (リ コヒーレント光を出射する光源、受光素子、本の
光ファイバ、この光ファイバを通った光が導びかれる第
1.第2の光導波路とこれら第11第2の光導波路を通
った光をそれぞれ反射させる反射部とを有する光重C素
子、前記第1の光導波路に被測定物理量を与える手段を
具備し、前記光XC素子からの光を前記光ファイバを介
して受光素子で検出するようにした光IC七ンサ。 (2)波長λ1.λ2のコヒーレント光を出射する光源
、波長λ1.λ2の光を受光する第1.第2の受光素子
、前記光源と前記第1.第2の受光素子に光学的に結合
する光分岐結合素子、この光分岐結合素子に結合する1
本の光フ丁イパ、この光ファイバを通った光であって波
長λ1の光が導びかれる第1.第2の光導波・路と波長
λ2の光が導ひかれる第3.第4の光導波路と第1〜第
40光導波路を通った光をそれぞれぞれ反射させる反射
部とを有する光IC素子、前記第1の光導波路に被測定
物理量を与える手段を具備し、前記光IC素子からの光
を前記光ファイバを介して前記第1.第2の受光素子で
検出し、各受光素子から得られる信号を演算処理するよ
うにした光IC七ンサ。
[Claims] (A light source that emits recoherent light, a light receiving element, an optical fiber, a first and second optical waveguide through which light passing through this optical fiber is guided, and these eleventh and second optical waveguides) an optical heavy C element having a reflecting part that reflects the light that has passed through the waveguide, a means for applying a physical quantity to be measured to the first optical waveguide, and the light from the optical XC element is transmitted through the optical fiber. An optical IC seven sensor configured to detect light with a light receiving element. (2) A light source that emits coherent light with wavelengths λ1 and λ2, first and second light receiving elements that receive light with wavelengths λ1 and λ2, the light source and the light receiving element. 1. A light branching/coupling element optically coupled to the second light receiving element, a light branching/coupling element coupled to this light branching/coupling element.
In the optical fiber of the book, the light that has passed through this optical fiber and has a wavelength of λ1 is guided to the first. The second optical waveguide/path and the third optical path through which the light of wavelength λ2 is guided. an optical IC element having a fourth optical waveguide and a reflecting section that reflects the light that has passed through the first to fortieth optical waveguides, a means for applying a physical quantity to be measured to the first optical waveguide; The light from the optical IC element is passed through the optical fiber to the first. An optical IC seven sensor that detects with a second light-receiving element and performs arithmetic processing on the signals obtained from each light-receiving element.
JP58101495A 1983-06-07 1983-06-07 Optical ic sensor Granted JPS59226832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101495A JPS59226832A (en) 1983-06-07 1983-06-07 Optical ic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101495A JPS59226832A (en) 1983-06-07 1983-06-07 Optical ic sensor

Publications (2)

Publication Number Publication Date
JPS59226832A true JPS59226832A (en) 1984-12-20
JPH0376693B2 JPH0376693B2 (en) 1991-12-06

Family

ID=14302235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101495A Granted JPS59226832A (en) 1983-06-07 1983-06-07 Optical ic sensor

Country Status (1)

Country Link
JP (1) JPS59226832A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182541A (en) * 1985-02-08 1986-08-15 Hamamatsu Photonics Kk Infrared-ray detector
JPS6319572A (en) * 1986-07-12 1988-01-27 Fujikura Ltd Magnetic sensor
EP0768516A1 (en) * 1995-10-16 1997-04-16 European Community Interferometer optical transducer and relative fabrication method
WO1998059219A2 (en) * 1997-06-20 1998-12-30 The Secretary Of State For Defence Optical fibre bend sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059025A (en) * 2012-09-19 2014-04-03 Ntn Corp Bearing for wind power/tidal power generation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182541A (en) * 1985-02-08 1986-08-15 Hamamatsu Photonics Kk Infrared-ray detector
JPS6319572A (en) * 1986-07-12 1988-01-27 Fujikura Ltd Magnetic sensor
EP0768516A1 (en) * 1995-10-16 1997-04-16 European Community Interferometer optical transducer and relative fabrication method
WO1998059219A2 (en) * 1997-06-20 1998-12-30 The Secretary Of State For Defence Optical fibre bend sensor
WO1998059219A3 (en) * 1997-06-20 1999-04-29 Secr Defence Optical fibre bend sensor
GB2341445A (en) * 1997-06-20 2000-03-15 Secr Defence Optical fibre bend sensor
EP1134556A2 (en) * 1997-06-20 2001-09-19 QinetiQ Limited Optical fibre bend sensor
GB2341445B (en) * 1997-06-20 2002-01-02 Secr Defence Optical fibre bend sensor
EP1134556A3 (en) * 1997-06-20 2002-04-10 QinetiQ Limited Optical fibre bend sensor
US6389187B1 (en) 1997-06-20 2002-05-14 Qinetiq Limited Optical fiber bend sensor
US6621956B2 (en) 1997-06-20 2003-09-16 Qinetiq Limited Optical fibre bend sensor

Also Published As

Publication number Publication date
JPH0376693B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
US4320475A (en) Monomodal optical fibre hydrophone operating by the elastooptical effect
US4759627A (en) Fibre-optic interferometer
CN102636217B (en) Sensing device based on joint detection of Brillouin optical time domain analysis and Mach-Zehnder interference
US4882716A (en) Optic fiber hydrophone and antenna associating a series of hydrophones
JPS61270632A (en) Optical fiber type measuring instrument for temperature distribution
CN108844614A (en) Chaos Brillouin light domain of dependence analysis system and method based on phase spectrometry
JPH02116716A (en) Fiber optical sensor
US4727254A (en) Dual wavelength microbend sensor
CN101290248B (en) Single-mode infra-red wavemeter based on Mach-Zehnder Interferometer filtering principle
US6285182B1 (en) Electro-optic voltage sensor
US4430565A (en) Correlating fiber optical measuring device
EP0184270A3 (en) Fiber coupler displacement transducer
JPS59226832A (en) Optical ic sensor
Toda et al. Integrated-optic heterodyne interferometer for displacement measurement
CN201373781Y (en) Semiconductor absorption optical fiber temperature detection device
JPS63113337A (en) Method and device for compensating fiber optic lead loss and connector loss in fiber optic sensor
JPH02118416A (en) Optical sensor
JP2003270041A (en) Apparatus for high-speed detection of wavelength
JPS5915841A (en) Refractive index measuring apparatus
JPS6144334A (en) Temperature measuring device
JPS6252808B2 (en)
JPS5960699A (en) Optical sensor
RU2036419C1 (en) Fibre-optical indicator of outside action
Dandridge et al. Increasing Multiplexed Fiber Sensor Array Performance by Use of a Singlemode/Multimode Recombiner