JP2008089565A - Optical fiber plant sensing device and its method - Google Patents

Optical fiber plant sensing device and its method Download PDF

Info

Publication number
JP2008089565A
JP2008089565A JP2006343646A JP2006343646A JP2008089565A JP 2008089565 A JP2008089565 A JP 2008089565A JP 2006343646 A JP2006343646 A JP 2006343646A JP 2006343646 A JP2006343646 A JP 2006343646A JP 2008089565 A JP2008089565 A JP 2008089565A
Authority
JP
Japan
Prior art keywords
plant
light
optical fiber
refractive index
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006343646A
Other languages
Japanese (ja)
Inventor
Mitsuo Fukuda
光男 福田
Hiroaki Jinno
弘明 神野
Atsushi Uchiumi
淳志 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2006343646A priority Critical patent/JP2008089565A/en
Publication of JP2008089565A publication Critical patent/JP2008089565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a simple and portable device capable of performing precise state detection of a plant in real time, and ignoring a measurement error caused by a change of a refractive index resulting from temperature fluctuation; to change a part into which an optical fiber probe is inserted; and to measure saccharinity of a local portion of the plant. <P>SOLUTION: This device has a structure wherein light emitted from a single light source is guided to the optical fiber probe in the state where the optical fiber probe is directly inserted into the plant or brought into contact therewith, and reflected light returned from a tip part of the optical fiber is detected by a photodetector, to thereby monitor the plant state precisely. Furthermore, a measurement error caused by a temperature change is removed by comparing with a measured value in water or in the air. A wavelength used for measurement preferably has an absorbance (absorption amount) of 10% or less. Since the reflected return light can be monitored at any time by using this method, the plant state can be detected in real time, and a plant environment can be controlled with an accuracy unattainable hitherto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は植物工場などにおいて、被栽培植物の状態を詳細にモニタして、植物の育成環境を制御できるシステムに関するものである。 The present invention relates to a system capable of monitoring the state of a plant to be cultivated in a plant factory or the like and controlling a plant growing environment.

近年、光センサによるみかん、桃や西瓜などの糖度を測定し、甘さにより選別出荷する事例が増えている。それらは非破壊検査であり、みかん等の出荷の際に用いられている選別では、色々な波長の光を含んだ白色光を被検査体に照射し、透過光あるいは反射光の波長スペクトルを測定し、照射前の波長スペクトルとの比較より、糖度を求める例が多い。(例えば、特許文献1を参考)その際、植物といえどもモニタ光の散乱体であり、吸収される波長の領域と非吸収の波長の領域等色々な波長に対応する光の変化をモニタすることにより定量化している。しかしこれらは装置が大掛りになる欠点があった。同様なスペクトルの測定の際、同軸型の光ファイバの中心部に光を通して植物の糖度を測定する例を図1に示した。大きな径を持つ光ファイバ上に被測定物を置き、光ファイバの中心部から、白色光を照射し、反射戻り光を外側の光ファイバにより分光器まで導き、被検査体中での光吸収等による波長スペクトルの変化をモニタし、糖度を算定する複雑な構成となっている。 In recent years, an increasing number of cases where sugar content such as mandarin oranges, peaches, and rice straws is measured by optical sensors and selected and shipped based on sweetness. These are non-destructive inspections, and in the sorting used when shipping oranges, etc., white light containing light of various wavelengths is irradiated to the inspected object, and the wavelength spectrum of transmitted light or reflected light is measured. In many cases, the sugar content is obtained by comparison with a wavelength spectrum before irradiation. (For example, refer to Patent Document 1) At that time, even a plant is a scatterer of monitor light, and monitors changes in light corresponding to various wavelengths such as an absorbed wavelength region and a non-absorbed wavelength region. Is quantified. However, these have a drawback that the apparatus becomes large. FIG. 1 shows an example in which the sugar content of a plant is measured by passing light through the center of a coaxial optical fiber when measuring a similar spectrum. Place an object to be measured on an optical fiber with a large diameter, irradiate white light from the center of the optical fiber, guide the reflected return light to the spectrometer by the outer optical fiber, and absorb light in the object It is a complex configuration that monitors the change in the wavelength spectrum due to and calculates the sugar content.

これらの実用化されている例は総て出荷を目的としているため当然非破壊検査であるが、大まかな糖度モニタはできるものの、植物の微妙な状態変化のモニタは感度的に困難であった。また、これらの方法は、植物の局所的な部位の糖度を計ることはできず、当該物の平均的な糖度しか求めることができなかった。   These practical examples are all intended for shipment and are therefore of course non-destructive inspection. However, although it is possible to roughly monitor sugar content, it has been difficult to monitor subtle changes in the state of plants. Moreover, these methods cannot measure the sugar content of a local part of a plant, and can only determine the average sugar content of the product.

また、これらの装置に、光源が半導体レーザまたは発光ダイオードが光源として用いられることがあるが、気温などの温度変動がある場合には光出力変化と出力光の波長変動が発生してしまうという欠点があった。これは、水分や糖に吸収されるようなある特定の波長を用いて植物内の水分量や糖度を測定する場合には、厳密に波長を制御する必要があり、半導体レーザや発光ダイオードの温度を一定に制御する必要があることに起因している。ここで温度が一定に制御されているため光出力も一定になるという利点があるが、装置が大掛かりになるという欠点があった。   In these devices, a semiconductor laser or a light emitting diode may be used as a light source. However, when there is a temperature fluctuation such as an air temperature, a light output change and a wavelength fluctuation of the output light occur. was there. This is because when measuring the water content and sugar content in a plant using a specific wavelength that is absorbed by water and sugar, it is necessary to strictly control the wavelength, and the temperature of the semiconductor laser or light emitting diode This is because it is necessary to control the constant. Here, since the temperature is controlled to be constant, there is an advantage that the light output is also constant, but there is a disadvantage that the apparatus becomes large.

さらに、光ファイバを用いて屈折率を測定する装置は特許文献2等にも示されており、ファイバ先端の反射率がファイバ媒質の屈折率とファイバ先端部の置かれた環境の屈折率で決定されることを利用して、いくつかの波長に対する反射戻り光量からファイバ先端部の置かれた環境の屈折率を求めている。ここでは波長によりファイバ媒質の屈折率が異なることを利用し、屈折率を求めている。しかし、当該装置では、光源が複数必要になること、測定媒質の屈折率が温度で変化してしまうために重要な植物環境因子の一つである環境温度に対して測定値に誤差を持つ等の問題があった。
特開平7−63674公報 特開昭59−15841公報
Furthermore, an apparatus for measuring the refractive index using an optical fiber is also disclosed in Patent Document 2 and the like, and the reflectance of the fiber tip is determined by the refractive index of the fiber medium and the refractive index of the environment where the fiber tip is placed. By utilizing this, the refractive index of the environment where the fiber tip is placed is obtained from the amount of reflected return light for several wavelengths. Here, the refractive index is obtained by utilizing the fact that the refractive index of the fiber medium varies depending on the wavelength. However, this apparatus requires a plurality of light sources, and because the refractive index of the measurement medium changes with temperature, the measured value has an error with respect to the environmental temperature, which is one of the important plant environmental factors. There was a problem.
Japanese Patent Laid-Open No. 7-63674 JP 59-15841 A

近年、野菜などの植物を安定に短期間に生産できる植物工場が実際に稼動し始め、今後その重要性がますます高まっている。その工場では、植物の育成に必要な温度や照射光量などを最適と思われる一定条件とし、植物を育成している。しかしながら、これらのシステムでは、植物の状態を随時モニタし、植物にとって最適成長条件下で育成しているわけではない。これら植物を、最適な条件に保ち、詳細な植物状態の制御を可能とするためには、リアルタイムでの植物の精密な状態検出が必要となる。 In recent years, plant factories that can stably produce plants such as vegetables in a short period of time have begun to operate, and their importance is increasing in the future. At that factory, plants are grown under certain conditions, such as the temperature and light intensity necessary for plant growth, which are considered optimal. However, in these systems, the state of the plant is monitored at any time, and the plant is not grown under optimal growth conditions. In order to keep these plants under optimum conditions and to enable detailed plant state control, it is necessary to accurately detect the state of the plant in real time.

本発明は、植物の精密な状態検出を簡素な装置で実現することを目的とする。   An object of this invention is to implement | achieve the precise state detection of a plant with a simple apparatus.

本発明では、植物に光ファイバプローブを直接挿入した状態で当該光ファイバプローブに、単一光源より発する光を導波し、光ファイバの先端部から戻ってくる反射光を光検出器より検出し屈折率を導き、この際に空気及び水の屈折率と測定対象物の屈折率を比較する演算装置より反射光から得られる屈折率の温度補正を行って、信号検出器により信号を検出し植物の状態を詳細にモニタする構造としている。なお、フォトカプラにより、単一光源からの入射光と光検出器に出射する光を分岐している。   In the present invention, in a state where the optical fiber probe is directly inserted into the plant, light emitted from a single light source is guided to the optical fiber probe, and reflected light returning from the tip of the optical fiber is detected by the photodetector. The refractive index is derived, the temperature of the refractive index obtained from the reflected light is corrected by an arithmetic unit that compares the refractive index of air and water with the refractive index of the measurement object, and the signal is detected by the signal detector. The state is monitored in detail. The photocoupler branches incident light from a single light source and light emitted to the photodetector.

空気及び水の屈折率と測定対象物の屈折率を比較する演算装置を使用して、同一環境温度下においての単一光源を用いた測定値を屈折率の判明している水中や空気中での測定値と比較し、測定した屈折率の温度補正を行うことで、温度変化による入射光量の変化と波長変化に起因する測定誤差を排除している。 Using an arithmetic unit that compares the refractive index of air and water with the refractive index of the object to be measured, measured values using a single light source at the same environmental temperature are measured in water and air with a known refractive index. Compared with the measured value, the temperature of the measured refractive index is corrected to eliminate a measurement error caused by a change in incident light amount due to a temperature change and a wavelength change.

なお、測定の際、被測定植物に含まれる検出対象成分に吸収される波長の光では、測定誤差が大きくなるため、モニタは可能であるが、使用する波長は検出対象成分に吸収されないあるいは誤差が補正できる10%以下の吸光度(吸収量)が望ましい。本方法を用いれば、反射戻り光を随時モニタできるため、リアルタイムで植物の状態を検出でき、従来にない精度で植物環境を制御することが可能となる。   During measurement, light with a wavelength that is absorbed by the component to be detected contained in the plant to be measured has a large measurement error. Therefore, monitoring is possible, but the wavelength to be used is not absorbed by the component to be detected or an error. Absorbance (absorption amount) of 10% or less that can correct the above is desirable. If this method is used, the reflected return light can be monitored at any time, so that the state of the plant can be detected in real time, and the plant environment can be controlled with unprecedented accuracy.

本発明により、植物の詳細な状態制御を可能とし、温度変動による屈折率の変化による測定誤差が無視できる簡便で可搬な装置を提供できる。また、光ファイバプローブを挿入する部分を変えることができ、植物の局所的な部位の糖度などの状態を計ることも可能である。 According to the present invention, it is possible to provide a simple and portable apparatus that enables detailed state control of a plant and can ignore measurement errors due to changes in refractive index due to temperature fluctuations. Moreover, the part into which the optical fiber probe is inserted can be changed, and it is also possible to measure a state such as sugar content of a local part of the plant.

本発明の概略を図2に示す。基本的な構成は植物へ挿入する光ファイバ、被測定物質に吸収のない波長の光を出す光源として半導体レーザ、反射戻り光を測定するための光検出器(構成を簡単にするために、太陽電池等でも良い)であり、簡便なものである。説明を簡単にするために植物に挿入するファイバの先端を垂直カットとした。本構成により、植物中に挿入されたファイバの先端での反射率、R、は近似的に、
R={[n(ファイバ)−n(植物)]/[n(ファイバ)+n(植物)]} 式(1)
となる。ここで、n(ファイバ):ファイバの屈折率、n(植物):植物中でファイバに接している領域の屈折率である。ここで、当該光ファイバを導波して植物へ到達する入射光量を一定、I、に設定すると、光検出器でモニタされる反射戻り光量はRIに比例する。ファイバの構造等で決定される比例係数をAとすると、反射戻り光量、I(反射)は、
I(反射)= ARI 式(2)
で表せる。本反射量を屈折率の判明している媒質、例えば空気中(屈折率:1)または水中(屈折率:1.33)にファイバを挿入して測定した反射戻り光量と比較することにより、植物中または植物表面の屈折率変化が検出できる。空気中および水中にファイバを挿入したときのファイバ端面からの反射戻り光は
I(空気)= A{[n(ファイバ)−1]/[n(ファイバ)+1]} 式(3)
I(水)= A{[n(ファイバ)−1.33]/[n(ファイバ)+1.33]} 式(4)
となり、式(2)と式(3)または式(4)を比較することにより、n(ファイバ)は既知であるから、式(1)で与えられるRを求めることができ、n(植物)を求めることができる。n(植物)は植物内の水分量や糖度などの状態により変化するため、それらの量を検出することが可能となる。
An outline of the present invention is shown in FIG. The basic configuration is an optical fiber to be inserted into a plant, a semiconductor laser as a light source that emits light with a wavelength that is not absorbed by the substance to be measured, and a photodetector for measuring reflected return light (for the sake of simplicity, the solar It may be a battery or the like) and is simple. To simplify the explanation, the tip of the fiber to be inserted into the plant is a vertical cut. With this configuration, the reflectance at the tip of the fiber inserted into the plant, R, is approximately:
R = {[n (fiber) -n (plant)] / [n (fiber) + n (plant)]} 2 formula (1)
It becomes. Here, n (fiber): the refractive index of the fiber, n (plant): the refractive index of the region in contact with the fiber in the plant. Here, when the amount of incident light that reaches the plant through the optical fiber is set to be constant, I 0 , the amount of reflected return light monitored by the photodetector is proportional to RI 0 . When the proportionality coefficient determined by the structure of the fiber is A, the amount of reflected return light, I (reflection) is
I (reflection) = ARI 0 formula (2)
It can be expressed as By comparing the amount of reflected light with the amount of reflected return light measured by inserting a fiber in a medium with a known refractive index, for example, air (refractive index: 1) or water (refractive index: 1.33), Changes in the refractive index of the medium or plant surface can be detected. The reflected return light from the end face of the fiber when the fiber is inserted into the air and water is I (air) = A {[n (fiber) -1] / [n (fiber) +1]} 2 I 0 formula (3)
I (water) = A {[n (fiber) −1.33] / [n (fiber) +1.33]} 2 I 0 formula (4)
By comparing the formula (2) with the formula (3) or the formula (4), since n (fiber) is known, R given by the formula (1) can be obtained, and n (plant) Can be requested. Since n (plant) changes depending on the water content and sugar content in the plant, it is possible to detect these amounts.

本測定において、気温などの温度変動があると、半導体レーザまたは発光ダイオードの温度変動による光出力変化と出力光の波長変化が起こる。しかし、波長変動は通常の半導体レーザや発光ダイオードでは1nm/℃以下であり、気温が20℃変化しても20nm以下の変動である。この変動は、ある特定波長の吸収による反射戻り光量の変化を検出する場合には致命的な欠点となるが、本発明では数十nmの変動における反射戻り光量の変化は問題にならない。また、光源の温度変動による光出力(ファイバを導波する入射光量I)の変動は大きいが、本発明によれば、上述したように、入射光量Iの変動は問題とならない。 In this measurement, if there is a temperature variation such as the temperature, a light output change due to a temperature change of the semiconductor laser or the light emitting diode and a wavelength change of the output light occur. However, the wavelength variation is 1 nm / ° C. or less for a normal semiconductor laser or light emitting diode, and even if the temperature changes by 20 ° C., the wavelength variation is 20 nm or less. This variation is a fatal defect when detecting a change in the amount of reflected return light due to absorption at a specific wavelength, but in the present invention, the change in the amount of reflected return light does not cause a problem in the case of a variation of several tens of nm. Further, although the fluctuation of the light output (incident light quantity I 0 guided through the fiber) due to the temperature fluctuation of the light source is large, as described above, the fluctuation of the incident light quantity I 0 does not cause a problem.

ここで、用いている光が被検出植物で吸収される場合は、吸収分を補正することが必要である。ファイバ端面における吸光度をα%とすると、Iを(1−α)Iで補正すれば良い。αが大きいと測定誤差が大きくなるため、αは0.1以下が望ましい。ただし、補正が必要になるような場合は検出対象の吸収係数が極めて大きな場合であり、本装置では2μm以上の波長の光を用いるような場合あるいは光ファイバのコア径が極端に大きい場合を除き、αが0.1以上になることは通常ない。 Here, when the light used is absorbed by the plant to be detected, it is necessary to correct the absorbed amount. If the absorbance at the fiber end face is α%, I 0 may be corrected by (1-α) I 0 . If α is large, the measurement error becomes large. Therefore, α is preferably 0.1 or less. However, when correction is necessary, the absorption coefficient of the detection target is extremely large. Unless the device uses light with a wavelength of 2 μm or more, or the core diameter of the optical fiber is extremely large. , Α is usually not more than 0.1.

測定装置を図2に示した構成とし、光ファイバを光通信で用いられる直径50μmφコアのステップインデックスマルチモードファイバ、光源として発振波長が650nmの半導体レーザを用いた。これは水分や糖に吸収されない波長である(図3)。式(1)に示した値を計算する際には、コア部の屈折率(n:1.47)を用いている。   The measurement apparatus has the configuration shown in FIG. 2, a step index multimode fiber having a diameter of 50 μmφ core used in optical communication is used as an optical fiber, and a semiconductor laser having an oscillation wavelength of 650 nm is used as a light source. This is a wavelength that is not absorbed by moisture or sugar (FIG. 3). When calculating the value shown in Equation (1), the refractive index of the core (n: 1.47) is used.

本発明を各種植物へ適用し、糖度を測定した例を図4に示す。糖度が正確に測定できているか否かを確認するため、通常糖度測定に用いられている屈折計(糖度計)による果汁の測定値との比較を示した。本発明による測定値は屈折計により測定した値よりも大きくなっている。これは糖度計が果物や野菜の絞り汁を測定するのに対し、本発明では挿入した光ファイバの先端に透明な不定形の植物形成物質が付着するなど、果物や野菜の固形分まで含めて測定できていることによるものである。したがって、本発明ではより人間の食味に近い測定が可能と考えられる。実際に、糖度計(屈折率計)では同一の値であるきゅうり、冬瓜、大根も本発明を用いると、異なった値となり、人間の食味(定量化は難しいが)に対応する結果となった。きゅうりより冬瓜は甘く感じ、冬瓜よりも大根は甘く感じるのである。トマトの果肉と種部分の関係も同様であった。これら固形分の影響は、一定の屈折率を考慮すると(図では0.01の屈折率差)、屈折計により測定した値とほぼ一致することが判る。   The example which applied this invention to various plants and measured the sugar content is shown in FIG. In order to confirm whether or not the sugar content could be measured accurately, a comparison with the measured value of fruit juice by a refractometer (sugar meter) usually used for sugar content measurement was shown. The measured value according to the present invention is larger than the value measured by the refractometer. This is because the sugar content meter measures the juice of fruits and vegetables, while the present invention includes the solid content of fruits and vegetables, such as the attachment of transparent amorphous plant-forming substances to the tip of the inserted optical fiber. This is due to being able to measure. Therefore, in the present invention, it is considered possible to perform measurement closer to human taste. Actually, cucumbers, tofu and radishes, which have the same value in the saccharimeter (refractometer), have different values when using the present invention, resulting in human taste (which is difficult to quantify). . The winter melon feels sweeter than the cucumber, and the radish feels sweeter than the winter cucumber. The relationship between tomato pulp and seeds was similar. It can be seen that the effects of these solid contents substantially coincide with the values measured by a refractometer when a certain refractive index is taken into consideration (refractive index difference of 0.01 in the figure).

また、挿入位置を変えることにより、局所的な部分の植物の状態を計測でき、さらに、光ファイバの細さを利用すると、植物の実や茎のみならず葉脈等、さまざまな部位に挿入し測定できる。図5にリーフレタスにLEDにより赤色の光を照射(約100μmol/m2s)したときの反射戻り光の変化と二酸化炭素の濃度変化を示す。ここで、光ファイバはリーフレタスの白い部分のなるべく先端に近いところに挿入している。照射装置内はLEDがオンになっていないときは暗室であり半密閉状態とした。光を照射すると、半密閉状態のため光合成によって二酸化炭素が消費された分、二酸化炭素濃度は減少していくことがわかる。それとともに、反射戻り光量が減っていくが、これは光合成及び蒸散により、葉内の水分量が減少し、屈折率が増加し、光ファイバの屈折率に近づいたことによるものである。LEDをオフにすると反射戻り光量が増加し、葉内の水分量が回復していく様子が分かる。また、室内の二酸化炭素も外部から徐々に供給されるために(半密閉状態)、元の値に回復している。図6には白菜を用いて同様の実験を行なった結果を示す。長時間LEDをオンにしているため、植物の内部は屈折率が高い状態にあり、反射戻り光量が十分に減少している。その後LEDをオフにしても、反射戻り光量の急速な回復は見られていない。これは光合成により生産された成分が葉内に蓄積されているためと考えられる。暫く時間が経過すると、反射戻り光量と二酸化炭素量ともに、元の状態へ戻っている。これらの例に示したように、本発明を用いると、植物の状態が詳細にモニタすることができることが明らかである。 In addition, by changing the insertion position, it is possible to measure the state of the plant in the local part.Furthermore, by using the thinness of the optical fiber, it can be inserted into various parts such as leaf veins as well as plant fruits and stems. it can. FIG. 5 shows a change in reflected return light and a change in the concentration of carbon dioxide when red light is irradiated to a leaf lettuce by an LED (about 100 μmol / m 2 s). Here, the optical fiber is inserted as close to the tip of the white portion of leaf lettuce as possible. The inside of the irradiation device was a dark room when the LED was not turned on and was in a semi-sealed state. It can be seen that when irradiated with light, the carbon dioxide concentration decreases as the carbon dioxide is consumed by photosynthesis due to the semi-sealed state. At the same time, the amount of reflected return light decreases. This is due to the fact that the amount of water in the leaves decreases, the refractive index increases, and approaches the refractive index of the optical fiber due to photosynthesis and transpiration. When the LED is turned off, the amount of reflected return light increases, and it can be seen that the amount of moisture in the leaf is recovered. Also, since the carbon dioxide in the room is gradually supplied from the outside (semi-sealed state), it has been restored to the original value. FIG. 6 shows the results of a similar experiment using Chinese cabbage. Since the LED is turned on for a long time, the inside of the plant has a high refractive index, and the amount of reflected return light is sufficiently reduced. Even if the LED is turned off after that, no rapid recovery of the reflected return light amount is observed. This is thought to be because the components produced by photosynthesis are accumulated in the leaves. After a while, both the amount of reflected return light and the amount of carbon dioxide have returned to the original state. As shown in these examples, it is clear that plant conditions can be monitored in detail using the present invention.

本発明により植物工場での糖度や水分量等の植物状態のリアルタイムモニタには効果大である。本発明を用いると、光ファイバを挿入される被検査体は破壊検査となるが、植物工場においては多数の植物が同時に栽培されており、そのごく一部の植物を用いて、植物の状態をモニタし、最適環境に設定することができる。また、均一な食味の植物の生育環境に変化をつけて、植物工場での作物栽培でありながら、食味の異なった植物栽培も可能となり、例えば日本国内の各産地の食味をまねることができる可能性もある。さらに、光源の駆動電源を電池とすることができるために、手のひらサイズし、簡単に持ち運べることも可能である。   The present invention is very effective for real-time monitoring of plant conditions such as sugar content and water content in plant factories. When the present invention is used, an object to be inspected into which an optical fiber is inserted becomes a destructive inspection. However, in a plant factory, a large number of plants are cultivated at the same time. It can be monitored and set to the optimum environment. In addition, by changing the growth environment of plants with a uniform taste, it is possible to grow plants with different tastes while cultivating crops at plant factories. For example, it is possible to imitate the taste of each production area in Japan. There is also sex. Further, since the driving power source of the light source can be a battery, it can be palm-sized and easily carried.

従来の光ファイバを用いた実施例Example using conventional optical fiber 本発明の実施例Examples of the present invention 水及びブドウ糖の吸収スペクトルAbsorption spectra of water and glucose 本発明の実施例、植物の糖度検出への適用例Examples of the present invention, application examples for detecting sugar content of plants 本発明の実施例、リーフレタスの状態モニタの例Example of the present invention, an example of leaflet status monitor 本発明の実施例、白菜の状態モニタの例Example of the present invention, example of condition monitor of Chinese cabbage

符号の説明Explanation of symbols

1 被検査植物
2 同軸型光ファイバ
3 光ファイバ内部導波路
4 光ファイバ外部導波路
5 入射光(白色光)
6 被検査植物からの反射光
7 光ファイバ外部導波路を導波された反射光
8 光ファイバプローブ
9 光ファイバカプラ
10 光源(半導体レーザ、波長650nm)
11 光検出器、
12 増幅器、
13 レーザドライバ
14 ファイバプローブへの入射光
15 反射戻り光
16 空気及び水の屈折率と測定対象物の屈折率を比較する演算装置
17 信号検出装置
DESCRIPTION OF SYMBOLS 1 Plant to be examined 2 Coaxial optical fiber 3 Optical fiber internal waveguide 4 Optical fiber external waveguide 5 Incident light (white light)
6 Reflected light from plant to be inspected 7 Reflected light guided through optical fiber external waveguide 8 Optical fiber probe 9 Optical fiber coupler 10 Light source (semiconductor laser, wavelength 650 nm)
11 Photodetector,
12 amplifiers,
13 Laser Driver 14 Incident Light 15 to Fiber Probe Reflected Return Light 16 Arithmetic Unit 17 that Compares Refractive Index of Air and Water with Refractive Index of Measurement Object 17 Signal Detection Device

Claims (3)

半導体レーザまたは発光ダイオードからなる単一光源、光検出器、光ファイバプローブ、単一光源からの入射光と光検出器への出射光を分岐するフォトカプラおよびレーザドライバおよび信号検出装置からなる植物センシング装置において、空気及び水の屈折率と測定対象物の屈折率を比較する演算装置を持ち、光ファイバプローブを被検出植物へ挿入し、当該ファイバに単一光源である半導体レーザまたは発光ダイオードからの光を導波し、光ファイバ先端部で反射した反射戻り光量を光検出器により検出し、空気及び水の屈折率と測定対象物の屈折率を比較する演算装置より反射戻り光量から得られる屈折率の温度補正を行い、植物の状態をセンシングすることを特徴とする植物センシング装置。 Plant light sensing consisting of a single light source consisting of a semiconductor laser or a light emitting diode, a photodetector, an optical fiber probe, a photocoupler that splits incident light from a single light source and light emitted to the photodetector, a laser driver, and a signal detection device The apparatus has an arithmetic unit for comparing the refractive index of air and water with the refractive index of the object to be measured, and an optical fiber probe is inserted into the plant to be detected, and a single light source from a semiconductor laser or light emitting diode is inserted into the fiber. Refraction obtained from the reflected return light amount by an arithmetic unit that guides light and detects the reflected return light amount reflected at the tip of the optical fiber by a photodetector and compares the refractive index of air and water with the refractive index of the measurement object. A plant sensing device that performs temperature correction of the rate and senses the state of the plant. 検出を目的とする対象成分と吸収などの相互作用をしない、あるいは相互作用が10%以下となる単一の波長を光源より発する請求項1記載の植物センシング装置。 The plant sensing device according to claim 1, wherein the plant sensing device emits a single wavelength from the light source that does not interact with the target component for detection, such as absorption, or the interaction is 10% or less. 半導体レーザまたは発光ダイオードからなる単一光源、光検出器、光ファイバプローブ、単一光源からの入射光と光検出器への出射光を分岐するフォトカプラおよびレーザドライバからなる植物センシングにおいて、光ファイバプローブを被検出植物へ挿入し、当該ファイバに単一光源である半導体レーザまたは発光ダイオードからの光を導波し、光ファイバ先端部で反射した反射戻り光量を光検出器により検出し、当該反射戻り光量を、同一の装置において測定した屈折率の判明している空気中または水中等からの反射戻り光量と比較することにより、植物の状態をセンシングすることを特徴とする植物センシングの方法。
Optical fiber in plant sensing consisting of a single light source consisting of a semiconductor laser or a light emitting diode, a photodetector, an optical fiber probe, a photocoupler that branches incident light from a single light source and outgoing light to the photodetector, and a laser driver Insert the probe into the plant to be detected, guide the light from the semiconductor laser or light emitting diode, which is a single light source, to the fiber, detect the amount of reflected return light reflected by the tip of the optical fiber, and detect the reflected light. A plant sensing method comprising sensing the state of a plant by comparing the amount of return light with the amount of reflected return light from air or water whose refractive index is known, measured in the same apparatus.
JP2006343646A 2006-09-06 2006-12-21 Optical fiber plant sensing device and its method Pending JP2008089565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343646A JP2008089565A (en) 2006-09-06 2006-12-21 Optical fiber plant sensing device and its method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006241989 2006-09-06
JP2006343646A JP2008089565A (en) 2006-09-06 2006-12-21 Optical fiber plant sensing device and its method

Publications (1)

Publication Number Publication Date
JP2008089565A true JP2008089565A (en) 2008-04-17

Family

ID=39373861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343646A Pending JP2008089565A (en) 2006-09-06 2006-12-21 Optical fiber plant sensing device and its method

Country Status (1)

Country Link
JP (1) JP2008089565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125817A (en) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd Apparatus and method for removing moisture and foreign matter present in oil
WO2013042690A1 (en) * 2011-09-20 2013-03-28 オリンパス株式会社 Optical measurement apparatus and calibration method
JP2015169553A (en) * 2014-03-07 2015-09-28 株式会社リコー Refractive index measurement device
CN114902947A (en) * 2022-07-18 2022-08-16 黑龙江大学 Cabbage sugar degree on-line monitoring device and drip irrigation regulation and control system realized by adopting same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915841A (en) * 1982-07-19 1984-01-26 Nippon Telegr & Teleph Corp <Ntt> Refractive index measuring apparatus
JPS61203348A (en) * 1985-02-21 1986-09-09 ビ−・エス・アンド・ビ−・セイフテイ・システムズ・インコ−ポレイテツド Breaking type pressure relief device
JPS61253446A (en) * 1985-05-02 1986-11-11 Yoshio Yomoda Method and apparatus for detecting purity of liquid such as frying oil
JPS6449942A (en) * 1987-08-19 1989-02-27 Ricoh Kk Physical property measuring instrument for liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915841A (en) * 1982-07-19 1984-01-26 Nippon Telegr & Teleph Corp <Ntt> Refractive index measuring apparatus
JPS61203348A (en) * 1985-02-21 1986-09-09 ビ−・エス・アンド・ビ−・セイフテイ・システムズ・インコ−ポレイテツド Breaking type pressure relief device
JPS61253446A (en) * 1985-05-02 1986-11-11 Yoshio Yomoda Method and apparatus for detecting purity of liquid such as frying oil
JPS6449942A (en) * 1987-08-19 1989-02-27 Ricoh Kk Physical property measuring instrument for liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125817A (en) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd Apparatus and method for removing moisture and foreign matter present in oil
WO2013042690A1 (en) * 2011-09-20 2013-03-28 オリンパス株式会社 Optical measurement apparatus and calibration method
CN103796568A (en) * 2011-09-20 2014-05-14 奥林巴斯株式会社 Optical measurement apparatus and calibration method
JPWO2013042690A1 (en) * 2011-09-20 2015-03-26 オリンパス株式会社 Optical measuring apparatus and calibration method
JP2015169553A (en) * 2014-03-07 2015-09-28 株式会社リコー Refractive index measurement device
CN114902947A (en) * 2022-07-18 2022-08-16 黑龙江大学 Cabbage sugar degree on-line monitoring device and drip irrigation regulation and control system realized by adopting same

Similar Documents

Publication Publication Date Title
US8325336B2 (en) Automated soil measurement device
Larraín et al. A multipurpose portable instrument for determining ripeness in wine grapes using NIR spectroscopy
Keiner et al. Enhanced Raman multigas sensing–a novel tool for control and analysis of 13 CO 2 labeling experiments in environmental research
US20090147260A1 (en) Method and Apparatus for Determining Quality of Fruit and Vegetable Products
CN103048277B (en) The system and method for near infrared spectrum Non-Destructive Testing fruit internal quality
Bidin et al. Sugar detection in adulterated honey via fiber optic displacement sensor for food industrial applications
Temma et al. Development of a portable near infrared sugar-measuring instrument
JP2008089565A (en) Optical fiber plant sensing device and its method
JP2006238849A (en) Method and apparatus for foreseeing component information of fruit
Giovenzana et al. Potential effectiveness of visible and near infrared spectroscopy coupled with wavelength selection for real time grapevine leaf water status measurement
US8848190B2 (en) Sensor for early detection of problems in algae cultures and related system and method
JP6230017B2 (en) Component concentration analyzer using light emitting diode
Khuriyati et al. Precise near infrared spectral acquisition of intact tomatoes in interactance mode
WO2021168574A1 (en) Optical probe and method for real-time and in-situ measurements of soil properties
Ruslan et al. Quantification of total soluble solids and titratable acidity for citrus maturity using portable vis-NIR spectroradiometer
Suhandy et al. Determination of leaf water potential in tomato plants using NIR spectroscopy for water stress management
Lee et al. Feasibility of nondestructive sugar content analysis of Korean pears by using near‐infrared diffuse‐reflectance spectroscopy
Sun et al. First step for hand-held NIRS instrument field use: Table grape quality assessment consideration of temperature and sunlight chemometrics correction
Yang et al. Relationship between optical properties and internal quality of melon tissues during storage and simulation-based optimization of spectral detection in diffuse reflectance mode
Guthrie et al. Assessment of quality defects in macadamia kernels using NIR spectroscopy
KR20010017743A (en) The system evaluating a way and nondestructive fruit sweetness of using near infrared spectroscopy
Wongpromrat et al. Monitoring of salinity of water on the THA CHIN River basin using portable Vis-NIR spectrometer combined with machine learning algorithms
EP1303748B1 (en) Method and apparatus for detecting the onset of stress and the recovery from stress in chlorophyll containing matter
Xu et al. Non-destructive determination of internal soluble solid content in pomelo using visible/near infrared full-transmission spectroscopy
Khuriyati et al. Monitoring internal properties of on-plant tomato fruits using NIR spectroscopy for control of nutrient solution in soilless culture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A131 Notification of reasons for refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20110824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111219