JPS6334012A - Automatic cutting device for surface fault of wire rod - Google Patents

Automatic cutting device for surface fault of wire rod

Info

Publication number
JPS6334012A
JPS6334012A JP17186986A JP17186986A JPS6334012A JP S6334012 A JPS6334012 A JP S6334012A JP 17186986 A JP17186986 A JP 17186986A JP 17186986 A JP17186986 A JP 17186986A JP S6334012 A JPS6334012 A JP S6334012A
Authority
JP
Japan
Prior art keywords
cutting
workpiece
fault
cut
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17186986A
Other languages
Japanese (ja)
Inventor
Takayuki Ueda
登侑 上田
Tetsuya Oba
大庭 哲哉
Takeshi Kakimi
健 垣見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17186986A priority Critical patent/JPS6334012A/en
Publication of JPS6334012A publication Critical patent/JPS6334012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

PURPOSE:To enable efficiency removal of the surface fault of a wire rod throughout the whole periphery thereof, by a method wherein, from information on fault from a fault detector and speed information on a material to be cut from a running speed detector, two sets of cutting bites situated in a running direction are actuated. CONSTITUTION:In an element wire 2 intended to be wound around a wider 100, its surface fault is detected by a fault detector 3 and a running speed is detected by a speedometer 4. A control device 5 controls a cut amount of each of cutting bites 10A-10C and 10D-10F of cutting machines 6 and 6'' according to the depth of a fault, and bite drive devices 7A-7F according to a running speed, and only a fault spot is cut for removal. In which case, two sets of the cutting machines 6 and 6' are placed in the direction of the running speed of a material to be cut, being the element wire 2, and a working range of (60 deg.+alpha)X3 is respectively allotted, in a manner to be displaced in a phase from each other, to at least three each of the cutting bites 10A-10C and 10D-10F and their mating support rollers, positioned on the same plane on the concentrical circumferences of the element wire 2. This constitution enables efficient removal of only the fault part of the material to be cut.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、線あるいは棒状材の表面疵を機械化、自動化
して除去する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for mechanizing and automating the removal of surface flaws on wire or rod-shaped materials.

(従来の技術) バネ鋼、軸受鋼、ステンレス鋼等のような特殊棒鋼や線
材製品の製造にあたっては、熱延前、素材の表面疵を充
分に除去した後、熱延処理に付してコイル化している。
(Prior technology) When manufacturing special steel bars and wire rod products such as spring steel, bearing steel, stainless steel, etc., before hot rolling, surface flaws on the material are thoroughly removed, and then the material is hot rolled and coiled. It has become

このコイルの表面にはその深さ最大0.2鶴程度の疵が
部分的に点在しているのであり、その表面疵の除去が必
要である。
The surface of this coil is partially dotted with flaws with a maximum depth of about 0.2 mm, and it is necessary to remove these surface flaws.

従来、このような疵の除去手段として、入手によるグラ
インダー手入れが特公昭59−50453号、特開昭5
6−114618号、特公昭58−24201号、特開
昭59−142054号等の各公報にて提案されている
方法および装置がある。
Conventionally, as a means to remove such scratches, maintenance of a grinder by obtaining one was disclosed in Japanese Patent Publication No. 59-50453 and Japanese Patent Application Laid-open No. 59-50.
There are methods and devices proposed in various publications such as Japanese Patent Publication No. 6-114618, Japanese Patent Publication No. 58-24201, and Japanese Patent Application Laid-Open No. 59-142054.

(本発明が解決しようとする問題点) 人手による手入れは冷間コイルを解きほぐし、棒、線材
の4周全体を目視して探傷するので作業性がきわめて悪
く能率的にも好ましくなく、人件費が大巾にアップする
不利が生じる。
(Problems to be Solved by the Present Invention) Manual maintenance involves untying the cold coil and visually inspecting the entire four circumferences of the rod or wire, which is extremely inefficient and undesirable in terms of efficiency, resulting in high labor costs. There is a disadvantage of uploading it to a large width.

−′   。−′   .

そのため省力化、自動化をはかった手段として、最も有
望な手段とみられる前記の特公昭59−50453号公
報についてみれば、以下のような欠点がみ51られる。
Therefore, the above-mentioned Japanese Patent Publication No. 50453/1983, which is considered to be the most promising means for labor saving and automation, has the following drawbacks51.

すなわち、 (1)通常、コイル表面の疵発生面積は少なく、製品歩
留りをよくするためには、切削バイトの組数(分割数)
を6組以上にはしないが、切削バイトを被削体の軸方向
にずらされて配置されるため、設備スペースを広く必要
とするばかりでなく、設備費も高価なものとなる。
In other words, (1) Normally, the area where defects occur on the coil surface is small, and in order to improve product yield, the number of sets of cutting tools (number of divisions)
However, since the cutting tools are arranged offset in the axial direction of the workpiece, not only a large equipment space is required, but the equipment cost is also high.

(2)被削体の受はローラは、それぞれ被削体の送り方
向にずらされて配置されており、1点ローラ(同一円周
上では1点)で受けるため、表面疵切削時に切削方向に
対して被削体が横振れし、表面疵の取り残しあるいは切
削面形状の不具合いなどの原因となる。
(2) The rollers for the workpiece are placed offset in the feed direction of the workpiece, and the workpiece is received at one point (one point on the same circumference), so when cutting surface flaws, the rollers are offset in the cutting direction. The workpiece will oscillate laterally, causing surface flaws to be left behind or defects in the shape of the cut surface.

また、他の公知手段によれば、切削面積の増大は避けら
れず、歩留を大巾に低下させてしまう欠点がある。
Further, according to other known means, an increase in the cutting area is unavoidable, which has the drawback of significantly reducing the yield.

本発明は、以上の問題点を解決するためなされたもので
ある。
The present invention has been made to solve the above problems.

(問題点を解決するための手段) 本発明は棒鋼あるいは線材等の棒線材を被削体とするも
のであって、かかる被削体を長手方向に走行させる走行
通路上に被削体の周方向及び長手方向の疵の位置を検出
する探傷器を設けるとともに、被削体の走行速度検出器
を設け、探傷器による疵の情報と、走行速度検出器によ
る速度情報により切削バイト部を作動せしめて被削体の
疵部分のみを効率的に削除しようとするものであり、被
削体の同心円周上の同一面内に複数組(通常は3組)の
切削バイトを適宜の間隔をおいて配置した切削バイト部
を被削体の走行方向に2組設けて全円周の切削を可能に
構成したものである。
(Means for Solving the Problems) The present invention uses a rod or wire rod such as a steel bar or a wire rod as a workpiece, and the workpiece is placed on a traveling path in which the workpiece is run in the longitudinal direction. A flaw detector is provided to detect the position of flaws in the direction and longitudinal direction, and a traveling speed detector of the workpiece is also provided, and the cutting tool is operated based on flaw information from the flaw detector and speed information from the traveling speed detector. This method aims to efficiently remove only the flawed part of the workpiece by using multiple sets (usually 3 sets) of cutting tools placed at appropriate intervals on the same surface on the concentric circumference of the workpiece. Two sets of arranged cutting tool parts are provided in the running direction of the workpiece to enable cutting of the entire circumference.

(実施例) 以下、本発明の実施例を図面に基づいて詳述する。第1
図は本発明の全体構成を示す説明図、第2図(1)、(
2)はその要部詳細を示す正面図、第3図は1lc2図
(1ンの部分側面図、第4図は第2図(1)のA−Am
面図である。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. 1st
The figures are explanatory diagrams showing the overall configuration of the present invention, Figures 2 (1) and (
2) is a front view showing details of the main parts, Figure 3 is a partial side view of Figure 1lc2 (1), Figure 4 is a partial side view of Figure 2 (1).
It is a front view.

第1図は本発明の全体構成を概略水しており、lはサプ
ライスタンドであり、これにコイル状に架装された被削
体である素線2は巻取機100に巻取られる過程におい
て、公知の回転プローブ形渦巻探傷器等の探傷器3でそ
の表面疵が検出される。また、その素線2の走行速度は
速度計4で検出されるとともに制御装置5により切削マ
シン6.6′ノ駆動装置7(7A、7B、7C。
FIG. 1 schematically shows the overall configuration of the present invention, where l is a supply stand, and a wire 2, which is a workpiece mounted in a coil shape, is wound up by a winding machine 100. , the surface flaws are detected by a flaw detector 3 such as a known rotating probe type vortex flaw detector. Further, the running speed of the wire 2 is detected by a speedometer 4, and the control device 5 controls the driving device 7 (7A, 7B, 7C) of the cutting machine 6,6'.

7D、7E、7F)を制御可能としている。7D, 7E, 7F) can be controlled.

すなわち、被削体素線2の円周方向及び長手方向の疵の
位置を探傷器3で検出し、該検出信号の疵の深さ信号に
より切削マシン6.6′の切削バイトに予じめ付与され
ている切込量とバイト進退タイミングを演算されている
走行速度にあわせてバイト駆動装置7A〜7Fを制御す
ることにより、被削体である素線2の周りに配置した切
削バイトによって疵箇所のみ切削し除去するものである
That is, the flaw detector 3 detects the position of the flaw in the circumferential direction and the longitudinal direction of the workpiece strand 2, and the flaw depth signal of the detection signal is used to detect the flaw position in advance on the cutting tool of the cutting machine 6.6'. By controlling the cutter drive devices 7A to 7F in accordance with the calculated cutting speed and the advance/retreat timing of the cutter, the cutting tool placed around the wire 2, which is the workpiece, can cut the flaws. Only the parts are cut and removed.

ここで本発明の特徴とするところは、切削マシン6.6
′を素線2である被削体の走行方向に2組設置して、素
線の全周の切削を可能に構成した点にある。すなわち、
素線2の同心円周上の同一平面内に少なくとも3個の切
削バイトと受はローラを設け、それぞれを対応させて切
削バイトによる円周上の守備範囲を(60度十α)×3
とした切削マシン6にあり、このような切削マシンであ
るから被削体である素線2の走行方向に2組、角度をず
らせて設置することにより、素線2の全周を切削可能と
している。
Here, the feature of the present invention is that the cutting machine 6.6
2 are installed in the running direction of the object to be cut, which is the wire 2, so that the entire circumference of the wire can be cut. That is,
At least three cutting tools and bearing rollers are provided in the same plane on the concentric circumference of the wire 2, and the range covered by the cutting tool on the circumference is (60 degrees + α) x 3 by making them correspond to each other.
Since this is the cutting machine 6, two sets are installed at different angles in the running direction of the wire 2, which is the object to be cut, so that the entire circumference of the wire 2 can be cut. There is.

第2図以下をも参照すると、切削マシン6の詳細が示さ
れ被削体である素線2の走行ライン、即ち、走行通路上
には同心円周上に周方向等間隔をおいて3個づつ送り方
向2箇所に、線受はローラ8A、8B、8C及び8D、
 8E、 8Fの計6個がそれぞれ被削体2を囲むよう
に配置され、軸受9を介して回転自在に支持され、この
ローラ8A、8B18C及び8D、8E、8F上を通過
案内される被削体である素線2に対して切削バイト10
A110B、IOC及びIOD、IOE、IOFの計6
個が伸縮シリンダで示す駆動装置7A、7B、7C及び
7D、7E、7Fによりそれぞれ独立して半径方向に進
退自在とされている。
Referring also to FIG. 2 and subsequent figures, the details of the cutting machine 6 are shown, and three wires are placed on a concentric circumference at equal intervals in the circumferential direction on the running line of the wire 2, which is the workpiece, that is, on the running path. The wire receivers are rollers 8A, 8B, 8C and 8D at two locations in the feeding direction.
A total of six rollers 8E and 8F are arranged so as to surround the workpiece 2, and are rotatably supported via bearings 9. Cutting tool 10 for the wire 2 which is the body
A110B, IOC, IOD, IOE, IOF, total 6
The drive devices 7A, 7B, 7C, 7D, 7E, and 7F, each of which is a telescopic cylinder, are capable of moving back and forth independently in the radial direction.

切削バイトIOA、IOB、IOCは被削体の同心円周
上に設けられ、周方向に対して等間隔120゜毎に設げ
である。そして送り方向に間隔をおいて、切削バイトI
OD、IOE、IOFは被削体の同心円周上に設けられ
、周方向に対して等間隔120’毎に設けである。切削
パイ)IOD、IOE、10 Fは、切削バイトIOA
、IOB、IOCの切削不可範囲をカバーするように配
置され【いる。
The cutting tools IOA, IOB, and IOC are provided on the concentric circumference of the workpiece, and are provided at equal intervals of 120° in the circumferential direction. Then, at intervals in the feeding direction, the cutting tool I
The OD, IOE, and IOF are provided on the concentric circumference of the workpiece, and are provided at equal intervals of 120' in the circumferential direction. Cutting tool) IOD, IOE, 10 F is cutting tool IOA
, IOB, and IOC are arranged to cover the non-cuttable range.

なお、実施例は切削バイトを3個づつ2箇所に設けたが
、特に大径の棒鋼を被削体とする場合等には、第9図に
示すように被削体の円周上の同一平面内の5個所に切削
バイトl0IA、101B、l0IC,l0ID、l0
IEを設け、同様なローラ81A、81B、81C18
1D 、 81 Eを設けるとよく、これを2組設置す
る。また、同一平面内の切削バイト数を7箇所とするこ
ともできる。切削バイトIOA、IOB、IOC及びI
OD、 IOE、 10Fにそれぞれ対応して線受はロ
ーラ8A、8B、8C及び8D、8E、8Fが設けられ
、切削バイト10A、IOB、IOCと線受はローラ8
A、8B、8C及び切削バイトIOD、IOE、IOF
と線受はローラ8D、8E、8Fは互いに干渉しない構
造になっている。
In the example, three cutting tools were installed at two locations each, but when the workpiece is a large-diameter steel bar, as shown in FIG. Cutting tools 10IA, 101B, 10IC, 10ID, 10 at 5 locations on the plane
IE is provided and similar rollers 81A, 81B, 81C18
It is recommended to provide 1D and 81E, and two sets of these are installed. Further, the number of cutting tools within the same plane can be set to seven. Cutting tool IOA, IOB, IOC and I
Rollers 8A, 8B, 8C and 8D, 8E, 8F are provided as wire receivers corresponding to OD, IOE, and 10F, respectively, and roller 8 is provided as the cutting tool 10A, IOB, and IOC and wire receivers.
A, 8B, 8C and cutting tools IOD, IOE, IOF
The rollers 8D, 8E, and 8F of the wire receiver are structured so that they do not interfere with each other.

また、実施例では切削バイト配置が逆Y字状QとY字状
の組合せになっているが横向きの逆Y字状(べ¥Y字状
[)−)を組合せてもよい。
Further, in the embodiment, the cutting tool arrangement is a combination of an inverted Y-shape Q and a Y-shape, but a horizontal inverted Y-shape (be\Y-shape [)-) may be combined.

なお、素線が細い場合は、線受はローラのかわりにシュ
ー(摩耗材)で切削バイトの反力を受ける構造としても
よい。
In addition, when the wire is thin, the wire receiver may be structured to receive the reaction force of the cutting tool with a shoe (wearing material) instead of a roller.

切削バイトは第5図(1)、(2)、(3)に要部のみ
拡大して示す如く、被削体2の外周形状に沿う凹入状刃
先11A、IIB、IIC及びIID、IIElllF
を有する。本実施例では円弧形の凹入状とされた所謂平
バイトであり、各刃先11 A、IIB、11 C及び
11D、IIElllFのそれぞれは第5図(3)で示
す如く切削時において被削体2の軸方向からみて周方向
に互いに重なり合う部分11八′、11B′、110′
、11D′、11E′、11F′が形成されており、被
削体2の全周をかこみうるようにされている。
The cutting tool has concave cutting edges 11A, IIB, IIC, IID, and IIElllF that follow the outer circumferential shape of the workpiece 2, as shown in enlarged views of only the main parts in FIGS. 5 (1), (2), and (3).
has. In this embodiment, it is a so-called flat cutting tool with an arcuate concave shape, and each of the cutting edges 11A, IIB, 11C, 11D, and IIElllF is used to cut the workpiece during cutting, as shown in FIG. 5(3). Portions 118', 11B', and 110' that overlap each other in the circumferential direction when viewed from the axial direction of the body 2
, 11D', 11E', and 11F' are formed so as to surround the entire circumference of the workpiece 2.

そして、第3図、第4図にパイ)IOAで代表して示す
如くバイトホルダー12に抜差し自在に挿嵌されボルト
13にて締結されている。
As shown in FIGS. 3 and 4 by IOA, it is inserted into and removed from a tool holder 12 and fastened with bolts 13.

なお、本実施例は、バイト(以下、バイト10Aで代表
する)は調整ねじ14によって一定高さXmに調整され
てそのホルダー12がスライドユニット15に嵌合され
てボルト16にて固定され、スライドユニツ) 15は
基台17に放射方向として延設された支持腕18のスラ
イダ18 Aに摺動自在に嵌合されるとともに左右横方
向は調整ねじ16Aによって調整固定自在とされている
In addition, in this embodiment, a cutting tool (hereinafter referred to as cutting tool 10A) is adjusted to a constant height Xm by an adjusting screw 14, and its holder 12 is fitted into a slide unit 15 and fixed with a bolt 16, and the tool is slid. The unit 15 is slidably fitted into a slider 18A of a support arm 18 extending radially from the base 17, and can be adjusted and fixed in left and right directions by adjusting screws 16A.

支持腕18の延設端にバイト駆動装置7A、7B。Bit drive devices 7A and 7B are provided at the extending ends of the support arms 18.

7C,7D、 7E、7Fが本例では伸縮油圧シリンダ
が設りてあり、そのピストンロッド19にねじ連結棒加
を螺着せしめ該棒端面を調整ねじ14の頭部に対応させ
て隔置させている。
In this example, telescopic hydraulic cylinders 7C, 7D, 7E, and 7F are provided, and a threaded connecting rod is screwed onto the piston rod 19 of the cylinder, and the end surface of the rod is spaced apart so as to correspond to the head of the adjusting screw 14. ing.

ねじ連結棒美にはナツト21、nが螺合されており、上
部ナツト21は連結棒加の突出長さを調整するもので、
前述のバイト高さ調整ねじ14との組合せによりバイト
10Aの切込深さ、つまり、被削体20表面疵の切削深
さを調整するものである。
A nut 21, n is screwed onto the threaded connecting rod, and the upper nut 21 is used to adjust the protruding length of the connecting rod.
In combination with the aforementioned cutting tool height adjustment screw 14, the cutting depth of the cutting tool 10A, that is, the cutting depth of the surface flaws on the workpiece 20 is adjusted.

又、下部ナラ)22は連結棒加の戻り距離即ち、パイ)
IOAと被削体2間の距離Hな調整するものであり、こ
のことは、制御装置5の信号を受けて駆動装f7Aが伸
長動作し、スライダ18Aの案内を介してスライドユニ
ット15の降下により切削パイ)IOAが作動して被削
体2を一定深さまで切込むに要する時間を調整するもの
であリ、つまり、切削バイト10Aの切込角度を、バイ
ト形状、種類、被削体の材質、走行速度によって最適条
件となるように調整するものである。
Also, the lower oak) 22 is the return distance of the connecting rod, that is, pi)
This is to adjust the distance H between the IOA and the workpiece 2, and this means that the drive unit f7A extends in response to a signal from the control device 5, and the slide unit 15 descends through the guide of the slider 18A. This is to adjust the time required for the IOA to operate and cut into the workpiece 2 to a certain depth.In other words, the cutting angle of the cutting tool 10A is adjusted based on the shape, type, and material of the workpiece. , and is adjusted to the optimum conditions depending on the traveling speed.

(作 用) 次に、切削マシン6による被削体2に対する表面疵の自
動切削除去について説明すると、被削体2がサグライス
タンドlから巻取機100に巻取られてい(ラインにお
いてまず表面疵が全(ない無疵部分が巻取られている時
には探傷器3は作動しないので、6個の切削バイト10
A。
(Function) Next, the automatic cutting and removal of surface flaws on the workpiece 2 by the cutting machine 6 will be explained. Since the flaw detector 3 does not operate when the non-flaw part is being wound, the six cutting tools 10
A.

10B、IOC,IOD、IOE、IOFは定位置で停
止状態にあり、被削体2は線受はローラ8A、8B、8
C18D、8E、8Fによる走行通路を経て捲取機10
0側に巻取られていくことになる。
10B, IOC, IOD, IOE, and IOF are stopped at fixed positions, and the workpiece 2 and the wire receivers are rollers 8A, 8B, and 8.
The winding machine 10 passes through the running path of C18D, 8E, and 8F.
It will be wound to the 0 side.

今、被削体2に表面疵があり、これを探傷器3によって
検出することにより、該疵部分の切削指令が発信されれ
ば、この指令を受けてその疵部分と対応する切削パイ)
IOA、IOB、IOC。
Now, if there is a surface flaw on the workpiece 2, and this is detected by the flaw detector 3, a command to cut the flaw part is sent, then upon receiving this command, a cutting pie corresponding to the flaw part will be cut.
IOA, IOB, IOC.

10D、IOE、IOFが油圧シリンダで示す駆動装f
ffi7A、7B、7C17D、7E、7Fの伸長によ
り予じめ定められた切削量だけ切削除去することになる
10D, IOE, IOF are drive units f indicated by hydraulic cylinders
By expanding ffi7A, 7B, 7C17D, 7E, and 7F, a predetermined cutting amount is removed.

このようにして表面疵部分が切削除去されて通過した時
は、切削長りの指令によって7A、7B、7C,7D、
7E、7Fが縮少動作して切削パイ粗 ト 10A、  IOB、  IOC,IOD、  I
OE、  IOF  をミミ;4εL位置に復し、再び
次の疵発見による切削指令に待機するのである。
In this way, when the surface flaws are removed and passed, 7A, 7B, 7C, 7D,
7E and 7F reduce and roughen the cutting pie 10A, IOB, IOC, IOD, I
The OE and IOF are returned to the 4εL position, and the machine waits for the next cutting command due to the discovery of a flaw.

第6図乃至第8図を参照して前記制御装置5による制御
要領を具体的に説明すると、探傷器3によって素線2の
疵の深さを検出するプローブからの電気信号と素線の疵
が素線の円周方向のどの部分にあるかを検出するプロー
ブからの電気信号とを取り出している。
Referring to FIGS. 6 to 8, the control procedure by the control device 5 will be explained in detail. An electric signal is extracted from a probe that detects which part of the wire is located in the circumferential direction.

前述の切削マシン6.6′は進退自在の切削バイト6個
から構成され、各々のパイ)IOA、10B、IOC及
びIOD、IOE、IOFは被削体の同一円周上に等間
隔で3個づつ、軸方向2箇所に設けられており、疵検出
用のプローブから疵信号(深さ)が発生した時にはその
位置、つまり、探傷器3とバイト設定距離は速度計4と
同期させ、かつ角度の位置をパルス位置より判断してそ
れぞhのパ’r )IOA、IOB、IOC,l0D1
10E、10 Fが作動されるようにするのである。
The above-mentioned cutting machine 6.6' is composed of six cutting tools that can move forward and backward, and each pie (IOA, 10B, IOC, IOD, IOE, IOF) are three pieces arranged at equal intervals on the same circumference of the workpiece. When a flaw signal (depth) is generated from the flaw detection probe, the position, that is, the flaw detector 3 and the setting distance of the bite are synchronized with the speedometer 4, and the angle Judging from the pulse position, determine the position of h'r) IOA, IOB, IOC, l0D1
10E and 10F are activated.

プローブの動作の角度について詳述すれば、第6図及び
第7図に示す如く、固定側の近接スイツチS1の位置を
0度の基点Oとし、疵検出用プローブ3Aが回転する時
そのプローブがどの角度の位置にあるかを解るように1
回転間を例エバ36 パルスの信号に変換させ1〜6パ
ルスの時はパイ)IOAのリレーR1が作動し、13〜
18パルスの時にはパイ) 10 BのリレーR2が作
動し、δ〜(9)パルスの時にはバイト10 Cのリレ
ーR3が作動し、7〜12パルスの時にはバイト1oD
のリレーR4が作動し、19〜24パルスの時にはバイ
トlOEのりV−R5が作動し、31〜36パルスの時
& にはバイト10Fのリレ繋が作動するようにする。
To explain the angle of operation of the probe in detail, as shown in FIGS. 6 and 7, the position of the proximity switch S1 on the fixed side is set as the base point O of 0 degrees, and when the flaw detection probe 3A rotates, the probe moves. 1 to find out what angle the position is.
The rotation interval is converted into a signal of e.g. 36 pulses, and when it is 1 to 6 pulses, relay R1 of IOA is activated, and 13 to
When there are 18 pulses, relay R2 of 10 B is activated, when δ~(9) pulses, relay R3 of Bite 10 C is activated, and when there are 7 to 12 pulses, relay R3 of Bite 1oD is activated.
Relay R4 is activated, when the 19th to 24th pulse, the relay V-R5 of the cutting tool 1OE is activated, and when the pulse is 31th to 36th, the relay connection of the cutting tool 10F is activated.

即ち、第8図に示すように疵深さ信号と疵の位置(距離
と角度)の信号の3つの信号を同期化させて各々のバイ
トの動作指令を送り、各々のバイトの動作は3つの信号
が同時に受けた時のみ動作することができるのである。
That is, as shown in Fig. 8, three signals, a flaw depth signal and a flaw position (distance and angle) signal, are synchronized to send operation commands for each bite, and the operation of each bite is controlled by three signals. It can only operate when the signals are received simultaneously.

また、表面疵が隣り合う場合又はバイトの切削範囲の中
間に存在する場合は、隣り合う2個以上のバイトが作動
して表面疵を切削除去可能である。
Further, when surface flaws are adjacent to each other or exist in the middle of the cutting range of the cutting tools, two or more adjacent cutting tools can be operated to cut and remove the surface flaws.

例えば第5図に示すPの部分に疵が存在する場合にはパ
イ)IOFと1OAとが作動して切削するのであり、P
lの部分に存在する場合には、バイトIOA、IODが
作動し、同様にしてP2の場合にはパイ)IOD、IO
B、P3の場合にはバイトIOB、IOE、P 477
)場合にはバイトIOE、10C,P5の部分に疵が存
在する場合には、バイト10C,IOFが作動し切削す
るのであり、各パイ)IOA、IOB、IOC,IOD
、IOE、IOFの作動範囲(切込深さ、切削角度)は
常に一定であることから、隣り合う2個以上のバイトが
作動した場合でも所定深さ以上切断することがないので
ある。
For example, if there is a flaw in the part P shown in Fig. 5, the IOF and 1OA will operate to cut the part P.
If it exists in the part l, the bytes IOA, IOD are activated, and similarly in the case of P2, the bytes IOD, IO
In case of B, P3, byte IOB, IOE, P 477
), if there is a flaw in the part of the cutting tool IOE, 10C, P5, the cutting tool 10C, IOF will operate and cut each pie) IOA, IOB, IOC, IOD
, IOE, and IOF are always constant in their operating ranges (depth of cut, cutting angle), so even if two or more adjacent cutting tools operate, they will not cut more than a predetermined depth.

(発明の効果) 本発明は以上詳述したように、切削バイトは被削体の同
心円周上に適宜の間隔つまり通常は周方向に等間隔をお
いて複数個配置され、かつ被削体の軸方向に2組配置さ
れるため設備がコンパクトでありスペースが小さく設備
費も安価となる。
(Effects of the Invention) As described in detail above, the present invention has a plurality of cutting tools arranged at appropriate intervals on the concentric circumference of the workpiece, that is, usually at equal intervals in the circumferential direction, and Since two sets are arranged in the axial direction, the equipment is compact, takes up little space, and reduces equipment costs.

また、被削体の受はローラは、被削体の同心円周上に複
数個、例えば3個づつ被削体の送り方向に配置されてお
り、多点ローラ(3個の場合は同一円周上で3点)で受
けるため表面疵切削時にも被削体の振れがなく、過材が
安定しており、表面疵自動切削における品質の安定、向
上が期待できる。
In addition, the receiver of the workpiece has a plurality of rollers arranged on the concentric circumference of the workpiece, for example three rollers each, in the feeding direction of the workpiece, and multi-point rollers (in the case of three rollers, the same circumference 3 points above), there is no wobbling of the workpiece even when cutting surface flaws, and the overfill material is stable, which can be expected to stabilize and improve the quality of automatic surface flaw cutting.

また、製品歩留りの向上、大形丸鋼の表面疵自動切削な
どで切削バイトを多くしたい場合は被削体の同心円周上
に5個づつ設けられた切削バイトを2箇所配置すること
により対応できる。
In addition, if you want to increase the number of cutting tools to improve product yield or automatically cut surface defects on large round steel, you can do this by arranging five cutting tools at two locations on the concentric circumference of the workpiece. .

また、切削バイトIOA、l0B110c、IOD。Also, cutting tools IOA, l0B110c, IOD.

10E、IOFのそれぞれの切刃11A、 11 B、
 IIC。
10E, IOF cutting blades 11A, 11B,
I.I.C.

11D、LIE、IIFは凹入状とされ、しかも切削時
において周方向に互いに重なり合う部分11A′、11
B′、11C′、11D′、11E′、11F′が形成
され被削体2の全周をかこみうるようにされていること
から、被削体2の周方向及び軸方向のいかなる位置に疵
があっても、これを切削除去することができる。しかも
、このように重なり合う部分11A′、11B′、11
C′、11D′、11E′、11F′を形成しても、バ
イトIOA、IOB、IOC及びIOD、IOE、10
 Fはそれぞれ同心円周上で分割され、かつバイトIO
A、IOB、IOcとIOD、IOE、IOFは長手方
向に配置されていることから、前記部分11A′、11
B′、110′、11D′、11E′、11F′が互い
に干渉し合うこともない等の利点がある。
11D, LIE, and IIF are recessed, and portions 11A' and 11 overlap each other in the circumferential direction during cutting.
B', 11C', 11D', 11E', and 11F' are formed so as to surround the entire circumference of the workpiece 2, so that no flaws can be formed at any position in the circumferential direction and axial direction of the workpiece 2. Even if there is, it can be removed. Moreover, the overlapping parts 11A', 11B', 11
Even if C', 11D', 11E', 11F' are formed, the bytes IOA, IOB, IOC and IOD, IOE, 10
F is divided on concentric circles, and byte IO
Since A, IOB, IOc and IOD, IOE, IOF are arranged in the longitudinal direction, the portions 11A', 11
There is an advantage that B', 110', 11D', 11E', and 11F' do not interfere with each other.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成を示す説明図、第2図(1)
、(2)は切削マシンの正面図、第3図は同一部の詳細
を示す牛久側面図、第4図は第2図(1)のA−A断面
図、第5図(1)、(2)は切削前のそれぞれの切削バ
イトと線受はローラー及び被削体の対応関係を示す説明
図、第5図(3)は切削中のそれぞれの切削バイトと被
削体の対応関係を示す説明図、第6図乃至第8図は制御
装置における制御手段を示すもので、第6図は素線、バ
イト、回転プローブの相関図、第7図はバイトとパルス
信号の説明図、第8図はそのリレー図、第9図は被削体
と切削バイトの他の対応例を示す説明図である。 2・・・被削体(素線)、3・・・探傷器、4・・・速
度計、5・・・制御装置、6.6′・・・切削マシン、
7A、7B、7C,7D、7E、7F・・・駆動装置、
8A、8B。 8C,8D、8E、8F・・・線受はローラ、IOA、
IOB。 10C,IOD、IOE、IOF・・・切削バイト。 特許出願人 新日本製鉄株式会社 尤/国 ■24旧l) 欠2図(2) 7ε ■3図 ヤ4図 左左図(ハ        左左図(2)欠3図(3)
      火G口 ヤ7図 臂8図
Figure 1 is an explanatory diagram showing the overall configuration of the present invention, Figure 2 (1)
, (2) is a front view of the cutting machine, FIG. 3 is a side view of Ushiku showing details of the same part, FIG. 2) is an explanatory diagram showing the correspondence between each cutting tool and the wire holder before cutting, the roller and the workpiece, and Figure 5 (3) shows the correspondence between each cutting tool and the workpiece during cutting. The explanatory diagrams, FIGS. 6 to 8, show the control means in the control device. FIG. 6 is a correlation diagram of the wire, cutting tool, and rotating probe. FIG. 7 is an explanatory diagram of the cutting tool and pulse signal. The figure is a relay diagram thereof, and FIG. 9 is an explanatory diagram showing another example of correspondence between a workpiece and a cutting tool. 2... Workpiece (strand), 3... Flaw detector, 4... Speed meter, 5... Control device, 6.6'... Cutting machine,
7A, 7B, 7C, 7D, 7E, 7F... drive device,
8A, 8B. 8C, 8D, 8E, 8F...Wire receiver is roller, IOA,
IOB. 10C, IOD, IOE, IOF... Cutting tool. Patent Applicant: Nippon Steel Corporation Y/Country■24 Old l) Missing 2 Figures (2) 7ε ■Figure 3 Y Figure 4 Left Left Figure (C) Left Left Figure (2) Missing 3 Figures (3)
Fire G mouth figure 7 figure arm 8 figure

Claims (1)

【特許請求の範囲】[Claims] 線あるいは棒状材の被削体を長手方向に走行させる走行
通路上に被削体の周方向及び長手方向の疵の位置を検出
する探傷器と、被削体の走行速度検出器と、切削バイト
とがそれぞれ設けられ、前記探傷器による疵の情報と前
記走行速度検出器による速度情報により前記切削バイト
が作動されて被削体の疵を切削除去する装置において、
前記走行通路上に被削体の受ローラが被削体の同心円周
上に周方向に適宜の間隔をおいて複数個設けられており
、該受けローラと対応する位置にその先端に凹入状の切
刃を有する切削バイトが被削体に向つてそれぞれ独立し
て進退自在に複数個設けられ、更に、該切削バイトのそ
れぞれの切刃は切削時において被削体の軸方向から見る
と周方向に互いに重なり合う部分が形成されて、被削体
の全周をかこみうるようにされていることを特徴とする
棒線材の表面疵自動切削装置。
A flaw detector that detects the position of flaws in the circumferential and longitudinal directions of a wire or rod-shaped workpiece on a traveling path in which the workpiece is run in the longitudinal direction, a running speed detector for the workpiece, and a cutting tool. and an apparatus for cutting and removing flaws on a workpiece by operating the cutting tool based on flaw information from the flaw detector and speed information from the traveling speed detector,
A plurality of receiving rollers for the workpiece are provided on the traveling path at appropriate intervals in the circumferential direction on the concentric circumference of the workpiece, and a concave shape is formed at the tip at a position corresponding to the receiving roller. A plurality of cutting tools each having a cutting edge of 1. An automatic surface flaw cutting device for rods and wires, characterized in that portions are formed that overlap each other in the direction so as to encircle the entire circumference of a workpiece.
JP17186986A 1986-07-23 1986-07-23 Automatic cutting device for surface fault of wire rod Pending JPS6334012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17186986A JPS6334012A (en) 1986-07-23 1986-07-23 Automatic cutting device for surface fault of wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17186986A JPS6334012A (en) 1986-07-23 1986-07-23 Automatic cutting device for surface fault of wire rod

Publications (1)

Publication Number Publication Date
JPS6334012A true JPS6334012A (en) 1988-02-13

Family

ID=15931297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17186986A Pending JPS6334012A (en) 1986-07-23 1986-07-23 Automatic cutting device for surface fault of wire rod

Country Status (1)

Country Link
JP (1) JPS6334012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292111A (en) * 1989-02-28 1990-12-03 Aichi Steel Works Ltd Surface flaw treating device for strip material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127089A (en) * 1978-03-24 1979-10-02 Kobe Steel Ltd Automatic cutting control method of surface flaw
JPS5950453A (en) * 1982-09-16 1984-03-23 Minolta Camera Co Ltd Method for developing electrostatic latent image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127089A (en) * 1978-03-24 1979-10-02 Kobe Steel Ltd Automatic cutting control method of surface flaw
JPS5950453A (en) * 1982-09-16 1984-03-23 Minolta Camera Co Ltd Method for developing electrostatic latent image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292111A (en) * 1989-02-28 1990-12-03 Aichi Steel Works Ltd Surface flaw treating device for strip material

Similar Documents

Publication Publication Date Title
CN102225548B (en) Automatic plastic tube cutting machine
US4901611A (en) Apparatus and method for cutting mults from billets
JP2553340B2 (en) Bending machine
JPS6334012A (en) Automatic cutting device for surface fault of wire rod
CN109822010B (en) High-speed straightener
US6044682A (en) Wire product manufacturing apparatus
CN110899576B (en) Rotary cutting device for screw steel wire rope
JPH06155140A (en) Method and device for cutting cold pilger rolled pipe into shortened length
CN200947907Y (en) Machine for manufacturing line brush
CN104816239A (en) Apparatus for automatic conveying saw blades on flat grinder
JPH0431803B2 (en)
JPH0970713A (en) H-steel cutter
JPS5950453B2 (en) Automatic cutting device for surface flaws on wire or bar-shaped materials
EP0707906A1 (en) Automatic machine for the production of gaskets
KR200310293Y1 (en) Thread rolling machine for manufacturing bolt
US4070739A (en) Manufacture of metal strip
NO320913B1 (en) Apparatus for producing metal fibers
CN209094414U (en) Automatic rolling tangential machine for drag-line
US20040020339A1 (en) Machine for the multiple cutting-off of rolls of kitchen and/or toilet paper from logs
JPH10314949A (en) Tube cutting device
CN211028517U (en) High-efficiency plasma material cutting machine
US2899737A (en) Cutting apparatus
CN111496641A (en) Continuous bar grinding device
US4186583A (en) Apparatus for cross wedge rolling
CN212498345U (en) Material cutting device and cutting equipment