JPS6332872B2 - - Google Patents

Info

Publication number
JPS6332872B2
JPS6332872B2 JP55083523A JP8352380A JPS6332872B2 JP S6332872 B2 JPS6332872 B2 JP S6332872B2 JP 55083523 A JP55083523 A JP 55083523A JP 8352380 A JP8352380 A JP 8352380A JP S6332872 B2 JPS6332872 B2 JP S6332872B2
Authority
JP
Japan
Prior art keywords
copper
glue
electrolytic
sulfate solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55083523A
Other languages
Japanese (ja)
Other versions
JPS5716187A (en
Inventor
Tooru Tanigawa
Shoji Shiga
Suketomo Shirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8352380A priority Critical patent/JPS5716187A/en
Publication of JPS5716187A publication Critical patent/JPS5716187A/en
Publication of JPS6332872B2 publication Critical patent/JPS6332872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は酸性硫酸銅溶液を電解液とする銅の電
解精製法に関するもので、特に電力使用量を低減
すると共に表面が平滑緻密な硫黄含有量の少ない
電気銅を製造するためのものである。 〔従来の技術〕 銅の電解精製には、通常銅分40〜55g/、遊
離硫酸100〜220g/の酸性硫酸銅溶液を電解液
として用い、アノードに純度99%前後の粗銅と、
カソードに純銅、チタン又はステンレスの薄板と
を用いて、液温40〜70℃、電流密度1〜5A/d
m2で電気分解し、カソード上に電気銅を析出させ
て精製する方法が用いられている。 このような銅の電解精製において、高生産性で
高品質の電気銅を得るため、各種の改良、工夫が
行われている。その最重要課題の一つは、カソー
ドに析出する銅の結晶を微細化し、表面が平滑美
麗な電気銅とすることである。粗な結晶では、結
晶粒界に電解液が残留して電気銅の品位を低下
し、特にこれが著しいと瘤や樹脂状突起を発生
し、これがアノード面に達すると電気的短絡を起
し、電力ロスを招くばかりか、アノード面から落
下するスライムを取り込み、電気銅の品位を著し
く低下させる原因となる。これを防止するため、
電解液中に種々の有機物質を添加し、析出結晶の
微細化を計つている。例えば酸性硫酸銅溶液中に
ニカワやその類似物質であるカゼイン、ゼラチン
等と共に、チオ尿素、ポリビニルアルコール、脂
肪族スルホン化物の何れか1種以上、特にニカワ
とチオ尿素の両者を添加することにより表面が平
滑美麗な電気銅を製造している。 〔発明が解決しようとする課題〕 このような電気銅は各種の加工に際し、脱硫黄
作用のある反射炉で溶解していたが、最近反射炉
に代り、電気炉、シヤフト炉等が用いられるよう
になり、電気銅に含まれる硫黄の量が問題になつ
ている。また最近の省エネルギーに鑑み、電力使
用量の低減が望まれている。 電気銅中への硫黄の共析は、一つは析出結晶粒
界に対する電解液中の硫酸根物質の汚染であり、
他の一つは添加剤の一つであるチオ尿素の還元に
よる析出銅の硫化によるものである。表面が平滑
緻密な電気銅では前者による汚染は数ppmである
が、後者では添加量にもよるが、通常10ppm前後
と高く、低硫黄、例えば5ppmの要求に添えない。
チオ尿素の添加量の減少は含有硫黄量の低下に有
効であるが、電気銅の外観劣化を招くばかりか、
著しい場合には、前記のようにアノードとカソー
ド間の短絡を起し、電流効率の低下による電力消
費の増大となる。他方添加剤の多くは電気分解の
際に電極、特にカソード分極を著しく高めること
は周知の通りであり、ニカワとチオ尿素の併用で
は槽電圧の2〜3割に達する場合が多く、電力消
費の上からこの改善が望まれている。 〔課題を解決するための手段〕 本発明はこれに鑑み種々研究の結果電力消費を
低減すると共に表面が平滑緻密で含有硫黄量の少
ない電気銅を得ることができる銅の電解精製法を
開発したもので、酸性硫酸銅溶液中で、粗銅をア
ノードとして電気分解することによりカソード上
に純銅を析出させる銅の電解精製において、酸性
硫酸銅溶液にニカワ又はニカワとチオ尿素と共に
水溶液芳香族アゾ化合物を添加して電気分解する
ことを特徴とするものである。 即ち本発明は、従来使用されている酸性硫酸銅
溶液にニカワ(これと類似物質であるカゼイン、
ゼラチン等を含む)又はニカワと共にチオ尿素を
含有せしめた酸性硫酸銅溶液に、水溶性芳香族ア
ゾ化合物を添加して、銅の電気分解を行なうもの
で、水溶性芳香族アゾ化合物とは芳香族環の一部
がアゾ結合されたもので、ここで芳香族環とはベ
ンゼン環でもナフタリン環でもよく、これに水酸
基、アミノ基、スルフオン酸、カルボン酸等が置
換した水溶性の化合物であり、一般に特有の色を
有するところから染料として使用されている場合
が多い。例えば塩基性染料であるビスマルクブラ
ウン、ジエーナスブラウン、カチロンピンク、ダ
イヤモンドグリーン、アニリンエロー、ジエーナ
スレツドなど、酸性染料であるメチルオレンジ、
メタニルエロー、フアストレツド、ビクトリアヴ
アイオレツト、ナフトールブルーブラツクなど、
媒染々料であるダイヤモンドブラツク、エリオク
ロムブラツクTなど、直接染料であるコンゴーレ
ツド、ジアミンブラツク、ブリリアントエローな
ど、更には食品用染料もある。但し不溶性染料で
ある分散染料は含まれない。 〔作 用〕 これ等の水溶性芳香族アゾ化合物は何れも従来
使用されている酸性硫酸銅溶液に添加することに
より析出銅の平滑作用を示し、表面が平滑緻密な
電気銅を得ることができるばかりか、含有硫黄量
を5ppm以下にし、更に電解時の分極を15〜20m
V、槽電圧の10%近くを低下することができる。
酸性硫酸銅溶液中への添加量は、液中濃度にして
0.1〜100ppm、望ましくは0.5〜5ppmであり、析
出銅1ton当り5〜100g、望ましくは15〜50gの
割合で添加すればよく、これより添加量が少ない
と所望の効果が得られず、またこれより添加量を
多くしても効果は飽和してしまう。 特に従来のニカワやその類似物質であるカゼイ
ン、ゼラチン等又はニカワとチオ尿素を添加した
酸性硫酸銅溶液に水溶性芳香族アゾ化合物を添加
すると電析銅に対し、より優れた平滑作用を示す
と共に、従来の添加剤であるニカワ等の添加に由
来するカソード分極の上昇は全く起らず、逆に前
記の分極低下作用を維持する。 このような水溶性芳香族アゾ化合物の添加によ
る特異な効果のメカニズムについては推定の域を
出ないが、分子間に有するアゾ基が銅表面や電極
近傍の銅イオンと作用して、緻密な銅を減極的に
析出することを可能にしているものと考えられ
る。またこの化合物は硫黄、特に活性な還元され
やすい型の硫黄を分子内に保有していないため、
従来のチオ尿素の如き硫黄混入源とはならないば
かりか、前記減極作用により例えば少量のチオ尿
素などの活性硫黄化合物が共存しても、その混
入、共析を有効に抑制できるものと考えられる。 以下本発明の実施例について説明する。 実施例 1 約40の電解槽に、銅分40g/、遊離硫酸
180g/の濃度で、液温60℃の酸性硫酸銅溶液
を約2.5/分の速度で還流せしめ、これに巾200
mm、長さ300mmの粗銅板3枚と同じ大きさの純銅
薄板4枚を100mmのピツチで交互に配列し、粗銅
板をアノードとし、純銅薄板をカソードとしてカ
ソードベースで2A/dm2の電流密度で電気分解
した。電気分解は10日毎にカソード(電気銅)を
引き上げ、代わりに純銅薄板を入れることを2回
繰り返した。 電気分解に際しては、析出銅当りニカワを50
g/Tと、第1表に示す添加剤の所定量とを連続
的に添加した。その結果を第2表に示す。
[Industrial Application Field] The present invention relates to an electrolytic refining method for copper using an acidic copper sulfate solution as an electrolyte, and is particularly applicable to reducing electric power consumption and producing electrolytic copper with a smooth and dense surface and low sulfur content. It is for the purpose of [Prior art] For electrolytic refining of copper, an acidic copper sulfate solution containing 40 to 55 g of copper and 100 to 220 g of free sulfuric acid is usually used as an electrolyte, and blister copper with a purity of about 99% is used as an anode.
Using a thin plate of pure copper, titanium or stainless steel as the cathode, liquid temperature 40-70℃, current density 1-5A/d.
A method of purification is used by electrolyzing with m 2 and depositing electrolytic copper on the cathode. In such electrolytic refining of copper, various improvements and innovations have been made in order to obtain high-quality electrolytic copper with high productivity. One of the most important issues is to make the copper crystals deposited on the cathode finer and create electrolytic copper with a smooth and beautiful surface. In coarse crystals, electrolyte remains at the grain boundaries, degrading the quality of electrolytic copper. If this is particularly severe, bumps and resin-like protrusions occur, and when they reach the anode surface, they cause electrical short circuits and reduce the power supply. Not only does this cause loss, but it also captures slime that falls from the anode surface, causing a significant deterioration in the quality of electrolytic copper. To prevent this,
Various organic substances are added to the electrolyte in order to make the precipitated crystals finer. For example, by adding one or more of thiourea, polyvinyl alcohol, and aliphatic sulfonated substances, especially both glue and thiourea, together with glue and its similar substances such as casein and gelatin to an acidic copper sulfate solution, the surface manufactures smooth and beautiful electrolytic copper. [Problem to be solved by the invention] During various processing, electrolytic copper was melted in a reverberatory furnace with a desulfurizing effect, but recently electric furnaces, shaft furnaces, etc. have been used instead of reverberatory furnaces. The amount of sulfur contained in electrolytic copper has become a problem. Furthermore, in view of recent energy conservation efforts, it is desired to reduce power consumption. The eutectoid of sulfur into electrolytic copper is caused by contamination of precipitated grain boundaries with sulfuric acid radicals in the electrolyte;
The other one is due to the sulfidation of precipitated copper due to the reduction of thiourea, one of the additives. In electrolytic copper, which has a smooth and dense surface, contamination by the former is several ppm, but in the latter, it depends on the amount added, but it is usually as high as around 10 ppm, which does not meet the requirement for low sulfur, for example 5 ppm.
Reducing the amount of thiourea added is effective in reducing the amount of sulfur contained, but it not only causes deterioration in the appearance of electrolytic copper, but also
In severe cases, a short circuit occurs between the anode and the cathode as described above, resulting in an increase in power consumption due to a decrease in current efficiency. On the other hand, it is well known that many additives significantly increase electrode polarization, especially cathode polarization, during electrolysis, and when glue and thiourea are used together, the voltage often reaches 20-30% of the cell voltage, which reduces power consumption. This improvement is desired from above. [Means for Solving the Problems] In view of this, the present invention has developed, as a result of various studies, an electrolytic refining method for copper that can reduce power consumption and obtain electrolytic copper with a smooth and dense surface and a low content of sulfur. In the electrolytic refining of copper, in which pure copper is deposited on the cathode by electrolyzing blister copper as an anode in an acidic copper sulfate solution, an aqueous aromatic azo compound is added to the acidic copper sulfate solution together with glue or glue and thiourea. It is characterized in that it is added and electrolyzed. That is, the present invention adds glue (casein, which is a similar substance,
A water-soluble aromatic azo compound is added to an acidic copper sulfate solution containing thiourea (containing gelatin, etc.) or glue, and copper is electrolyzed. A part of the ring is azo-bonded, and the aromatic ring may be a benzene ring or a naphthalene ring, and is a water-soluble compound substituted with a hydroxyl group, an amino group, a sulfonic acid, a carboxylic acid, etc. Generally, it is often used as a dye because it has a unique color. For example, basic dyes such as Bismarck Brown, Jenas Brown, Cachilon Pink, Diamond Green, Aniline Yellow, and Jenas Thread, acidic dyes such as Methyl Orange,
Metanyl Yellow, Fast Stretched, Victoria Blue Black, Naphthol Blue Black, etc.
There are mordants such as Diamond Black and Eriochrome Black T, direct dyes such as Congo Red, Diamine Black, and Brilliant Yellow, and even food-grade dyes. However, disperse dyes, which are insoluble dyes, are not included. [Function] When added to the conventionally used acidic copper sulfate solution, any of these water-soluble aromatic azo compounds exhibits a smoothing effect on deposited copper, making it possible to obtain electrolytic copper with a smooth and dense surface. Not only that, but the sulfur content is reduced to 5 ppm or less, and the polarization during electrolysis is reduced to 15 to 20 m.
V, it is possible to reduce the cell voltage by nearly 10%.
The amount added to the acidic copper sulfate solution is based on the concentration in the solution.
The amount is 0.1 to 100 ppm, preferably 0.5 to 5 ppm, and should be added at a rate of 5 to 100 g, preferably 15 to 50 g per 1 ton of deposited copper. Even if the amount added is increased, the effect will be saturated. In particular, when a water-soluble aromatic azo compound is added to an acidic copper sulfate solution to which conventional glue or its similar substances such as casein, gelatin, etc. or glue and thiourea have been added, it exhibits a better smoothing effect on deposited copper. The increase in cathode polarization caused by the addition of conventional additives such as glue does not occur at all, and on the contrary, the above-mentioned polarization lowering effect is maintained. Although the mechanism of this unique effect caused by the addition of water-soluble aromatic azo compounds is only a matter of speculation, the azo group in the molecule interacts with the copper ions on the copper surface and near the electrode, resulting in the formation of dense copper. It is thought that this makes it possible to precipitate in a depolarized manner. In addition, this compound does not contain sulfur, especially the active and easily reducible form of sulfur, in its molecule.
Not only does it not become a source of sulfur contamination like conventional thiourea, but it is thought that even if a small amount of active sulfur compounds such as thiourea coexist, the depolarization effect can effectively suppress the contamination and eutectoid. . Examples of the present invention will be described below. Example 1 Approximately 40 electrolytic cells were filled with 40 g of copper and free sulfuric acid.
An acidic copper sulfate solution with a concentration of 180 g/min and a liquid temperature of 60°C was refluxed at a rate of about 2.5/min, and
Three blister copper plates with a length of 300 mm and four pure copper thin plates of the same size are arranged alternately at a pitch of 100 mm, the blister copper plate is used as an anode, the pure copper thin plate is used as a cathode, and the current density is 2 A/dm 2 at the cathode base. It was electrolyzed. The electrolysis process was repeated twice by removing the cathode (electrolytic copper) every 10 days and replacing it with a pure copper thin plate. When electrolyzing, add 50% glue per deposited copper.
g/T and the predetermined amounts of additives shown in Table 1 were added continuously. The results are shown in Table 2.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば銅の電解精製におい
て、表面が平滑緻密で含有硫黄の少ない電気銅が
容易に得られ、かつ電力消費量を低減し得るもの
で、工業上顕著な効果を奏するものである。
As described above, according to the present invention, in the electrolytic refining of copper, electrolytic copper with a smooth and dense surface and low sulfur content can be easily obtained, and power consumption can be reduced, resulting in a remarkable industrial effect. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 酸性硫酸銅溶液中で、粗銅をアノードとして
電気分解することによりカソード上に純銅を析出
させる銅の電解精製において、酸性硫酸銅溶液に
ニカワ又はニカワとチオ尿素と共に水溶性芳香族
アゾ化合物を添加して電気分解することを特徴と
する銅の電解精製法。
1 In electrolytic refining of copper, in which pure copper is deposited on the cathode by electrolyzing blister copper as an anode in an acidic copper sulfate solution, a water-soluble aromatic azo compound is added to the acidic copper sulfate solution along with glue or glue and thiourea. A copper electrolytic refining method characterized by electrolysis.
JP8352380A 1980-06-20 1980-06-20 Electrolytic refinery of copper Granted JPS5716187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8352380A JPS5716187A (en) 1980-06-20 1980-06-20 Electrolytic refinery of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8352380A JPS5716187A (en) 1980-06-20 1980-06-20 Electrolytic refinery of copper

Publications (2)

Publication Number Publication Date
JPS5716187A JPS5716187A (en) 1982-01-27
JPS6332872B2 true JPS6332872B2 (en) 1988-07-01

Family

ID=13804833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8352380A Granted JPS5716187A (en) 1980-06-20 1980-06-20 Electrolytic refinery of copper

Country Status (1)

Country Link
JP (1) JPS5716187A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213643A (en) * 1987-02-27 1988-09-06 Sumitomo Metal Ind Ltd Stainless steel excellent in resistance to high-temperature corrosion in the presence of chloride
JPS63297583A (en) * 1987-05-29 1988-12-05 Nippon Mining Co Ltd Manufacture of high-purity electrolytic copper
JPS6455394A (en) * 1987-08-26 1989-03-02 Nippon Mining Co Production of high-purity electrolytic copper
JP3986743B2 (en) * 2000-10-03 2007-10-03 株式会社日立製作所 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTROLESS COPPER PLATING LIQUID USED FOR THE SAME
JP4356869B2 (en) * 2002-03-27 2009-11-04 株式会社神戸製鋼所 Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor
JP6922381B2 (en) * 2017-04-27 2021-08-18 三菱ケミカル株式会社 Azo compounds for anisotropic films, compositions for anisotropic films containing the compounds, and anisotropic films

Also Published As

Publication number Publication date
JPS5716187A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
CN100469942C (en) Electroplating solution containing organic acid complexing agent
US11913128B2 (en) Compact and flat bismuth metal preparation by electrolysis method
US2706213A (en) Primary cells
CN102586851A (en) Electrolytic method for relieving and reducing tin sludge generated in tin plating solution
JPS6332872B2 (en)
CN110373706B (en) Online maintenance method of acidic bright copper plating electroplating solution
CN103510106B (en) A kind of copper electrolysis additive and using method thereof
CN111020643B (en) Double-sided smooth copper foil and preparation method and device thereof
US2404453A (en) Removal of chlorate from caustic soda
JPS6332873B2 (en)
JP3097824B2 (en) Long-period pulse electrolysis operation method in copper electrorefining
JPS6133918B2 (en)
CN109137037B (en) Nickel-tin salt coloring recovery coloring agent and reclaimed water utilization method
CN105937040A (en) Process for reducing cathode zinc direct-current current unit loss in zinc wet method smelting for processing high mixed ore
CN113235132A (en) Additive for regenerating electrolytic copper from etching waste liquid, preparation method thereof and electrolyte
CA1174199A (en) Bipolar refining of lead
CN104862736A (en) Impurity-removed copper electrolyte additive and preparation method thereof
FR2560895A1 (en) PROCESS FOR THE ELECTROLYTIC PRODUCTION OF METAL OXIDE FOR FERRITE
US1542265A (en) Process of making aminosalicylic acid
JPS63307291A (en) Manufacture of high-purity copper
US2458827A (en) Electrodeposition of lead-tin-antimony alloys
US2785117A (en) High speed copper cyanide plating
US20240150924A1 (en) Method for removing ferric ions from sulfate-based iron electroplating solution
US2848399A (en) Electrowinning of zinc
KR100349445B1 (en) Cementation apparatus of high purity copper