JPS6331559B2 - - Google Patents

Info

Publication number
JPS6331559B2
JPS6331559B2 JP60060982A JP6098285A JPS6331559B2 JP S6331559 B2 JPS6331559 B2 JP S6331559B2 JP 60060982 A JP60060982 A JP 60060982A JP 6098285 A JP6098285 A JP 6098285A JP S6331559 B2 JPS6331559 B2 JP S6331559B2
Authority
JP
Japan
Prior art keywords
punched
lead dioxide
electrode
intermediate layer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60060982A
Other languages
Japanese (ja)
Other versions
JPS61221390A (en
Inventor
Kaoru Hirakata
Shinichi Shimoda
Yasuyuki Nishikawa
Reiichi Itai
Osamu Sasabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP60060982A priority Critical patent/JPS61221390A/en
Publication of JPS61221390A publication Critical patent/JPS61221390A/en
Publication of JPS6331559B2 publication Critical patent/JPS6331559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は塩素酸塩、過塩素酸塩、過沃素酸塩、
過硫酸塩などの電解製造用の陽極として、また、
金属の電解採取、廃液の電解処理、電気メツキ
用、特にクロムメツキにおけるケイフツ化浴用陽
極として用いられる被覆型二酸化鉛電極に関す
る。 〔従来の技術〕 工業電解に用いられる電極としては、その性
能、耐久性と共に電極形態および機械的強度、加
工性、経済性などが十分満足できるものでなくて
はならない。近年、チタンなどの基体上に白金族
金属化合物を被覆した金属電極が出現し、そのす
ぐれた性能と同時に強度、寸法安定性のよいとい
う利点の故に、食塩電解工業その他に著しい進歩
をもたらした。 一方、従来から認められてきた二酸化鉛電極は
白金につぐ高酸素過電圧をもち、かつ特異な電極
触媒能を有するすぐれた安価な電極である。しか
し、本格的な実用化に至らないのは、この電極の
機械的強さと加工性の不足、寸法安定性の欠如な
どが原因となつている。 板状の二酸化鉛電極の製法としては、従来、硝
酸鉛浴などから凹面陽極電着し、抜き取る方法に
よつているが、内部歪が存在するため脆弱で大型
化しにくく、形状も制限された。そのため、黒鉛
板、チタン板に直接二酸化鉛を電着する試みがな
されたが、クラツクの発生、密着不良などにより
剥離、脱落をおこし成功していない。最近では、
チタン金網を芯材として電着する方法がある。し
かし、密着性は向上するが強度的に弱く曲がり易
いのでクラツクを生じ易く、電流もあまり流せず
大型化は無理であつた。 これらの欠点を改良すべく基体のチタン板上に
チタンのエキスパンドメタル(特公昭58−30957)
やパンチングメタル、金網(特公昭58−31396)
を押え板と共に溶接し、中間層を介して二酸化鉛
を電着する方法が試みられた。この方法により密
着性、機械的強度、寸法安定性は著しく向上し
た。しかし、押え板や電極の周縁部分はチタンが
露出しているため、チタン基体の耐食性がない電
解液、たとえばクロムメツキのケイフツ化浴のよ
うな系では押え板や露出部分が腐食され剥離、脱
落が起きることがあつた。また、電極の製造工程
が繁雑になつて工数を要し、高価な電極となる欠
点があつた。 〔発明が解決しようとする問題点〕 本発明者らは、二酸化鉛電極の密着性、機械的
強度、寸法安定性を良好に保持しながら、かつ、
基体金属が腐食される電解液であつても使用で
き、ある程度の大型化も可能で製造も容易な電極
を得るべく、種々検討を加えた結果、ついにこれ
を完成したものである。 〔問題点を解決するための手段〕 すなわち本発明は、打抜部最大径および隣接し
た打抜部の最短間隔がそれぞれ1.5〜12mmと1.5〜
7.0mmの範囲を有し、かつ板厚が1.0〜7.0mmの範囲
から成る打抜板と、前記打抜板上に被覆された中
間層と、前記中間層上に電着された二酸化鉛とか
ら成り、前記打抜板の材質が鉄、鉄合金、チタン
またはチタン合金であり、前記中間層の材質が白
金族金属、それらの合金またはそれらの酸化物、
銀、二酸化マンガン、酸化コバルト、酸化モリブ
デンの少なくとも1種より成る被覆型二酸化鉛電
極である。 つぎに本発明を図面に基いて説明する。第1図
および第3図は本発明の電極の断面図であり、打
抜板1、耐酸化性で導電性の中間層2、二酸化鉛
層3から成つている。打抜板1をトリクレンなど
の溶剤、またはアルカリにより脱脂し、ついでフ
ツ酸、あるいは熱シユウ酸によりエツチングし表
面を粗面化したのち中間層2を介して二酸化鉛層
3を陽極電着により全面に形成させる。本発明に
使用する打抜板1の材質としては、鉄、鉄合金、
チタンまたはチタン合金が用いられるが、この他
ニツケル、クロム、アルミニウム、タンタル、ジ
ルコニウム、ニオブまたはこれらを主体とした合
金も用いられ、大きさは縦横1000〜1500mmくらい
まで可能であり、平板状のほか円筒状も適用でき
る。また打抜部4の形状は丸型が一般的である
が、楕円型、四角型、十字型、これらの混合型な
ど多様であり任意の形状のもので良い。 次に打抜部4の形状として一般的な丸型を例
に、第2図により本発明の態様を説明する。隣接
した打抜部4の最短間隔L1は1.5〜7.0mmの範囲が
好適である。1.5mmより小さいと板の強度が不足
し、電極を取扱う際などにたわんで電着した二酸
化鉛層にクラツクが発生し剥離する。また、7.0
mmより大きいと平坦部が広くなりすぎて二酸化鉛
層の密着性が低下する。打抜部最大径L2は1.5〜
12mmの範囲が良く、1.5mmより小さいと二酸化鉛
の電着の際に基体表面上に生ずる酸素気泡が打抜
部4に溜るためピンホールを含んだ二酸化鉛層が
形成される。このような電極をクロムメツキのケ
イフツ化浴中で陽極として使用すると打抜部4の
基体が腐食し、二酸化鉛層が脱落する。また、12
mmより大きいと対極の電流分布上好ましくない。
板厚についても1.0〜7.0mmの範囲が良く、1.0mmよ
り薄いと強度的に弱く、大電流通電を行なう場合
の発熱の問題が残り、7mmより厚いと電着の際に
酸素気泡が取りきれず、二酸化鉛層にピンホール
が生じる。 中間層2は打抜板1の表面の酸化防止のために
介在させるが、耐酸化性、導電性の白金族金属、
それらの合金またはそれらの酸化物、銀、二酸化
マンガン、酸化コバルト、酸化モリブデンの少な
くとも1種より成る。用いる白金族金属としては
白金、イリジウム、ロジウム、パラジウム、ルテ
ニウムなどで、電気メツキあるいはこれらの該当
金属の塩化物をアルコールに溶かし、打抜板上に
塗布したあと熱分解法によつて被覆が調製され
る。銀、二酸化マンガン、酸化コバルト、酸化モ
リブデンはこれらの金属の硝酸塩を水、またはア
ルコールに溶かして同様に被覆を形成させる。打
抜板として鉄、ステンレス鋼などを用いる場合
は、熱分解法によると白金族金属の塩化物含有塗
布液を熱分解する過程で塩酸が生成するため基体
が腐食し、中間層の密着性が不足して二酸化鉛の
電着が良好でなくなるので、硫酸塩、硝酸塩また
は有機金属塩を含有する塗布液によるか、電気メ
ツキによる被覆が望ましい。また、中間層の厚み
は0.5〜5μ程度で十分である。 本発明の二酸化鉛層は陽極電着により打抜板の
表面に施された中間層上に全面被覆されるが、電
着液は鉛塩および銅塩とから成り、鉛塩としては
硝酸鉛、スルフアミン酸鉛、酢酸鉛などを使い、
銅塩としてはおもに硝酸銅を用いる。電着液中の
鉛および銅としての濃度は、それぞれ100〜210
g/、4〜20g/であり、液温度は60〜80℃、
PHは3.5〜4.5に保たれる。陽極電流密度は1〜5
A/dm2で陰極としてはステンレス鋼を用いて電解
を行なう。この間液性をPH3.5〜4.5に保つため
に、一酸化鉛、炭酸鉛、水酸化鉛などを加えて調
節する。これらの条件をはずれると島状電着やこ
ぶ状電着を生じやすくなり内部歪も増大し、被覆
にクラツクや電着物の剥離を起こしやすくなり好
ましくない。 二酸化鉛の被覆の厚みは、必要に応じて0.3〜
8mmとするが、これは電着時間の長短により調整
される。第3図は二酸化鉛の被覆を打抜部4を埋
めつくさないようにして製作した電極の一例であ
る。このようにして電着は終了するが、クラツク
やピンホールなどはできず、基体表面に応じて均
一な被覆が得られると共に、構造上、打抜部を被
覆した二酸化鉛がボルトのような役割をはたし、
かつ、内部歪を逃がすことにより良好な密着性が
得られる。 〔実施例〕 つぎに本発明の態様を実施例で示すが、その主
旨はこれらの例によつて何ら制約されるものでは
ない。 実施例 1 縦120mm、横50mm、厚さ3mmのチタン板に穴径
3mm、打抜部間隔3mmの丸型の打抜きを並列状に
行ない電極基体を作製した。この電極基体をトリ
クレン洗浄により脱脂を行なつたのち5%ふつ酸
溶液に浸漬して表面処理を施した。次に塩化白金
3重量部、塩化イリジウム1重量部、イソプロピ
ルアルコール36重量部から成る塗布液を塗布し、
乾燥したのち500℃で加熱処理し、0.7μの中間層
を形成させた。この電極基体を陽極とし、ステン
レス鋼板を陰極として硝酸鉛と硝酸銅とから成る
電着液中で30時間陽極電着し、約3.0mm厚の二酸
化鉛の被覆を得た。このときの鉛および銅イオン
の濃度は200g/および6.5g/であり、陽極電流
密度は2.5A/dm2、平均の液温度は65℃、液性は
PH4.2前後に保つた。二酸化鉛被覆は全面にほぼ
均一に電着され、表面にクラツクはなく平坦度も
すぐれていた。 実施例 2 縦120mm、横50mm、厚さ3.2mmの鉄板に穴径5
mm、打抜部間隔3mmの丸型の打抜きを千鳥(60
度)に行ない電極基体を製作した。この電極基体
をトリクレン洗浄により脱脂を行ない工業用35%
塩酸中に1時間浸漬して表面をエツチングした。
次に0.5Mの硝酸銀水溶液を塗布し、乾燥したの
ち450℃で30分間のくり返し焼成を行ない2μの中
間層を形成させ実施例1と同様に12時間電着を行
なつた。得られた二酸化鉛電極の被覆厚みは1.0
mmで、打抜き部、平面部にほぼ均一に電着され
た。 比較例 1 本発明の電極の効果を知るため、縦120mm、横
50mm厚さ3mmのチタン板を基体とし、実施例1と
同じ条件で前処理、中間層被覆、そして二酸化鉛
被覆を行ない、被覆表面にガムテープを接着さ
せ、ロールで加圧したのちテープを引きはがし、
密着性を観察した。結果を第1表に示した。
[Industrial Application Field] The present invention is applicable to chlorates, perchlorates, periodates,
As an anode for electrolytic production of persulfates, etc.
The present invention relates to a coated lead dioxide electrode used for electrowinning of metals, electrolytic treatment of waste liquids, electroplating, and especially as an anode for silencing baths in chrome plating. [Prior Art] Electrodes used in industrial electrolysis must be sufficiently satisfactory in performance, durability, electrode form, mechanical strength, workability, economic efficiency, and the like. In recent years, metal electrodes in which a platinum group metal compound is coated on a substrate such as titanium have appeared, and due to their excellent performance as well as the advantages of good strength and dimensional stability, they have brought about significant advances in the salt electrolysis industry and elsewhere. On the other hand, the lead dioxide electrode, which has been recognized in the past, is an excellent and inexpensive electrode that has a high oxygen overvoltage second only to platinum and has a unique electrocatalytic ability. However, the reason why this electrode has not been put into full-scale practical use is due to the lack of mechanical strength, workability, and dimensional stability of this electrode. The conventional method for producing plate-shaped lead dioxide electrodes has been to electrodeposit concave anodes from a lead nitrate bath and then extract them, but due to the presence of internal strain, they are brittle and difficult to increase in size, and their shapes are also limited. Therefore, attempts have been made to electrodeposit lead dioxide directly onto graphite plates and titanium plates, but these attempts have not been successful as cracks and poor adhesion have caused peeling and falling off. recently,
There is a method of electrodepositing titanium wire mesh as a core material. However, although it improves adhesion, it is weak in strength and bends easily, so cracks are likely to occur, and it is not possible to make it larger because it cannot pass much current. In order to improve these defects, expanded titanium metal was added to the base titanium plate (Special Publication No. 58-30957).
and punching metal, wire mesh (Special Publication No. 58-31396)
Attempts have been made to weld the metal with a holding plate and electrodeposit lead dioxide through the intermediate layer. This method significantly improved adhesion, mechanical strength, and dimensional stability. However, since the titanium is exposed at the peripheral edges of the holding plate and electrodes, electrolytes that do not have the corrosion resistance of the titanium base, such as sizing baths for chrome plating, can corrode the holding plate and exposed parts, causing them to peel or fall off. Something happened. In addition, the manufacturing process of the electrode becomes complicated and requires a lot of man-hours, resulting in an expensive electrode. [Problems to be Solved by the Invention] The present inventors have solved the problem while maintaining good adhesion, mechanical strength, and dimensional stability of the lead dioxide electrode, and
After conducting various studies in order to obtain an electrode that can be used even with electrolytes that corrode the base metal, can be scaled up to a certain extent, and is easy to manufacture, this electrode has finally been completed. [Means for Solving the Problems] That is, the present invention provides a method in which the maximum diameter of the punched portion and the shortest distance between adjacent punched portions are 1.5 to 12 mm and 1.5 to 12 mm, respectively.
A punched plate having a thickness of 7.0 mm and a thickness of 1.0 to 7.0 mm, an intermediate layer coated on the punched plate, and lead dioxide electrodeposited on the intermediate layer. The material of the punched plate is iron, iron alloy, titanium or titanium alloy, and the material of the intermediate layer is a platinum group metal, an alloy thereof or an oxide thereof,
This is a coated lead dioxide electrode made of at least one of silver, manganese dioxide, cobalt oxide, and molybdenum oxide. Next, the present invention will be explained based on the drawings. 1 and 3 are cross-sectional views of an electrode according to the invention, consisting of a stamped plate 1, an oxidation-resistant and electrically conductive intermediate layer 2, and a lead dioxide layer 3. FIG. The punched plate 1 is degreased with a solvent such as trichloride or an alkali, and then etched with hydrofluoric acid or hot oxalic acid to roughen the surface. A lead dioxide layer 3 is then coated on the entire surface by anodic electrodeposition via the intermediate layer 2. to form. The material of the punched plate 1 used in the present invention includes iron, iron alloy,
Titanium or titanium alloy is used, but nickel, chromium, aluminum, tantalum, zirconium, niobium, or alloys based on these are also used, and the size can be about 1000 to 1500 mm in length and width, and it can be shaped like a flat plate or A cylindrical shape is also applicable. Further, the shape of the punched portion 4 is generally round, but it may be of any other shape such as an ellipse, a square, a cross, or a mixture thereof. Next, an embodiment of the present invention will be explained with reference to FIG. 2, taking a general round shape as the shape of the punched portion 4 as an example. The shortest distance L1 between adjacent punched parts 4 is preferably in the range of 1.5 to 7.0 mm. If it is smaller than 1.5 mm, the strength of the plate will be insufficient, and it will bend when handling the electrode, causing cracks in the electrodeposited lead dioxide layer and causing it to peel off. Also, 7.0
If it is larger than mm, the flat portion becomes too wide and the adhesion of the lead dioxide layer decreases. The maximum diameter of the punched part L2 is 1.5~
A range of 12 mm is good; if it is smaller than 1.5 mm, oxygen bubbles generated on the substrate surface during electrodeposition of lead dioxide will accumulate in the punched portion 4, resulting in the formation of a lead dioxide layer containing pinholes. If such an electrode is used as an anode in a sizing bath for chrome plating, the base of the punched portion 4 will corrode and the lead dioxide layer will fall off. Also, 12
If it is larger than mm, it is unfavorable in view of the current distribution of the counter electrode.
Regarding the plate thickness, a range of 1.0 to 7.0 mm is good; if it is thinner than 1.0 mm, it will be weak in strength and there will be problems with heat generation when applying a large current, and if it is thicker than 7 mm, oxygen bubbles will not be removed during electrodeposition. First, pinholes are created in the lead dioxide layer. The intermediate layer 2 is interposed to prevent oxidation of the surface of the punched plate 1, and is made of oxidation-resistant and conductive platinum group metal,
It consists of at least one of their alloys or their oxides, silver, manganese dioxide, cobalt oxide, and molybdenum oxide. The platinum group metals used are platinum, iridium, rhodium, palladium, ruthenium, etc., and the coating is prepared by electroplating or by dissolving the chloride of these metals in alcohol, coating it on a punched board, and then using a pyrolysis method. be done. Silver, manganese dioxide, cobalt oxide, and molybdenum oxide are similarly coated by dissolving the nitrates of these metals in water or alcohol. When using iron, stainless steel, etc. as the punched plate, the thermal decomposition method produces hydrochloric acid during the thermal decomposition process of the platinum group metal chloride-containing coating solution, which corrodes the substrate and impairs the adhesion of the intermediate layer. If the lead dioxide is insufficient, the electrodeposition of lead dioxide will be poor, so it is desirable to coat with a coating solution containing sulfate, nitrate or organic metal salt, or by electroplating. Further, a thickness of about 0.5 to 5 μm is sufficient for the intermediate layer. The lead dioxide layer of the present invention is entirely coated on the intermediate layer applied to the surface of the punched plate by anodic electrodeposition, and the electrodeposition solution consists of lead salt and copper salt, and the lead salt includes lead nitrate, lead nitrate, Using lead sulfamate, lead acetate, etc.
Copper nitrate is mainly used as the copper salt. The concentration of lead and copper in the electrodeposition solution is 100 to 210, respectively.
g/, 4~20g/, liquid temperature 60~80℃,
PH is kept between 3.5 and 4.5. Anode current density is 1-5
Electrolysis is carried out at A/dm 2 using stainless steel as the cathode. During this time, adjust the pH by adding lead monoxide, lead carbonate, lead hydroxide, etc. to maintain the pH between 3.5 and 4.5. If these conditions are not met, island-like electrodepositions or lump-like electrodepositions tend to occur, internal strain increases, and the coating tends to crack and the electrodeposit peels off, which is undesirable. The thickness of the lead dioxide coating is from 0.3 to 0.3 as required.
The length is 8 mm, but this can be adjusted depending on the length of the electrodeposition time. FIG. 3 shows an example of an electrode manufactured by not filling the punched portion 4 with lead dioxide coating. Electrodeposition is completed in this way, but there are no cracks or pinholes, and a uniform coating is obtained depending on the surface of the substrate.In addition, due to the structure, the lead dioxide covering the punched part acts like a bolt. and
In addition, good adhesion can be obtained by releasing internal strain. [Examples] Next, aspects of the present invention will be illustrated by Examples, but the gist thereof is not limited in any way by these Examples. Example 1 A titanium plate measuring 120 mm in length, 50 mm in width, and 3 mm in thickness was punched in parallel with circular holes having a hole diameter of 3 mm and a punching part interval of 3 mm to produce an electrode substrate. This electrode substrate was degreased by trichlene cleaning and then surface treated by immersing it in a 5% hydrogen fluoride acid solution. Next, a coating solution consisting of 3 parts by weight of platinum chloride, 1 part by weight of iridium chloride, and 36 parts by weight of isopropyl alcohol is applied.
After drying, it was heat-treated at 500°C to form an intermediate layer of 0.7μ. Using this electrode substrate as an anode and a stainless steel plate as a cathode, electrodeposition was carried out for 30 hours in an electrodeposition solution consisting of lead nitrate and copper nitrate to obtain a lead dioxide coating with a thickness of approximately 3.0 mm. At this time, the concentrations of lead and copper ions were 200g/ and 6.5g/, the anode current density was 2.5A/dm 2 , the average liquid temperature was 65℃, and the liquid property was
The pH was kept around 4.2. The lead dioxide coating was electrodeposited almost uniformly over the entire surface, with no cracks on the surface and excellent flatness. Example 2 A hole diameter of 5 is made in an iron plate with a length of 120 mm, a width of 50 mm, and a thickness of 3.2 mm.
mm, round punching with a punching part interval of 3 mm is done in a staggered manner (60 mm).
The electrode substrate was fabricated using the following steps. This electrode base was degreased by trichlene cleaning to give an industrial grade of 35%.
The surface was etched by immersing it in hydrochloric acid for 1 hour.
Next, a 0.5M silver nitrate aqueous solution was applied, dried, and then repeatedly baked at 450°C for 30 minutes to form a 2μ thick intermediate layer, followed by electrodeposition for 12 hours in the same manner as in Example 1. The coating thickness of the obtained lead dioxide electrode is 1.0
mm, and was electrodeposited almost uniformly on the punched and flat parts. Comparative Example 1 In order to understand the effect of the electrode of the present invention, a
Using a titanium plate of 50 mm and 3 mm thickness as a base, pretreatment, intermediate layer coating, and lead dioxide coating were carried out under the same conditions as in Example 1. Gum tape was adhered to the coated surface, pressure was applied with a roll, and then the tape was peeled off. ,
Adhesion was observed. The results are shown in Table 1.

〔効果〕〔effect〕

本発明の被覆型二酸化鉛電極は強度のある打抜
板を基体とし、中間層を介して二酸化鉛を全面に
被覆しており、良好な密着性、強度、寸法安定性
と通電容量の向上がはかられるとともに、製造
上、溶接工程が不要となつた。また、腐食性電解
液にも十分な耐久性が示された。
The coated lead dioxide electrode of the present invention has a strong punched plate as a base, and the entire surface is coated with lead dioxide through an intermediate layer, resulting in good adhesion, strength, dimensional stability, and improved current carrying capacity. This also eliminates the need for welding in manufacturing. It also showed sufficient durability against corrosive electrolytes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、および第3図は本発明の電極の断面
図、第2図は打抜部の端部間隔を示す図である。 1…打抜板、2…中間層、3…二酸化鉛層、4
…打抜部、L1…隣接した打抜部の最短間隔、L2
…打抜部最大径。
1 and 3 are cross-sectional views of the electrode of the present invention, and FIG. 2 is a diagram showing the distance between the ends of the punched parts. 1... Punching board, 2... Intermediate layer, 3... Lead dioxide layer, 4
...Punching part, L 1 ...Minimum distance between adjacent punching parts, L 2
...Maximum diameter of the punched part.

Claims (1)

【特許請求の範囲】[Claims] 1 打抜部最大径および隣接した打抜部の最短間
隔がそれぞれ1.5〜12mmと1.5〜7.0mmの範囲を有
し、かつ板厚が1.0〜7.0mmの範囲から成る打抜板
と、前記打抜板上に被覆された中間層と、前記中
間層上に電着された二酸化鉛とから成り、前記打
抜板の材質が鉄、鉄合金、チタン、またはチタン
合金であり、前記中間層の材質が白金族金属、そ
れらの合金またはそれらの酸化物、銀、二酸化マ
ンガン、酸化コバルト、酸化モリブデンの少なく
とも1種より成ることを特徴とする被覆型二酸化
鉛電極。
1 A punched plate having a maximum diameter of a punched part and a shortest interval between adjacent punched parts in the range of 1.5 to 12 mm and 1.5 to 7.0 mm, respectively, and a plate thickness in the range of 1.0 to 7.0 mm; It consists of an intermediate layer coated on a punched plate and lead dioxide electrodeposited on the intermediate layer, the material of the punched plate is iron, iron alloy, titanium, or titanium alloy, and the intermediate layer is made of iron, iron alloy, titanium, or titanium alloy. A coated lead dioxide electrode characterized in that the material is at least one of platinum group metals, alloys thereof, or oxides thereof, silver, manganese dioxide, cobalt oxide, and molybdenum oxide.
JP60060982A 1985-03-27 1985-03-27 Coating type lead dioxide electrode Granted JPS61221390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060982A JPS61221390A (en) 1985-03-27 1985-03-27 Coating type lead dioxide electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060982A JPS61221390A (en) 1985-03-27 1985-03-27 Coating type lead dioxide electrode

Publications (2)

Publication Number Publication Date
JPS61221390A JPS61221390A (en) 1986-10-01
JPS6331559B2 true JPS6331559B2 (en) 1988-06-24

Family

ID=13158142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060982A Granted JPS61221390A (en) 1985-03-27 1985-03-27 Coating type lead dioxide electrode

Country Status (1)

Country Link
JP (1) JPS61221390A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate

Also Published As

Publication number Publication date
JPS61221390A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
JP4771130B2 (en) Oxygen generating electrode
US4415411A (en) Anode coated with β-lead dioxide and method of producing same
EP0090425B1 (en) Electrolysis electrode and production method thereof
US4203810A (en) Electrolytic process employing electrodes having coatings which comprise platinum
JPS62274087A (en) Durable electrode for electrolysis and its production
US4510034A (en) Coating type insoluble lead dioxide anode
US4162204A (en) Plated metallic cathode
US4051000A (en) Non-contaminating anode suitable for electrowinning applications
US3461058A (en) Method of producing a composite electrode
US5665218A (en) Method of producing an oxygen generating electrode
US3503799A (en) Method of preparing an electrode coated with a platinum metal
US4214954A (en) Plated metallic cathode with porous copper subplating
US3763002A (en) Method of forming protective coatings by electrolysis
JPH0257159B2 (en)
JPS6331559B2 (en)
US4913973A (en) Platinum-containing multilayer anode coating for low pH, high current density electrochemical process anodes
JPH01275797A (en) Lead dioxide electrode for chromium plating
EP0026482A1 (en) A method for producing an insoluble electrode for electroplating
GB1285417A (en) Production of protective coatings on metals by anodic oxidation
US4177129A (en) Plated metallic cathode
JPS5831396B2 (en) Lead dioxide coated anode
JP3537255B2 (en) Electrode for electrolysis
JPS6058312B2 (en) Lead dioxide coated electrode for electrolysis
JPH0885894A (en) Electrode