JPS5831396B2 - Lead dioxide coated anode - Google Patents

Lead dioxide coated anode

Info

Publication number
JPS5831396B2
JPS5831396B2 JP55067869A JP6786980A JPS5831396B2 JP S5831396 B2 JPS5831396 B2 JP S5831396B2 JP 55067869 A JP55067869 A JP 55067869A JP 6786980 A JP6786980 A JP 6786980A JP S5831396 B2 JPS5831396 B2 JP S5831396B2
Authority
JP
Japan
Prior art keywords
titanium
anode
lead dioxide
plate
wire mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55067869A
Other languages
Japanese (ja)
Other versions
JPS56166384A (en
Inventor
英夫 金井
孝広 山崎
玲一 板井
昭弘 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAARITSUTO KK
Original Assignee
NIPPON KAARITSUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAARITSUTO KK filed Critical NIPPON KAARITSUTO KK
Priority to JP55067869A priority Critical patent/JPS5831396B2/en
Publication of JPS56166384A publication Critical patent/JPS56166384A/en
Publication of JPS5831396B2 publication Critical patent/JPS5831396B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、二酸化鉛被覆陽極に関し、とくに、その目的
とするところは機械的強度、寸法安定性のすぐれた二酸
化鉛被覆陽極を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lead dioxide-coated anode, and in particular, its object is to provide a lead dioxide-coated anode with excellent mechanical strength and dimensional stability.

工業電解槽に用いられる陽極としては、その性能、耐久
性と共に陽極形態および機械的強さ、加工性などが十分
満足できるものでなくてはならない。
An anode used in an industrial electrolytic cell must be sufficiently satisfactory in performance, durability, anode form, mechanical strength, workability, etc.

近年、チタンなどの基体上に白金族金属化合物を被覆し
た金属陽極が出現したが、そのすぐれた性能と同時に強
度、寸法安定性のよいという利点の故に、食塩電解工業
その他に著しい進歩をもたらした。
In recent years, metal anodes in which a platinum group metal compound is coated on a substrate such as titanium have appeared, and because of their excellent performance, strength, and dimensional stability, they have brought about significant progress in the salt electrolysis industry and elsewhere. .

一方、従来から認められてきた二酸化鉛陽極は白金につ
ぐ高酸素過電圧をもち、かつ、特異な陽極触媒能を有す
る優れた安価な陽極である。
On the other hand, the conventionally recognized lead dioxide anode is an excellent and inexpensive anode that has a high oxygen overvoltage second only to platinum and has a unique anode catalytic ability.

しかし、本格的な実用に至らないのは、この陽極の機械
的強さと加工性の不足、寸法安定性の欠除などが原因と
なっている。
However, the reason why it has not been put into full-scale practical use is due to the anode's lack of mechanical strength, workability, and dimensional stability.

板状の二酸化鉛の製法としては、従来、硝酸鉛浴などか
ら凹面に陽極電着し、抜き取る方法などがあるが、内部
歪が存在するため脆弱で大型化しにくく、形状も制限さ
れる。
Conventional methods for producing plate-shaped lead dioxide include anodic electrodeposition on a concave surface from a lead nitrate bath and the like, but the presence of internal strain makes it brittle and difficult to increase in size, and the shape is also limited.

そのため、黒鉛、チタン板などに直接二酸化鉛を電着す
る試みがなされているが、クラック、ピンホールの発生
、密着不良などにより剥離、脱落をおこし成功していな
い。
For this reason, attempts have been made to electrodeposit lead dioxide directly onto graphite, titanium plates, etc., but these efforts have not been successful as cracks, pinholes, and poor adhesion cause peeling and falling off.

最近では、チタン金網を芯材として電着する方法がある
Recently, there is a method of electrodepositing titanium wire mesh as a core material.

しかし、網目を埋めて平滑に厚付けし、平板状にするこ
とは困難で、多くは凹凸状となり、また、たわみも生じ
るため寸法安定性に欠け、また、重量も増加するので、
強度的にも大型化は無理である。
However, it is difficult to fill in the mesh and thicken it smoothly to make it into a flat plate, and in many cases it becomes uneven, and it also bends, resulting in a lack of dimensional stability and an increase in weight.
In terms of strength, it is impossible to increase the size.

このように、とくに、寸法安定性、強度、サイズなどの
点で実用陽極として問題が多く、不十分なのが現状であ
る。
As described above, there are many problems as a practical anode, especially in terms of dimensional stability, strength, size, etc., and the current situation is that it is insufficient.

本発明者らは、以上のような欠点を少なくし、いわゆる
金属陽極相当の形状の制約のない、寸法安定性をもった
実用二酸化鉛被覆陽極について種々の検討を加えた結果
、平板状のチタン基板上に、あらかじめ、金網または打
抜き板を密着して溶接し、さらに、その周縁部を押え板
で補強したのち、その上に、酸化防止用の電導性中間層
を設けて電導性基体とし、硝酸鉛などの電着液中で二酸
化鉛を陽極電着することにより平板状で密着性のすぐれ
た寸法安定性のよい二酸化鉛被覆陽極を得ることに成功
したものである。
The present inventors have conducted various studies on a practical lead dioxide-coated anode that reduces the above-mentioned drawbacks and has dimensional stability without the shape restrictions of so-called metal anodes. A wire mesh or a punched plate is tightly welded onto the substrate in advance, and the peripheral edge thereof is further reinforced with a holding plate, and then a conductive intermediate layer for oxidation prevention is provided on top of it to form a conductive base. By anodic electrodeposition of lead dioxide in an electrodeposition solution such as lead nitrate, we succeeded in obtaining a flat lead dioxide-coated anode with excellent adhesion and dimensional stability.

すなわち、本発明は、チタン基板と、前記チタン基板表
面上に溶接されたチタン製金網またはチタン製打抜き板
と、前記チタン製金網またはチタン製打抜き板の周縁部
に取り付けられたチタン製の押え板と、前記チタン基板
および、チタン製金網またはチタン製打抜き板上に被覆
された白金族金属、それらの合金および酸化物の中から
選ばれた少なくとも1種の中間層と、前記中間層上に電
着された二酸化鉛とから成ることを特徴とする二酸化鉛
被覆陽極である。
That is, the present invention provides a titanium substrate, a titanium wire mesh or a titanium punched plate welded onto the surface of the titanium substrate, and a titanium presser plate attached to the peripheral edge of the titanium wire mesh or titanium punched plate. and at least one intermediate layer selected from platinum group metals, alloys and oxides thereof, which are coated on the titanium substrate and the titanium wire mesh or the titanium punched plate, and an electrically conductive layer on the intermediate layer. 1. A lead dioxide coated anode characterized in that it consists of a lead dioxide coated anode.

本発明の陽極は、第1図および第2図に示すようにチタ
ン基板1チタン製金網2またはチタン製打抜き板3押え
板4電導性中間層5二酸化鉛層6から戒っている。
As shown in FIGS. 1 and 2, the anode of the present invention includes a titanium substrate 1 a titanium wire mesh 2 or a titanium punched plate 3 a holding plate 4 a conductive intermediate layer 5 a lead dioxide layer 6.

すなわち、チタン基板1をサンドブラスト、エツチング
などにより表面を荒しておき、これにチタン製金網2ま
たはチタン製打抜き板3を密着させ適当な間隔をもって
溶接する。
That is, the surface of a titanium substrate 1 is roughened by sandblasting, etching, etc., and a titanium wire mesh 2 or a titanium punched plate 3 is closely attached to this and welded at an appropriate interval.

さらに、その周縁部にチタン製押え板4を溶接により取
付ける。
Further, a titanium presser plate 4 is attached to the peripheral edge thereof by welding.

その後、トリクレン洗浄、アルカリ脱脂およびぶつ酸処
理をしたのち、中間層5を介して二酸化鉛層6を陽極電
着により形成させる。
Thereafter, after performing trichlene cleaning, alkaline degreasing, and acid treatment, a lead dioxide layer 6 is formed via an intermediate layer 5 by anodic electrodeposition.

本発明に使用するチタン基板の厚さ、大きさは目的に応
じ任意であり、平板状のほか円筒状など任意の形状のも
のでよい。
The thickness and size of the titanium substrate used in the present invention are arbitrary depending on the purpose, and may be of any shape such as a flat plate or a cylindrical shape.

本発明のチタン製金網または打抜き板は、あらかじめチ
タン基板に密着するように平坦に喬正しておき、部分溶
接たとえば点あるいは線条の溶接が施される。
The titanium wire mesh or punched plate of the present invention is flattened in advance so as to be in close contact with the titanium substrate, and then partially welded, for example, by spot or line welding.

溶接個所の間隔などは材料の大きさ、密着度合などによ
り、粗または密にするが、ピッチは10〜200闘ぐら
いである。
The spacing between the welding points can be coarse or dense depending on the size of the material, the degree of adhesion, etc., and the pitch is about 10 to 200 mm.

チタン製金網は10〜100メツシユの目開きがよく、
線径は0.15〜0.8藺程度のものが好ましい。
Titanium wire mesh has a good opening of 10 to 100 mesh.
The wire diameter is preferably about 0.15 to 0.8 mm.

10メツシユよりも目開きが大きい場合には、陽極表面
の平坦度が不良となり、100メツシユよりも小さいと
二酸化鉛が十分に網目に入り込めなくなり密着力が悪く
なる。
If the opening is larger than 10 meshes, the flatness of the anode surface will be poor, and if it is smaller than 100 meshes, lead dioxide will not be able to enter the meshes sufficiently, resulting in poor adhesion.

また、線径が太すぎると陽極表向に凹凸が生じ好ましく
なく、細すぎると強度が劣る。
Moreover, if the wire diameter is too large, unevenness will occur on the surface of the anode, which is undesirable, and if the wire diameter is too thin, the strength will be poor.

チタン製打抜き板の場合も同様に、穴の大きさは0.5
〜3藺の範囲がよく、板厚さは1 yn、vrJ’J。
Similarly, in the case of a punched titanium plate, the hole size is 0.5
A good range is ~3 mm, and the board thickness is 1 yn, vrJ'J.

下のものが使用されピッチは611JJL以下が好まし
い。
The one below is used and the pitch is preferably 611JJL or less.

本発明の押え板は、金網または打抜き板の周縁部に溶接
によって付けられ、チタン基板と金網または打抜き板を
確実に固定接合させる。
The holding plate of the present invention is attached to the peripheral edge of the wire mesh or punched plate by welding, and securely and firmly connects the titanium substrate and the wire mesh or punched plate.

この結果、二酸化鉛層の強度が増し、かつ、陽極の端効
果に基づく剥離が防止される。
As a result, the strength of the lead dioxide layer is increased, and peeling due to the end effect of the anode is prevented.

押え板の幅は3〜15間が適当で、3闘より狭い場合に
は補強効果が弱くなり、また、押え板の上には二酸化鉛
の被覆を施さないため1511sより広い場合には有効
面が減少し好ましくない。
The appropriate width of the holding plate is between 3 and 15mm; if it is narrower than 3mm, the reinforcing effect will be weak, and since there is no lead dioxide coating on the holding plate, if it is wider than 1511s, it will not be effective. decreases, which is not desirable.

厚さは1〜6カで11より薄い場合には強度が不足し、
6藺より厚い場合には二酸化鉛層が厚くなり、表面のク
ラック、凹凸などを生じやすい。
The thickness is 1 to 6 mm, and if it is thinner than 11, the strength is insufficient,
If it is thicker than 6mm, the lead dioxide layer becomes thicker and tends to cause cracks, unevenness, etc. on the surface.

なお、押え板はチタン基板にタップ穴をあけ、ビスなど
で強固に締めつけてもよ0)。
For the holding plate, tap holes may be made in the titanium substrate and tightened firmly with screws, etc.0).

また、電極サイズが太きいときは、周縁部に限らず、必
要に応じて格子状に取付けてもよい。
Further, when the electrode size is large, the electrodes may be attached not only at the peripheral portion but also in a grid pattern as necessary.

中間層はチタン基板および、金網または打抜き板の表面
の酸化防止のため介在させるが、耐酸化性、電導性の白
金族金属、それらの合金および酸化物の少なくとも1種
より成り、厚みは20g/〆程度にする。
The intermediate layer is interposed to prevent oxidation of the titanium substrate and the surface of the wire mesh or punched plate, and is made of at least one of oxidation-resistant and conductive platinum group metals, their alloys, and oxides, and has a thickness of 20 g/ Bring to a boiling point.

用いる金属としてはPt+ Ir+ R11+Ru、
Pdなどで電気メッキあるいは可溶性の該当金属塩含有
塗、布液から熱分解法によって被覆が施される。
The metals used are Pt+Ir+R11+Ru,
The coating is applied by electroplating with Pd or the like or by pyrolysis using a coating solution containing a soluble metal salt.

本発明の二酸化鉛層は陽極電着によりチタン基板および
、金網または打抜き板の表面に施された中間層上に被覆
されるが、電着液は鉛塩および銅塩とから成り鉛塩とし
ては硝酸塩、スルファミン酸鉛、酢酸鉛などを使用し、
銅塩としては、おもに硝酸銅を用いる。
The lead dioxide layer of the present invention is coated on a titanium substrate and an intermediate layer applied to the surface of a wire mesh or a punched plate by anodic electrodeposition. Using nitrates, lead sulfamate, lead acetate, etc.
As the copper salt, copper nitrate is mainly used.

電着液中の鉛および銅としての濃度はそれぞれ100〜
210g/l、4〜20&/eであり、液温度は60〜
80℃、pHは一酸化鉛、塩基性炭酸鉛などにより3,
5〜4.5に保たれる。
The concentrations of lead and copper in the electrodeposition solution are each 100~
210g/l, 4~20&/e, liquid temperature 60~
80℃, pH 3, due to lead monoxide, basic lead carbonate, etc.
5 to 4.5.

陽極電流密度は1〜5A/diで、陰極としてステンレ
ス鋼板を用いて電解を行なう。
The anode current density is 1 to 5 A/di, and electrolysis is performed using a stainless steel plate as the cathode.

陽極電着はこれらの条件下で行なわれるが、これらの条
件をはずれると島状電着やこぶ状電着となり、また、内
部歪も増大し、被覆にクラック、ピンホールを生じ、電
着物の剥離を起しやすく好ましくない。
Anodic electrodeposition is carried out under these conditions, but if these conditions are deviated from, island-like or nodular electrodeposition will occur, internal strain will also increase, cracks and pinholes will occur in the coating, and the electrodeposition will deteriorate. It is undesirable because it tends to peel off.

二酸化鉛被覆の厚みは押え板とは\゛同じ厚さにするが
、これは電着時間の長短により調整される。
The thickness of the lead dioxide coating is made to be the same as that of the holding plate, but this is adjusted by the length of the electrodeposition time.

このようにして電着は終了するが、凹凸のほとんどない
平坦な被覆が得られる。
In this way, the electrodeposition is completed and a flat coating with almost no irregularities is obtained.

本発明の二酸化鉛被覆陽極は塩素酸塩、過塩素酸塩、過
よう素酸塩の電解製造用の陽極として好適であるほか、
廃液の電解処理、電気メツキ用の陽極として使用するこ
とができる。
The lead dioxide coated anode of the present invention is suitable as an anode for the electrolytic production of chlorate, perchlorate, and periodate, and
It can be used as an anode for electrolytic treatment of waste liquid and electroplating.

本発明の二酸化鉛被覆陽極は、チタン基板と二酸化鉛被
覆層との間に金網または打抜き板を介在させ、さらに、
金網または打抜き板の周縁部を押え板で固定接合するこ
とにより、従来問題のあった平板上への二酸化鉛の強固
な被覆が可能となった。
The lead dioxide-coated anode of the present invention has a wire mesh or a punched plate interposed between the titanium substrate and the lead dioxide coating layer, and further includes:
By fixing and joining the periphery of the wire mesh or punched plate with a presser plate, it has become possible to firmly cover the flat plate with lead dioxide, which was a problem in the past.

この結果、一般の金属電極並みの強度と加工性をもち、
形状の制約もなく、すぐれた寸法安定性をもっている。
As a result, it has strength and workability comparable to ordinary metal electrodes,
It has excellent dimensional stability with no shape restrictions.

従って、極間距離を可及的に狭くすることができ、摺電
圧が低減された。
Therefore, the distance between the electrodes can be made as narrow as possible, and the sliding voltage can be reduced.

そして、長期間にわたり、なんの支障もなく安定した電
解操業が可能となり、工業的価値がきわめて犬である。
Moreover, stable electrolytic operation can be performed without any problems for a long period of time, and the industrial value is extremely high.

つぎに、本発明の態様を実施例で示すが、その主旨はこ
れらの例により何ら制約されるものではない。
Next, aspects of the present invention will be illustrated by examples, but the gist thereof is not limited in any way by these examples.

実施例 1 50X120X3wのチタン基板をサンドブラスト処理
し、この上にチタン製金網を密着させて重ね、ピッチ2
5間で点溶接した。
Example 1 A titanium substrate of 50 x 120 x 3w was sandblasted, a titanium wire mesh was closely stacked on top of it, and the pitch was 2.
Spot welding was carried out in 5 minutes.

この金網の目開きは24メツシユで線径は0.4藺であ
った。
The opening of this wire mesh was 24 meshes, and the wire diameter was 0.4 threads.

金網の周縁部に厚さ2闘、幅5Wljnのチタン製押え
板をのせて、チタン基板、金網、押え板を点溶接により
強固に固定接合し、陽極基体を作製した。
A titanium holding plate having a thickness of 2 cm and a width of 5 Wljn was placed on the peripheral edge of the wire mesh, and the titanium substrate, the wire mesh, and the holding plate were firmly fixedly joined by spot welding to produce an anode substrate.

この電極基体をトリクレンで洗浄したのち、約80℃の
水酸化すI−IJウム溶液中に2.5時間浸漬し脱脂を
行なった。
After washing this electrode substrate with trichlene, it was immersed in a solution of I-IJ hydroxide at about 80° C. for 2.5 hours to degrease it.

つぎに5%ぶつ酸溶液中に浸漬し表面処理をしたのち、
公知の方法で白金めつきし15jj/rrtの白金から
なる中間層を形成させた。
Next, after surface treatment by immersion in a 5% butic acid solution,
Platinum plating was performed by a known method to form an intermediate layer made of platinum of 15 jj/rrt.

この基体を陽極とし、ステンレス鋼板を陽極として硝酸
鉛と硝酸銅とからなる電着液中で20時間陽陽極蓋し、
2闘厚の二酸化鉛の被覆を得た。
This substrate was used as an anode, a stainless steel plate was used as an anode, and the anode was placed in an electrodeposition solution consisting of lead nitrate and copper nitrate for 20 hours.
A lead dioxide coating with a thickness of 2 mm was obtained.

このときの鉛および銅イオンの濃度は190および89
/lであり、陽極電流密度は2.5A/d5平均温度は
60℃、液性は一酸化鉛によりpH4,2程度に保った
The concentrations of lead and copper ions at this time were 190 and 89
/l, the anode current density was 2.5 A/d5, the average temperature was 60° C., and the pH was maintained at about 4.2 with lead monoxide.

この操作により二酸化鉛被覆は押え板とはぐ同じ高さと
なり、表面は突起物もなく平坦度もすぐれていた。
Through this operation, the lead dioxide coating was brought to the same height as the holding plate, and the surface had no protrusions and had excellent flatness.

実施例 2 40X200X5ygのチタン基体を熱しゆう酸溶液中
に1晩浸漬し、梨子地処理を行ない乾燥後、この上にチ
タン製打抜き板を密着させて重ね、ピンチ20闘で点溶
接した。
Example 2 A titanium substrate measuring 40 x 200 x 5 yg was immersed overnight in a hot oxalic acid solution, treated with a satin finish, dried, and then a titanium punched plate was tightly stacked thereon and spot welded with 20 pinches.

この打抜き板は直径2藺の円が3.2闘ピツチで打抜か
れ板厚は0.8.であった。
This punched board has 2 circles in diameter punched out at 3.2 pitches and has a thickness of 0.8mm. Met.

打抜き板の周縁部に厚さ3Tul、幅8闇のチタン製押
え板をのせて、チタン基板、打抜き板、押え板を点溶接
により強固に固定接合し、電極基体を作製した。
A titanium press plate with a thickness of 3 Tul and a width of 8 mm was placed on the peripheral edge of the punched plate, and the titanium substrate, the punched plate, and the press plate were firmly fixedly joined by spot welding to produce an electrode base.

この基体をトリクレン洗浄、アルカリ脱脂を行なったの
ち、熱分解法により白金イリジウム合金からなる2 0
ji / m″の中間層を形成させた。
After washing this base with trichlene and degreasing it with alkaline, it was thermally decomposed into a 20% platinum-iridium alloy.
An intermediate layer of ji/m'' was formed.

この基体を陽極とし、ステンレス鋼板を陰極とし実施例
1と同じ電着条件で30時間電着した。
Electrodeposition was carried out for 30 hours under the same electrodeposition conditions as in Example 1, using this substrate as an anode and a stainless steel plate as a cathode.

この結果、二酸化被覆層は押え板とほぼ同じ高さとなり
、表面は突起物もなく平坦度もすぐれていた。
As a result, the dioxide coating layer had almost the same height as the presser plate, and the surface had no protrusions and had excellent flatness.

比較例 1 本発明の陽極の効果を知るため、50X120×3間の
チタン板を基体とし、実施例1と同じ条件でサンドブラ
スト処理、アルカリ脱脂、表面処理白金めつきによる中
間層被覆、二酸化鉛被覆処理を行ない二酸化鉛被覆陽極
を作製した。
Comparative Example 1 In order to understand the effect of the anode of the present invention, a titanium plate of 50 x 120 x 3 was used as a substrate and subjected to sandblasting treatment, alkaline degreasing, surface treatment with platinum plating, intermediate layer coating, and lead dioxide coating under the same conditions as Example 1. A lead dioxide coated anode was fabricated by processing.

この陽極と実施例1で作製した陽極の表向状態を観察し
、直径28藺の鋼球(約80g)を1得上部から数回陽
極同へ落下させ、二酸化鉛被覆層の状態を観察し密着性
と耐衝撃性を比較し第1表を得た。
The surface state of this anode and the anode prepared in Example 1 was observed, and a steel ball (approximately 80 g) with a diameter of 28 mm was dropped from above onto the anode several times to observe the state of the lead dioxide coating layer. Table 1 was obtained by comparing the adhesion and impact resistance.

実施例 3 実施例1で製作した陽極とステンレス鋼板製陰極とを使
用し、つぎに示した電解条件で過塩素酸塩の電解製造を
行なった。
Example 3 Using the anode produced in Example 1 and the stainless steel plate cathode, perchlorate was electrolytically produced under the following electrolytic conditions.

電解条件 陽 極・・・・・・実施例1で製作した陽極、1枚陰
極・・・・・・ステンレス鋼板、50×130×3
WIjIl、2枚 電解液=−Naclo3450 g/13. NaF
1.5g/l 極間距離・・・511jrL 従来の二酸化鉛電極においては15〜30□の極間が必
要であったが、本陽極では51rIJlで摺電圧は0.
2〜0.5V低減し、平均電流効率88%において所要
電力は5〜10%節約された。
Electrolysis conditions Anode: Anode manufactured in Example 1, 1 piece Cathode: Stainless steel plate, 50 x 130 x 3
WIjIl, 2-plate electrolyte=-Nacro3450 g/13. NaF
1.5g/l Distance between electrodes...511jrL Conventional lead dioxide electrodes required a distance of 15 to 30□, but this anode has a sliding voltage of 51rIJl and a sliding voltage of 0.
The power required was saved by 5-10% with a reduction of 2-0.5V and an average current efficiency of 88%.

本陽極は1年以上の長期にわたり、安定な操業を続け、
この間形状の変化、剥離もなく、表面の変化も見られな
かった。
This anode has continued stable operation for over a year,
During this time, there was no change in shape or peeling, and no change in the surface was observed.

実施例 4 実施例2で製作した陽極と軟鋼陰極を使用し、つぎに示
した電解条件で過ヨウ素酸塩の電解製造を回分式で行な
った。
Example 4 Using the anode and mild steel cathode produced in Example 2, periodate was electrolytically produced in a batch manner under the following electrolytic conditions.

電解条件 陽 極・・・・・・実施例2で製作した陽極陰 極・・
・・・・軟鋼、50X220X3w、2枚電解液・・・
・・・スタート時 ヨウ素酸100 g/l過ヨウ素酸
2〜3め4 終了時 ヨウ素酸10 j!/1 過ヨウ素酸90 Vll 槽温度・・・・・・40〜50°C 電解時間・・・・・・約10時間 かく膜・・・・・・磁製板 この操作により70〜78%の電流効率で過ヨウ素酸塩
が得られた。
Electrolysis conditions Anode... Anode cathode manufactured in Example 2...
...Mild steel, 50X220X3W, 2-plate electrolyte...
...At the start Iodic acid 100 g/l Periodic acid 2nd to 3rd time4 At the end Iodic acid 10 j! /1 Periodic acid 90 Vll Tank temperature: 40 to 50°C Electrolysis time: Approximately 10 hours Coating: 70 to 78% of the porcelain plate Periodate was obtained with current efficiency.

従来は、鉛板を陽極として使用していたため、電極寿命
は4〜6ケ月であったが、本陽極は1年以上にわたり使
用可能であった。
Conventionally, a lead plate was used as an anode, so the electrode life was 4 to 6 months, but the present anode could be used for more than one year.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の陽極の縦断面図である。 1・・・・・・チタン基板、2・・・・・・金網、3・
・・・・・打抜き板、4・・・・・・押え板、5・・・
・・・中間層、6・・・・・・二酸化鉛層。
1 and 2 are longitudinal sectional views of the anode of the present invention. 1...Titanium substrate, 2...Wire mesh, 3.
...Punching board, 4...Press plate, 5...
...Middle layer, 6... Lead dioxide layer.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン基板と:前記チタン基板表面上に溶接された
チタン製金網またはチタン製打抜き板と:前記チタン製
金網またはチタン製打抜き板の周縁部に取り付けられた
チタン製の押え板と:前記チタン基板および、チタン製
金網またはチタン製打抜き板上に被覆された白金族金属
、それらの合金および酸化物の中から選ばれた少なくと
も1種の中間層と:前記中間層上に電着された二酸化鉛
とから成ることを特徴とする二酸化鉛被覆陽極。
1. A titanium substrate: A titanium wire mesh or a titanium punched plate welded onto the surface of the titanium substrate, and a titanium presser plate attached to the peripheral edge of the titanium wire mesh or titanium punched plate: The titanium substrate and at least one intermediate layer selected from platinum group metals, alloys and oxides thereof, coated on a titanium wire mesh or a titanium punched plate: lead dioxide electrodeposited on the intermediate layer. A lead dioxide coated anode characterized by comprising:
JP55067869A 1980-05-23 1980-05-23 Lead dioxide coated anode Expired JPS5831396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55067869A JPS5831396B2 (en) 1980-05-23 1980-05-23 Lead dioxide coated anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55067869A JPS5831396B2 (en) 1980-05-23 1980-05-23 Lead dioxide coated anode

Publications (2)

Publication Number Publication Date
JPS56166384A JPS56166384A (en) 1981-12-21
JPS5831396B2 true JPS5831396B2 (en) 1983-07-05

Family

ID=13357356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55067869A Expired JPS5831396B2 (en) 1980-05-23 1980-05-23 Lead dioxide coated anode

Country Status (1)

Country Link
JP (1) JPS5831396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312491A (en) * 1987-06-16 1988-12-20 積水化学工業株式会社 Sound-insulating structure of window

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691967C1 (en) * 2019-02-18 2019-06-19 Дмитрий Юрьевич Тураев Method of making an electrode from reinforced lead dioxide
WO2023188704A1 (en) * 2022-03-29 2023-10-05 パナソニックIpマネジメント株式会社 Electrolysis electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312491A (en) * 1987-06-16 1988-12-20 積水化学工業株式会社 Sound-insulating structure of window

Also Published As

Publication number Publication date
JPS56166384A (en) 1981-12-21

Similar Documents

Publication Publication Date Title
JPS5830957B2 (en) Lead dioxide coated electrode
JP4771130B2 (en) Oxygen generating electrode
US5098546A (en) Oxygen-generating electrode
US4789437A (en) Pulse electroplating process
JP5686456B2 (en) Method for producing oxygen generating anode
JPS62274087A (en) Durable electrode for electrolysis and its production
JP2004238697A (en) Electrode for oxygen generation
EP0493326B1 (en) Substrate of improved melt sprayed surface morphology
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
US4925538A (en) Method of electrolytic treatment of metals
JPH0575840B2 (en)
JP2768904B2 (en) Oxygen generating electrode
JPS5831396B2 (en) Lead dioxide coated anode
US5665218A (en) Method of producing an oxygen generating electrode
JP2885913B2 (en) Anode for chromium plating and method for producing the same
JPH07331494A (en) Oxygen generating electrode and its production
JPH02294494A (en) Anode for generating oxygen
JPH01275797A (en) Lead dioxide electrode for chromium plating
EP0026482A1 (en) A method for producing an insoluble electrode for electroplating
JPS6058312B2 (en) Lead dioxide coated electrode for electrolysis
JPS6331559B2 (en)
JP2529557B2 (en) Lead alloy insoluble anode
JPH01100291A (en) Chromium plating method
JP3537255B2 (en) Electrode for electrolysis
JP3062062B2 (en) Electrode for electrolysis and method for producing the same