JPH01275797A - Lead dioxide electrode for chromium plating - Google Patents

Lead dioxide electrode for chromium plating

Info

Publication number
JPH01275797A
JPH01275797A JP63104183A JP10418388A JPH01275797A JP H01275797 A JPH01275797 A JP H01275797A JP 63104183 A JP63104183 A JP 63104183A JP 10418388 A JP10418388 A JP 10418388A JP H01275797 A JPH01275797 A JP H01275797A
Authority
JP
Japan
Prior art keywords
layer
intermediate layer
electrode
lead dioxide
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63104183A
Other languages
Japanese (ja)
Other versions
JPH031400B2 (en
Inventor
Kaoru Hirakata
平形 薫
Shinichi Shimoda
慎一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP63104183A priority Critical patent/JPH01275797A/en
Publication of JPH01275797A publication Critical patent/JPH01275797A/en
Publication of JPH031400B2 publication Critical patent/JPH031400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Abstract

PURPOSE:To produce an anode for Cr plating having superior durability at a low cost by successively coating the surface of an Fe-based metal substrate with a layer of the oxide of a valve metal, a layer of a Pt family metal or the oxide thereof and a PbO2 layer. CONSTITUTION:Tetrabutyl titanate is dissolved in butanol to prepare a soln. contg. about 10% TiO2 and this soln. is applied to the surface of an expanded plate obtd. by expanding a rolled steel plate as stock. The applied soln. is dried with warm air and heated to 500 deg.C in the air to form a layer of TiO2 as the oxide of a valve metal as a first intermediate layer. Isopropanol contg. chloroplatinic acid or chloroiridic acid is then applied, dried with warm air and heated to 500 deg.C in the air to form a layer of Pt or Ir as a Pt family metal or the oxide thereof as a second intermediate layer and a PbO2 layer is further formed. An electrode having superior durability as an anode for Cr electroplating is produced at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、クロム酸の電解製造、有機電解、廃液の電解
処理、電気メツキ等に用いる電極に関し、特に、クロム
メッキにおけるケイ7フ化浴用陽極に関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to electrodes used in electrolytic production of chromic acid, organic electrolysis, electrolytic treatment of waste liquids, electroplating, etc., and in particular, electrodes used in silica baths for chromium plating. It concerns the anode.

(従来の技術) 従来、クロムメッキ、硫酸塩溶液からの金属の電解精錬
等には二酸化鉛電極が広く用いられている。この二酸化
鉛電極にはいくつかの種類があり、一つは数%の錫、銀
、アンチモン等を含有した鉛合金電極を用い、酸性溶液
中で陽極酸化することにより電極表面上に生成する耐食
性、導電性の二酸化鉛を電極活性物質として利用するも
のであり、一つは鉛イオンを含有する硝酸溶液、過塩素
酸溶液あるいはアルカリ性溶液中でチタン、グラファイ
ト、鉄、ニッケル等の導電性基体を陽極として電解する
ことにより該基体上に二酸化鉛を電着した被覆二酸化鉛
電極であり、もう一つは前記被覆二酸化鉛電極と同様な
方法で電着を艮時間行ない、得られた分厚い二酸化鉛層
から基体を引きはがし、該二酸化鉛層を板状等に切削加
工した塊状二酸化鉛電極である。
(Prior Art) Lead dioxide electrodes have been widely used in chromium plating, electrolytic refining of metals from sulfate solutions, and the like. There are several types of lead dioxide electrodes. One type uses a lead alloy electrode containing several percent of tin, silver, antimony, etc., and is corrosion-resistant, which is produced on the electrode surface by anodic oxidation in an acidic solution. , conductive lead dioxide is used as an electrode active material, and one method is to use a conductive substrate such as titanium, graphite, iron, or nickel in a nitric acid solution, perchloric acid solution, or alkaline solution containing lead ions. One is a coated lead dioxide electrode in which lead dioxide is electrodeposited on the substrate by electrolysis as an anode, and the other is a thick lead dioxide electrode obtained by electrodepositing for a long time in the same manner as the coated lead dioxide electrode. This is a block lead dioxide electrode obtained by peeling off the base from the layer and cutting the lead dioxide layer into a plate shape or the like.

これらの電極はいずれも白金に近い高酸素過電圧特性を
示し、また、クロム酸、過ヨウ素酸の電解製造、有機電
解など、池の電極では成し得ない特異な触媒的作用を有
する工業的に重要な酸素発生用電極である。
All of these electrodes exhibit high oxygen overvoltage characteristics similar to those of platinum, and are also useful in industrial applications such as electrolytic production of chromic acid and periodic acid, and organic electrolysis, which have unique catalytic effects that cannot be achieved with pond electrodes. It is an important electrode for oxygen generation.

しかし、塊状二酸化鉛電極は硬いが脆(、大型にするの
が困難であり、二酸化鉛自体が接触抵抗ら高く、金属並
の良導電性を示さないため大電流を通ずることができず
、現状では工業的に用いられることは殆どない。また、
鉛合金電極は表面の二酸化鉛層が剥離しやすく、電解消
耗量が多いため、不溶性電極とは言いがたく、クロム酸
鉛や硫酸鉛のスラッジが浴中に多量に生成するため、ろ
過器等の設置が必要となるばかりでな(、クロムメッキ
や亜鉛の電解精錬の場合には製品中へ鉛が混入して品質
の低下を来たしていた。被覆二酸化鉛電極は前記鉛合金
電極に比べ電解消耗量が格段に少なく、また、良導電性
の基体を用いることができるため高電流密度電解を行な
い得る電極である。
However, lumpy lead dioxide electrodes are hard but brittle (and difficult to make large), and lead dioxide itself has high contact resistance and does not exhibit as good conductivity as metals, so it cannot pass large currents. It is rarely used industrially.Also,
Lead alloy electrodes are difficult to call insoluble electrodes because the lead dioxide layer on the surface easily peels off and there is a large amount of electrolytic consumption, and a large amount of lead chromate and lead sulfate sludge is generated in the bath, so filters, etc. (In the case of electrolytic refining of chrome plating and zinc, lead gets mixed into the product, causing a decline in quality.) Coated lead dioxide electrodes have a higher electrolytic refining capacity than lead alloy electrodes. It is an electrode that can carry out high current density electrolysis because the amount of consumption is extremely small and a substrate with good conductivity can be used.

この被覆二酸化鉛電極の具体的な製造法は、特公昭58
−31396号公報に見られる様にチタン等のバルブ金
属基体上に白金、イリジウム等の白金族金属およびそれ
らの酸化物を含む電気化学的に活性な被覆を熱分解法に
より施し、さらにその上に硝酸鉛浴から二酸化鉛を陽極
電着したちのであり、チタン基板と二酸化鉛被覆層との
間に金網を介在させたことにより二酸化鉛の密着力が向
上し、一般の金属電極並の強度を有するものであるが、
電極の製造工程が繁雑で工数を要し、基体にチタンを使
用するため高価となる欠点があった。
The specific manufacturing method of this coated lead dioxide electrode is
As seen in Publication No. 31396, an electrochemically active coating containing platinum group metals such as platinum, iridium, and their oxides is applied on a valve metal substrate such as titanium by a pyrolysis method, and then Lead dioxide is anodically electrodeposited from a lead nitrate bath, and by interposing a wire mesh between the titanium substrate and the lead dioxide coating layer, the adhesion of the lead dioxide is improved, making it as strong as ordinary metal electrodes. Although it has
The manufacturing process of the electrode is complicated and requires many man-hours, and the use of titanium for the substrate has the disadvantage of being expensive.

また特開昭61−221390号公報に記載の被覆二酸
化鉛電極は、上記基体の経済性を考慮して打ち抜き板を
用いて製造工程の簡略化を図っているが、やはりチタン
を使用する場合には未だ不十分であり、また安価な鉄、
鉄合金を使用する例も示されているが、中間層被覆の熱
分解の段階で発生する塩酸ガスにより基体が腐食され中
間層の密着性が不完全となり、二酸化鉛層電着時に基体
が陽極溶解して電着出来ない場合があった。
Furthermore, the coated lead dioxide electrode described in JP-A No. 61-221390 uses a punched plate to simplify the manufacturing process in consideration of the economical efficiency of the substrate. However, when titanium is used, is still insufficient, and cheap iron,
An example of using an iron alloy has been shown, but the substrate is corroded by the hydrochloric acid gas generated during the thermal decomposition stage of the intermediate layer coating, resulting in incomplete adhesion of the intermediate layer, and the substrate becomes an anode when the lead dioxide layer is electrodeposited. There were cases where it dissolved and could not be electrodeposited.

(発明の目的) 本発明の目的は、安価な鉄、鉄合金を電極基体として使
用し、チタン基体を用いた場合と同様な耐久性を示す被
覆二酸化鉛電極を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a coated lead dioxide electrode that uses inexpensive iron or iron alloy as an electrode substrate and exhibits durability similar to that of a titanium substrate.

(問題点を解決するための手段) 本発明者等は、クロムメッキにおいて鉄電極が用いられ
ていた事実に着目し、鉄、鉄合金に二酸化鉛を電着した
電極を用いてクロムメッキを行なったところ、電極基体
表面を完全に被覆した耐食性、導電性の中間層を設ける
ことによりチタン並の耐久性を示す安価な被覆二酸化鉛
電極を見い出し本発明を完成するに至ったものである。
(Means for Solving the Problems) The present inventors focused on the fact that iron electrodes were used in chromium plating, and performed chromium plating using electrodes in which lead dioxide was electrodeposited on iron or iron alloys. As a result, they discovered an inexpensive coated lead dioxide electrode that exhibits durability comparable to titanium by providing a corrosion-resistant, conductive intermediate layer that completely covers the surface of the electrode base, and completed the present invention.

即ち、本発明は鉄または鉄合金からなる基体と;前記基
体上に熱分解法により被覆されたバルブ金属酸化物から
なる第1中間層と;前記第1中間層上に熱分解法により
被覆された白金族金属、それらの合金またはそれらの酸
化物からなる第2中間層と;前記第2中間層上に電着さ
れた二酸化鉛とからなるクロムメッキ用二酸化鉛電極で
ある6以下、本発明の詳細な説明する。
That is, the present invention provides a substrate made of iron or an iron alloy; a first intermediate layer made of a valve metal oxide coated on the substrate by a pyrolysis method; and a first intermediate layer made of a valve metal oxide coated on the first intermediate layer by a pyrolysis method. a second intermediate layer made of a platinum group metal, an alloy thereof, or an oxide thereof; and lead dioxide electrodeposited on the second intermediate layer; Detailed explanation of.

本発明において、電極基体に用いる鉄の材質は特に限定
されず市販の一般構造用圧延材、冷開圧延材、熱間圧延
材等が使用される。また、鉄合金も市販の5O3304
等のステンレススチールを用いることができる。更に、
これらの金属を雰囲気炉に入れ表面を窒化、炭化処理し
たものを電極基体とすることができる。電極基体の形状
は鉄、鉄合金の薄板をエキスバンド状に加工したものを
用いるのが好適で、棒状体が所望される場合にはエキス
バンドを筒状に加工する。板状、有孔板は二酸化鉛が大
きな電着歪みを有し、また、基体との熱膨張率に大きな
開きがあるため電解時に発生するジュール熱により二酸
化鉛層にクラックが発生し剥離を起こし、電極寿命が短
くなるため好ましくない。
In the present invention, the material of the iron used for the electrode substrate is not particularly limited, and commercially available general structural rolled materials, cold-open rolled materials, hot rolled materials, etc. are used. In addition, the iron alloy is commercially available 5O3304
Stainless steel such as can be used. Furthermore,
These metals can be placed in an atmospheric furnace and subjected to nitriding and carbonization treatment on the surface, which can be used as an electrode substrate. As for the shape of the electrode base, it is preferable to use a thin plate of iron or iron alloy processed into an expanded shape, and if a rod-like body is desired, the expanded band is processed into a cylindrical shape. In plate-shaped and perforated plates, lead dioxide has a large electrodeposited strain, and because there is a large difference in thermal expansion coefficient with the substrate, cracks occur in the lead dioxide layer due to the Joule heat generated during electrolysis, causing peeling. , which is not preferable because the electrode life is shortened.

この電極基体上に中間層を施す前に、電極基体の表面を
粗面化することが重要であり、これは二酸化鉛層の密着
性を高めるために行なうもので、粗面化は電極基体をサ
ンドブラスト処理し、次いでトリクレンなどの有機溶剤
、または熱アルカリにより脱脂し、その後硝酸〜メタノ
ール、硝酸〜アミルアルコール、硝酸〜塩酸〜メタノー
ル等の鉱酸〜アルコール系のエツチング剤で行なうのが
好ましい。塩酸、硫酸等の単一酸溶液では電極基体が鏡
面状に均一に溶解し粗度が十分でなくなり、電解中、二
酸化鉛層が剥離しやすくなる。また、水洗は手早く行な
い、アセトン等で水分を流し去った後温風で乾燥する。
Before applying the intermediate layer on this electrode substrate, it is important to roughen the surface of the electrode substrate. This is done to improve the adhesion of the lead dioxide layer. It is preferable to perform sandblasting, then degrease with an organic solvent such as trichlene or a hot alkali, and then perform etching with a mineral acid-alcohol based etching agent such as nitric acid-methanol, nitric acid-amyl alcohol, nitric acid-hydrochloric acid-methanol. In a single acid solution such as hydrochloric acid or sulfuric acid, the electrode substrate is uniformly dissolved into a mirror-like surface, resulting in insufficient roughness, and the lead dioxide layer tends to peel off during electrolysis. Also, wash quickly with water, remove moisture with acetone, etc., and then dry with warm air.

第1中間層は電極基体表面の酸化防止のため介在させる
が電極基体表面を完全に覆い尽くすことが重要である。
The first intermediate layer is provided to prevent oxidation of the electrode substrate surface, but it is important that it completely cover the electrode substrate surface.

本発明における第1中間層としては、二酸化チタン、二
酸化ジルコニウムなどの耐食性に優れたバルブ金属酸化
物が用いられ、被覆の形成方法は粗面化した電極基体に
チタン酸テトラブチルなどのバルブ金属のアルフキシト
をアルコール、酢酸エチル等で希釈した溶液を塗布し、
乾燥した後空気中で450〜600℃、10〜60分間
加熱する熱分解法により行なう。バルブ金属のアルフキ
シトは加水分解反応が早いので塗布〜乾燥工程は素早く
行なう必要がある。上記の熱分解を繰り返し行ない、被
覆の厚さをバルブ金属として約5g/m2以上にするこ
とにより電極基体表面を完全に覆い尽くすことができる
As the first intermediate layer in the present invention, a valve metal oxide with excellent corrosion resistance, such as titanium dioxide or zirconium dioxide, is used. Apply a solution diluted with alcohol, ethyl acetate, etc.
After drying, the pyrolysis method is performed by heating in air at 450 to 600°C for 10 to 60 minutes. Since the valve metal Alfuxite undergoes a rapid hydrolysis reaction, the coating to drying process must be carried out quickly. By repeating the above thermal decomposition and increasing the thickness of the coating to about 5 g/m@2 or more in terms of valve metal, the surface of the electrode substrate can be completely covered.

第2中間層は絶縁性の第1中間層上に導電性を付与する
ために被覆されるが、耐酸化性、導電性の白金、イリジ
ウム、ロジウム等の白金族金属、それらの合金または酸
化物、あるいはこれに酸化タンタル、酸化ニオブ、酸化
スズ、酸化フパルト、酸化ビスマス等を混ぜたものを使
用する。これらの電極活性物質は硫酸塩溶液中で良好な
耐食性を示す公知の酸素発生用電極の表面に用いられる
ものである。被覆は、第1中間層と同様に、白金族塗布
液をへヶ等により第1中間層上に塗布し、乾燥後、電気
炉を用い大気雰囲気下で加熱する熱分解法により形成す
る。加熱温度は450〜600°C1焼成時間は1時間
程度が通常であり、第1中間層へ白金等が熱拡散するこ
とにより絶縁性の第1中間層は導電化される。また、第
2中間層は第1中間層の封孔処理も兼ねており、被覆量
は厚い程電極基体の酸化防止に役立つが高価な貴金属等
を用いるため金属として10〜30g/w2が実用的で
ある。
The second intermediate layer is coated on the insulating first intermediate layer to impart conductivity, and is made of oxidation-resistant and conductive platinum group metals such as platinum, iridium, and rhodium, alloys or oxides thereof. Or use a mixture of tantalum oxide, niobium oxide, tin oxide, fupart oxide, bismuth oxide, etc. These electrode active materials are those used on the surface of known oxygen generating electrodes that exhibit good corrosion resistance in sulfate solutions. Similar to the first intermediate layer, the coating is formed by a pyrolysis method in which a platinum group coating liquid is applied onto the first intermediate layer using a spatula, dried, and then heated in an electric furnace under atmospheric conditions. The heating temperature is usually 450 to 600°C and the firing time is about 1 hour, and the insulating first intermediate layer is made conductive by thermally diffusing platinum or the like into the first intermediate layer. In addition, the second intermediate layer also serves as a sealing treatment for the first intermediate layer, and the thicker the coating amount, the more useful it is in preventing oxidation of the electrode substrate, but since expensive noble metals are used, a practical amount of 10 to 30 g/w2 of the metal is used. It is.

前記特開昭61−221390号公報によれば鉄、鉄合
金を用いる場合は、白金族金属の塩化物含有塗布液を熱
分解する過程で塩酸が生成するため基体が腐食し、中間
層の密着性が不足して二酸化鉛の電着が良好で無くなる
ので硫酸塩、硝酸塩または有機金属塩を含有する塗布液
を用いるが、一般に白金族金属の塩類の中でも塩化物が
最も安価であり、本発明は前記塩化物を使用可能にし、
絶縁性の第1中間層を保護する第2中間層を設け、二層
からなる中間層の構成としたため鉄、鉄合金という新た
な知見に基づくものである。
According to JP-A No. 61-221390, when iron or iron alloys are used, hydrochloric acid is produced in the process of thermally decomposing a platinum group metal chloride-containing coating solution, which corrodes the substrate and reduces the adhesion of the intermediate layer. Coating liquids containing sulfates, nitrates, or organic metal salts are used because the electrodeposition of lead dioxide is poor and the electrodeposition of lead dioxide is insufficient, but chlorides are generally the cheapest among the platinum group metal salts, and the present invention makes the chloride usable;
A second intermediate layer that protects the first insulating intermediate layer is provided, resulting in a two-layer intermediate layer configuration, which is based on the new knowledge of iron and iron alloys.

本発明の二酸化鉛層は陽極電着により、前記二層からな
る中間層上に全面被覆されるが、電着液は公知のものが
用いられ、鉛塩および銅塩とから成り、鉛塩としては硝
酸鉛、スル77ミン酸鉛、酢酸鉛などを使用し、銅塩と
しては主に硝酸銅を用いる。電着液中の鉛および銅とし
ての濃度はそれぞれ100〜210g/N、4〜20g
/lであり、浴温度は60〜80°C,pHは3.5〜
4.5に保たれる。陽極電流密度は1〜5A/dm2で
陰極はステンレス鋼板を用いて電着を行なう。この間、
液性をpH3,5〜4.5に保つために一酸化鉛、炭酸
鉛、水酸化鉛などを加えて調節する。これらの条件から
ずれると島状電着物やこぶ状電着物が生じ易くなり電着
歪みも増大し、電解中、二酸化鉛層にクラックが発生し
剥離しやすくなるので好ましくない。
The lead dioxide layer of the present invention is entirely coated on the intermediate layer consisting of the two layers by anodic electrodeposition, and the electrodeposition solution used is a known one, consisting of a lead salt and a copper salt. Lead nitrate, lead sulfate, lead acetate, etc. are used, and copper nitrate is mainly used as the copper salt. The concentrations of lead and copper in the electrodeposition solution are 100 to 210 g/N and 4 to 20 g, respectively.
/l, the bath temperature is 60-80°C, and the pH is 3.5-80°C.
4.5. The anode current density is 1 to 5 A/dm2, and the cathode is a stainless steel plate for electrodeposition. During this time,
To maintain the pH of the liquid at 3.5 to 4.5, adjust by adding lead monoxide, lead carbonate, lead hydroxide, etc. Deviation from these conditions is undesirable because island-like electrodeposit or nodular electrodeposit is likely to occur, electrodeposition distortion increases, and the lead dioxide layer is prone to cracking and peeling during electrolysis.

二酸化鉛の被覆厚みは必要に応じて0.4〜2゜0II
11とするが、これは電着時間の長短により調整以下、
実施例によって本発明をさらに具体的に説明するが、本
発明はこれらの例によって同等限定されるものではない
The coating thickness of lead dioxide is 0.4~2゜0II as required.
11, but this may be adjusted depending on the length of electrodeposition time.
The present invention will be explained in more detail with reference to examples, but the present invention is not limited to the same extent by these examples.

実施例1 市販の一般構造用圧延板(JIS  5S41)を素材
としたエキスバンド板(JIS 5X33”12.OX
”30.5X”3.OX”2.3+IIn+)を用い、
wlloX ’600mmの平板状に加工した電極基体
をパリ取りし、アルミナサンドブラスト処理した後、ト
リクレンで蒸気脱脂し、ついで、2%硝酸〜メタノール
溶液に2時間浸漬して表面をエツチングした。
Example 1 Extended plate (JIS 5X33”12.OX) made from a commercially available general structural rolled plate (JIS 5S41)
"30.5X"3. OX”2.3+IIn+),
An electrode substrate processed into a flat plate shape of wlloX' 600 mm was deburred, subjected to alumina sandblasting treatment, vapor degreased with trichlene, and then immersed in a 2% nitric acid-methanol solution for 2 hours to etch the surface.

この電極基体を水洗後、アセトンで水分を除去し、ドラ
イヤーで手早く乾燥した。
After washing this electrode substrate with water, water was removed with acetone and quickly dried with a hair dryer.

別途調整したチタン酸テトラブチル(グイマー)のブタ
/−ル溶液(二酸化チタンとして10%溶液)を上記電
極基体上にハケ塗りし、温風で乾燥後、火気中、電気炉
内で500°C135分間の加熱処理を3回繰り返し、
二酸化チタンとして7゜5g/m2の被覆厚みを有する
第1中間層を被覆した。
A separately prepared butyl solution of tetrabutyl titanate (Gwimar) (10% titanium dioxide solution) was applied with a brush onto the above electrode substrate, dried with warm air, and then placed in an electric furnace at 500°C for 135 minutes. Repeat the heat treatment three times,
A first intermediate layer was coated with a coating thickness of 7.5 g/m2 of titanium dioxide.

次に、塩化白金酸3部、塩化イリジウム酸1部、残部イ
ソプロピルアルコールからなる塗布液を第1中間層上に
ハケ塗りし、大気雰囲気中、電気炉内で500℃、1時
間の焼成処理を2回繰り返して金属として121(7m
2の被覆厚みを有する第2中間層を形成した。
Next, a coating solution consisting of 3 parts of chloroplatinic acid, 1 part of chloroiridic acid, and the balance of isopropyl alcohol was applied with a brush onto the first intermediate layer, and baked at 500°C for 1 hour in an electric furnace in an air atmosphere. Repeat twice to make 121 (7 m) of metal.
A second intermediate layer was formed having a coating thickness of 2.

更に、上記2層の中間層を施した電極基体を陽極とし、
ステンレス鋼板を陰極として、硝酸鉛250g/l、硝
酸銅25g/lからなる電着液中で陽極電流密度2.5
A/dm2、浴温60°C5pH4,0の条件下(−酸
化鉛を適宜添加してpHを調節)で16時間電着して被
覆厚み1.OIの二酸化鉛電極を製作した。被覆はエキ
スバンドを芯として網目状に均一に電着されておりクラ
ックはなかった。
Furthermore, the electrode base provided with the above two intermediate layers is used as an anode,
Using a stainless steel plate as a cathode, the anode current density was 2.5 in an electrodeposition solution consisting of 250 g/l of lead nitrate and 25 g/l of copper nitrate.
Electrodeposition was performed for 16 hours under the conditions of A/dm2, bath temperature of 60°C, and pH of 4.0 (adjust the pH by appropriately adding lead oxide) to a coating thickness of 1. An OI lead dioxide electrode was manufactured. The coating was uniformly electrodeposited in a mesh pattern with the expanded band as the core, and there were no cracks.

実施例2 実施例1で製作した電極を陽極とし、ステンレス鋼板を
陰極としてクロムメッキ浴中における電解寿命試験を行
なった。メツキ浴組成は下記の通りであり、電流密度2
0A/dm2、浴温度40°Cの条件で行なった。また
比較のため、特公昭58−31396号公報に開示され
ている方法でwlooX シロ00 X ”3mmのチ
タン板をサンドブラスト処理し、この上に線径0.4I
Ila+、24メツシユのチタン製金網をピッチ25m
n+の千鳥状にスポット溶接して陽極基体とし、塩化イ
リジウム酸1部、塩化白金酸3部、残部エタノールから
なる溶液をハケ塗りした後、大気中で500℃、30分
間の加熱処理を繰り返して中間層を形成させ、更にこの
基体を陽極として、実施例1と同様な方法で二酸化鉛を
電着して二酸化鉛電極を製作し比較電極としたものにつ
いても同じ条件で寿命試験を行なった。
Example 2 An electrolytic life test was conducted in a chromium plating bath using the electrode produced in Example 1 as an anode and a stainless steel plate as a cathode. The plating bath composition is as follows, and the current density is 2
The test was carried out under the conditions of 0 A/dm2 and a bath temperature of 40°C. For comparison, a 3mm titanium plate was sandblasted using the method disclosed in Japanese Patent Publication No. 58-31396, and a wire diameter 0.4I
Ila+, 24 mesh titanium wire mesh with a pitch of 25 m
N+ was spot welded in a staggered pattern to form an anode substrate, and after brushing on a solution consisting of 1 part chloroiridic acid, 3 parts chloroplatinic acid, and the remainder ethanol, heat treatment was repeated at 500°C for 30 minutes in the air. An intermediate layer was formed, and lead dioxide was electrodeposited using this substrate as an anode in the same manner as in Example 1 to produce a lead dioxide electrode.A comparison electrode was also subjected to a life test under the same conditions.

クロムメッキ浴組成 無水クロム酸    250g/l ケイフフ化ソーダ    5g/l 硫酸        2.5g/β 寿命試験中、時々電極を引き上げて点検したところ、6
1!月目までは画電極とも二酸化鉛層の剥離もな(表面
状態も良好であったが、8箇月目には比較電極はエツジ
部から二酸化鉛が脱落し、チタン基体が腐食し始めた。
Chromium plating bath composition Chromic anhydride 250g/l Sodium fluoride 5g/l Sulfuric acid 2.5g/β During the life test, when the electrode was occasionally pulled up and inspected, 6
1! Until the 8th month, there was no peeling of the lead dioxide layer from the picture electrode (the surface condition was also good), but by the 8th month, lead dioxide had fallen off from the edges of the reference electrode and the titanium substrate began to corrode.

また、本発明の電極も鉄基体が一部露出していたがクロ
ム酸鉛で覆われており、陽極溶解は起こしていなかった
。両者とも12箇月を経過して大半の二酸化鉛が脱落し
ており試験を終了した。
Further, although the iron base of the electrode of the present invention was partially exposed, it was covered with lead chromate, and no anodic dissolution occurred. In both cases, most of the lead dioxide had fallen off after 12 months, and the test was completed.

(発明の効果) 以上のことから明らかな様に、2層からなる積層構造の
中間層の構成としたため安価な材料を電極基体として使
用することが可能となり、また、貴金属材料も安価な塩
化物で被覆できるようになった。更に、チタン基体を用
いた場合と比べて耐久性に遜色はなく、経済的に有利な
電極が製造できるようになった。
(Effects of the invention) As is clear from the above, since the intermediate layer of the laminated structure consisting of two layers is used, it is possible to use inexpensive materials as the electrode substrate, and noble metal materials can also be made from inexpensive chlorides. It can now be covered with Furthermore, it has become possible to manufacture an economically advantageous electrode that is comparable in durability to the case where a titanium substrate is used.

特許出願人 日本カーリット株式会社Patent applicant Nippon Carlit Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 鉄または鉄合金からなる基体と;前記基体上に熱分解法
により被覆されたバルブ金属酸化物からなる第1中間層
と;前記第1中間層上に熱分解法により被覆された白金
族金属、それらの合金またはそれらの酸化物からなる第
2中間層と;前記第2中間層上に電着された二酸化鉛と
からなることを特徴とするクロムメッキ用二酸化鉛電極
a base made of iron or an iron alloy; a first intermediate layer made of a valve metal oxide coated on the base by a pyrolysis method; a platinum group metal coated on the first intermediate layer by a pyrolysis method; A lead dioxide electrode for chromium plating, comprising: a second intermediate layer made of an alloy thereof or an oxide thereof; and lead dioxide electrodeposited on the second intermediate layer.
JP63104183A 1988-04-28 1988-04-28 Lead dioxide electrode for chromium plating Granted JPH01275797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104183A JPH01275797A (en) 1988-04-28 1988-04-28 Lead dioxide electrode for chromium plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104183A JPH01275797A (en) 1988-04-28 1988-04-28 Lead dioxide electrode for chromium plating

Publications (2)

Publication Number Publication Date
JPH01275797A true JPH01275797A (en) 1989-11-06
JPH031400B2 JPH031400B2 (en) 1991-01-10

Family

ID=14373882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104183A Granted JPH01275797A (en) 1988-04-28 1988-04-28 Lead dioxide electrode for chromium plating

Country Status (1)

Country Link
JP (1) JPH01275797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184471A (en) * 2013-04-03 2013-07-03 沈阳建筑大学 Preparation method of stainless steel based lead dioxide electrode
CN107723746A (en) * 2017-10-17 2018-02-23 昆明理工大学 A kind of novel gradient dioxide composite chloride plate and preparation method thereof
CN108517547A (en) * 2018-04-03 2018-09-11 西安交通大学 A kind of Co3O4Adulterate porous PbO2Electrode coelectrodeposition method
CN111321423A (en) * 2020-01-17 2020-06-23 湖北永绍科技股份有限公司 Method for recovering sulfuric acid from waste sulfuric acid containing hydrogen peroxide
CN112851407A (en) * 2021-01-22 2021-05-28 昆明理工大学 Preparation method of low-temperature thin platinum coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184471A (en) * 2013-04-03 2013-07-03 沈阳建筑大学 Preparation method of stainless steel based lead dioxide electrode
CN107723746A (en) * 2017-10-17 2018-02-23 昆明理工大学 A kind of novel gradient dioxide composite chloride plate and preparation method thereof
CN108517547A (en) * 2018-04-03 2018-09-11 西安交通大学 A kind of Co3O4Adulterate porous PbO2Electrode coelectrodeposition method
CN111321423A (en) * 2020-01-17 2020-06-23 湖北永绍科技股份有限公司 Method for recovering sulfuric acid from waste sulfuric acid containing hydrogen peroxide
CN112851407A (en) * 2021-01-22 2021-05-28 昆明理工大学 Preparation method of low-temperature thin platinum coating

Also Published As

Publication number Publication date
JPH031400B2 (en) 1991-01-10

Similar Documents

Publication Publication Date Title
CA1225066A (en) Electrode with surface film of oxide of valve metal incorporating platinum group metal or oxide
US4797182A (en) Electrode with a platinum metal catalyst in surface film and its use
US4415411A (en) Anode coated with β-lead dioxide and method of producing same
JPS62274087A (en) Durable electrode for electrolysis and its production
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
US3213004A (en) Surface preparation of platinum group metals for electrodeposition
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
JPH0575840B2 (en)
US4925538A (en) Method of electrolytic treatment of metals
JPH01275797A (en) Lead dioxide electrode for chromium plating
JP2885913B2 (en) Anode for chromium plating and method for producing the same
US5665218A (en) Method of producing an oxygen generating electrode
US5004626A (en) Anodes and method of making
JPH02179891A (en) Anode for generate oxygen and production thereof
JPH0499294A (en) Oxygen generating anode and its production
JP4209801B2 (en) Electrode for electrolysis and method for producing the same
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JPH02294494A (en) Anode for generating oxygen
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
JPS6058312B2 (en) Lead dioxide coated electrode for electrolysis
JPS5831396B2 (en) Lead dioxide coated anode
JPS61221390A (en) Coating type lead dioxide electrode
JPH0417573Y2 (en)
JPH0124228B2 (en)
JPS6017085A (en) Corrosion resistant active cathode