JPS63315524A - Method for feeding glass gob - Google Patents

Method for feeding glass gob

Info

Publication number
JPS63315524A
JPS63315524A JP15191687A JP15191687A JPS63315524A JP S63315524 A JPS63315524 A JP S63315524A JP 15191687 A JP15191687 A JP 15191687A JP 15191687 A JP15191687 A JP 15191687A JP S63315524 A JPS63315524 A JP S63315524A
Authority
JP
Japan
Prior art keywords
glass
molding
glass gob
optical
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15191687A
Other languages
Japanese (ja)
Inventor
Hideto Monju
秀人 文字
Kiyoshi Kuribayashi
清 栗林
Makoto Umetani
誠 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15191687A priority Critical patent/JPS63315524A/en
Publication of JPS63315524A publication Critical patent/JPS63315524A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines
    • C03B7/16Transferring molten glass or gobs to glass blowing or pressing machines using deflector chutes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/005Controlling, regulating or measuring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To continuously obtain an optical glass element of high accuracy without surface defects, such as cut or orange peel marks, by successively feeding molten glass gobs, cut by cutting blades and having a specific viscosity through conduits constituted so as to enable specific rotation to plural sets of forming molds and molding the glass gobs. CONSTITUTION:For example, a super hard alloy obtained by machining the surface into a concave surface having 200mm radius of curvature and then lapping the optical surface into a specular surface having 100Angstrom surface roughness with ultrafine diamond powder is used as a base metal and the top surface is coated with a cubic BN thin film to provide a metallic mold consisting of, e.g. 12 sets of forming top forces 9 and bottom forces 10. The resultant mold is subsequently set in a device having airtightness kept with a cover 14 so as to prevent tilting or decentering. Molten glass 2, contained in a crucible 4 and molten by a heater 3 is controlled at a given temperature by a heater 5 with a high accuracy and discharged from a nozzle 15 and cut with cutting blades 6 to provide glass gobs 8 having 10<3>-10<5>P and >=0.9 aspect ratio. The obtained glass gobs 8 are then successively fed through conduits 7, having the top enlarged to a funnel shape and the titled and curved bottom and constituted so as to enable rotation onto the bottom forces 10 at a given temperature and molded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレンズやプリズム等の光学ガラス素子の製造に
おいて、プレス成形後の研磨工程を必要としない高精度
光学ガラス素子の成形に用いるガラスゴブの供給方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for supplying glass gobs used for molding high-precision optical glass elements that do not require a polishing process after press molding in the production of optical glass elements such as lenses and prisms. It is related to.

従来の技術 近年、光学ガラスレンズは光学機器のレンズ構成の簡略
化とレンズ部分の軽量化を同時に達成しうる非球面化の
方向にある。この非球面レンズの製造にあたっては、従
来の光学レンズの製造方法である研磨法では、加工およ
び量産化が困難であり、直接プレス成形法が有望視され
ている。
2. Description of the Related Art In recent years, there has been a trend toward aspheric optical glass lenses, which can simultaneously simplify the lens structure of optical equipment and reduce the weight of the lens portion. In manufacturing this aspherical lens, processing and mass production are difficult using the polishing method, which is a conventional optical lens manufacturing method, and direct press molding is considered to be promising.

この直接プレス成形法というのは、予め所望の面品質お
よび面晴度に仕上げた非球面形状の成形用金型内で、溶
融した光学ガラスをプレス成形するか、あるいは予め所
望の光学ガラス素子に近い形状まで加工した光学ガラス
素材を加熱加圧成形して光学ガラス素子を製造する方法
である。(たとえば、特公昭54−38126号公報)
発明が解決しようとする問題点 上記の光学ガラス素子の製造において、プレス成形によ
って得られた光学ガラス素子の像形成性能は従来の研磨
法による光学ガラス素子のそれにくらべてより優れてい
る必要があり、特に非球面レンズの場合、非常に高い面
精度であることが要求される。たとえば高精度カメラレ
ンズの場合は、面精度ニュートンリング5本捏度、71
)本以内、面粗mo、o2μm以下であることが要求さ
れる。
This direct press molding method involves press-molding molten optical glass in an aspherical mold that has been finished to the desired surface quality and surface brightness in advance, or forming it into a desired optical glass element in advance. This is a method of manufacturing an optical glass element by heating and press-molding an optical glass material that has been processed to a similar shape. (For example, Japanese Patent Publication No. 54-38126)
Problems to be Solved by the Invention In the production of the above-mentioned optical glass elements, it is necessary that the image forming performance of the optical glass elements obtained by press molding be superior to that of optical glass elements obtained by conventional polishing methods. Especially in the case of an aspherical lens, very high surface precision is required. For example, in the case of a high-precision camera lens, the surface precision of 5 Newton rings is 71
) and the surface roughness is required to be less than 2 μm.

溶融した光学ガラスをプレス成形すると言う直接プレス
成形法では、?8融したガラスを切断刃で切断した跡が
光学ガラス表面に残り、これを成形用金型でプレス成形
しても成形レンズに表面欠陥として残る。溶融したガラ
スと成形用金型との温度差によってオレンジマークと呼
ばれる不均一な熱収縮を生じやすい、また、成形用金型
の温度が高すぎると、溶融したガラスと成形用金型とが
融着し易くなるため、成形用型の材料としてガラスと融
着しにくい材料を選定するとともに適切な成形用金型温
度にする必要がある。これらのことから従来の光学ガラ
ス素子は溶融した光学ガラスをプレス成形したあと種々
の表面欠陥を除く為に表面を研磨していたので、この方
法は非常に手間と本発明は前記問題点を解決するために
、上部が漏斗状に拡大し、かつ成形用金型に対して傾斜
または湾曲した形状の下部パイプが回転できる導管によ
って、複数組の前記成形用金型にガラスゴブを順次供給
することを特徴とするガラスゴブの供給方法を提供する
ものである。
What about the direct press molding method where molten optical glass is press molded? 8. Traces of cutting the molten glass with a cutting blade remain on the surface of the optical glass, and even if this is press-molded with a mold, it remains as a surface defect on the molded lens. The difference in temperature between the molten glass and the molding die tends to cause uneven heat shrinkage called an orange mark, and if the temperature of the molding die is too high, the molten glass and the molding die tend to melt. In order to facilitate adhesion, it is necessary to select a material for the mold that is difficult to fuse with glass, and to maintain the temperature of the mold at an appropriate temperature. For these reasons, in conventional optical glass elements, the surface of molten optical glass was press-molded and then polished to remove various surface defects.This method was very time-consuming, and the present invention solves the above problems. In order to do this, glass gobs are sequentially supplied to a plurality of sets of molding molds by a conduit whose upper part expands into a funnel shape and whose lower pipe is tilted or curved with respect to the molding molds and can rotate. The present invention provides a method for supplying characteristic glass gobs.

作用 本発明において、上部が漏斗状に拡大し、かつ成形用金
型に対して1頃斜または湾曲した形状の下部パイプが回
転できる導管によって成形用下型にガラスゴブを供給す
るならば、ガラスゴブは導管に沿って落下するためガラ
スゴブは徐々に水平方向に傾けられた状態で落下し、運
動エネルギーが徐々に増加する。またガラスゴブの上下
方向に存在していた切断痕は水平方向にその位置を変え
、ガラスゴブが成形用下型に到達したときガラスゴブは
水平方向に横たわった状態の方がエネルギー的に安定に
なる。このときガラスゴブの切断痕は、水平方向の端部
に移動しており、このような状態にあるガラスゴブを成
形用金型で加圧成形するならば、ガラスゴブの切断痕を
光学ガラス素子の非光学面あるいは側面部に位置させる
ことができる。
Function In the present invention, if the glass gob is supplied to the lower mold by a conduit whose upper part expands into a funnel shape and whose lower part pipe is oblique or curved with respect to the mold and can rotate, the glass gob As the glass gob falls along the conduit, it falls gradually tilted horizontally, and its kinetic energy gradually increases. In addition, the cutting marks that existed in the vertical direction of the glass gob change their position in the horizontal direction, and when the glass gob reaches the lower mold for molding, the glass gob becomes more stable in terms of energy when it lies horizontally. At this time, the cut marks on the glass gob have moved to the horizontal ends, and if the glass gob in this state is pressure-molded using a mold, the cut marks on the glass gob will be transferred to the non-optical part of the optical glass element. It can be located on the surface or on the side.

このように切断痕を光学ガラス素子の非光学面あるいは
側面部にもってくることにより、光学面において表面欠
陥のない高精度な光学ガラス素子を成形することが可能
になる。
By placing the cutting marks on the non-optical surface or side surface of the optical glass element in this manner, it becomes possible to mold a highly accurate optical glass element with no surface defects on the optical surface.

さらに、導管の下部パイプが回転できるため、複数組の
前記成形用金型にガラスゴブを順次供給することが非常
に容易になり、また複数組の前記成形用金型を装置に固
定してプレス成形するため、中心軸のずれ、面倒れ、寸
法精度等の成形晴度を非常に高精度にすることができる
、成形袋室全体をシンプルなものにできる、成形雰囲気
のコントロールが容易である、量産性の向上を図ること
ができる等のメリットがある。
Furthermore, since the lower pipe of the conduit can be rotated, it is very easy to sequentially supply glass gobs to multiple sets of the molding molds, and it is also possible to fix the plurality of molding molds to the device and press-form the molds. Therefore, the molding accuracy such as center axis misalignment, surface tilt, and dimensional accuracy can be made very precise, the entire molding bag chamber can be made simple, the molding atmosphere can be easily controlled, and mass production is possible. There are advantages such as being able to improve sexual performance.

実施例 以下、本発明の一実施例の光学ガラス素子の成形方法に
ついて、図面を参照しながら説明する。
EXAMPLE Hereinafter, a method for molding an optical glass element according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例による上部が漏斗状に拡大し、
かつ成形用金型に対して傾斜または湾曲した形状の下部
パイプが回転できる導管によって、複数組の前記成形用
金型にガラスゴブを順次供給し、ガラスゴブを成形用金
型で成形していることを示す側断面図、第2図は同実施
例によるガラスゴブを湾曲した導管により成形用金型に
供給し、ガラスゴブを成形用金型で成形していることを
示す側断面図である。
FIG. 1 shows an enlarged upper part in a funnel shape according to an embodiment of the present invention;
and that glass gobs are sequentially supplied to a plurality of sets of molding molds by a conduit in which a lower pipe having an inclined or curved shape relative to the molding molds can be rotated, and the glass gobs are molded by the molding molds. FIG. 2 is a side sectional view showing that the glass gob according to the same embodiment is supplied to a molding die through a curved conduit, and the glass gob is molded by the molding die.

重フリント系光学ガラス5F−8ガラスを用いた場合に
ついて説明する。
A case where heavy flint type optical glass 5F-8 glass is used will be explained.

第1図において、ヒータ3によってるつぼ4内の溶融ガ
ラス2の温度を800℃に、及びヒータ5によってノズ
ル15からの流出ガラスの温度を850℃にそれぞれ高
精度にコントロールし、プランジャー1で溶融ガラス2
の流量あるいは落下タイミング等をコントロールした。
In FIG. 1, the temperature of the molten glass 2 in the crucible 4 is controlled to 800°C by the heater 3, and the temperature of the glass flowing out from the nozzle 15 is controlled to 850°C by the heater 5, respectively, and the plunger 1 melts the glass. glass 2
The flow rate or timing of the drop was controlled.

おおい14によって気密性を保っである装置内に12組
の成形用金型を固定し、成形用上型9及び成形用下型l
Oの傾きあるいは偏心がないようにそれぞれセットした
。なお成形用金型は、曲率半径が2001の凹面に加工
し、光学面は超微細なダイヤモンド粉末でラッピングし
て表面粗さが100人の鏡面にした超硬合金を母材とし
、その上に電子ビーム法により立方晶窒化硼素の薄膜を
コーティングしたものを用いた。成形用下型10内部に
埋設したヒータ1)の熱量を調節して、成形用下型lO
の温度を高精度にコントロールした。流出ガラスを切断
するための切断刃6を設け、切断刃6で所定量の流出ガ
ラスを切断し、その時に発生した切断痕16を上方に有
するガラスゴブ8を作製した。
Twelve sets of molding molds are fixed in an apparatus that is kept airtight by a cover 14, and an upper molding mold 9 and a lower molding mold l are installed.
Each was set so that there was no inclination or eccentricity of O. The molding die has a concave surface with a radius of curvature of 2001 mm, and the optical surface is lapped with ultra-fine diamond powder to create a mirror surface with a surface roughness of 100 mm. A thin film of cubic boron nitride was coated using an electron beam method. By adjusting the amount of heat of the heater 1) embedded inside the lower mold 10, the lower mold 10
temperature was controlled with high precision. A cutting blade 6 for cutting outflow glass was provided, and a predetermined amount of outflow glass was cut with the cutting blade 6 to produce a glass gob 8 having cutting marks 16 generated at that time on the upper side.

切断したガラスゴブ8の寸法及び形状を第1表に示した
。。
Table 1 shows the dimensions and shape of the cut glass gob 8. .

第1表 ノズル15と成形用下型10とを結ぶ導管7は、傾斜し
た形状の下部パイプがモータ13と回転軸12により回
転できるように配置されている。成形用下型IOから見
て導管7は斜め上方に位置している。ガラスゴブ8は導
管7で成形用下型1゜の位置まで導かれ、成形用下型1
oで受けた。この時、切断痕16を上方に有するガラス
ゴブ8は、水平方向に横たわった状態になっており、ガ
ラスゴブの切断痕16は水平方向の端部に移動していた
The conduit 7 connecting the first nozzle 15 and the lower molding die 10 is arranged so that the inclined lower pipe can be rotated by the motor 13 and the rotating shaft 12. The conduit 7 is located obliquely upward when viewed from the lower mold IO. The glass gob 8 is guided through the conduit 7 to a position of 1° from the lower mold 1, and
I received it at o. At this time, the glass gob 8 having the cutting mark 16 above was lying horizontally, and the cutting mark 16 of the glass gob had moved to the end in the horizontal direction.

第2図は、第1図における導管7を湾曲した導管にした
ものであり、そのほかの構成は第1図のそれと同じであ
る。第2図の場合においても、第1図と同様にガラスゴ
ブ8は水平方向に横たわった状態になっており、ガラス
ゴブの切断7&16は水平方向の端部に移動していた。
In FIG. 2, the conduit 7 in FIG. 1 is made into a curved conduit, and the other configuration is the same as that in FIG. 1. In the case of FIG. 2 as well, the glass gob 8 was in a horizontally lying state as in FIG. 1, and the cuts 7 & 16 of the glass gob had moved to the ends in the horizontal direction.

第1図及び第2図において、ガラスゴブ8を成形用下型
10に横たわらせた状態すなわち切断痕16は水平方向
の端部に移動した状態で、高精度に温度コントロールし
た成形用上型9及び成形用下型10で直ちにプレス成形
した。プレス成形はプレス圧力5 kz / cd、プ
レス時間15秒の条件で行ない、これを成形用金型内に
保持した状態で冷却した。つづいて導管7を次の成形用
下型10まで回転させ、ガラスゴブ8を成形用下型IO
で受け、前述したと同様の条件で約30秒に1回の割合
で連続的にプレス成形し、このような工程を繰り返した
。このようにして得られた光学ガラス素子の形状、成形
条件、光学性能、表面状態等を第1表にまとめた。
In FIGS. 1 and 2, the glass gob 8 is laid down on the lower mold 10, that is, the cut marks 16 have moved to the horizontal ends, and the upper mold is controlled in temperature with high precision. 9 and a lower mold 10 for press molding. Press molding was performed under the conditions of a press pressure of 5 kHz/cd and a press time of 15 seconds, and the mold was cooled while being held in a mold. Next, the conduit 7 is rotated to the next lower mold 10, and the glass gob 8 is moved to the lower mold IO.
Press molding was performed continuously at a rate of about once every 30 seconds under the same conditions as described above, and these steps were repeated. The shape, molding conditions, optical performance, surface condition, etc. of the optical glass element thus obtained are summarized in Table 1.

第1表から明らかなように、本発明の光学ガラス素子の
成形方法に従ってプレス成形するならば、切断痕が光学
ガラス素子の非光学面に存在し、成形用金型の形状を正
確に転写した光学面を有した、切断痕、オレンジマーク
や表面欠陥のない高精度な光学ガラス素子が連続的に且
つ量産性良く得られた。
As is clear from Table 1, when press molding is performed according to the method for molding an optical glass element of the present invention, cutting marks are present on the non-optical surface of the optical glass element, and the shape of the molding die is accurately transferred. High-precision optical glass elements having optical surfaces and having no cut marks, orange marks, or surface defects were obtained continuously and with good mass production.

ガラス溶融坩堝のノズルから流出した溶融ガラスを切断
刃で切断する際に発生する切断痕を最小にするために、
ガラス溶融坩堝のノズルから流出した溶融ガラスの粘度
を本発明の特許請求の範囲第(3)項に記載した粘度範
囲に制御すれば、溶融ガラスが糸を引くことなく切断刃
で容易に切断することができ、球状または7状のガラス
ゴブを作製することができた。
In order to minimize the cutting marks that occur when cutting the molten glass flowing out of the nozzle of the glass melting crucible with a cutting blade,
If the viscosity of the molten glass flowing out from the nozzle of the glass melting crucible is controlled within the viscosity range described in claim (3) of the present invention, the molten glass can be easily cut by a cutting blade without pulling strings. It was possible to produce a spherical or 7-shaped glass gob.

そして本発明のように、上部が漏斗状に拡大し、かつ成
形用金型に対して傾斜または湾曲した形状の下部パイプ
が回転できる導管によって成形用下型にガラスゴブを供
給するならば、ガラスゴブは導管に沿って落下するため
ガラスゴブは徐々に水平方向に傾けられた状態で落下し
、運動エネルギーが徐々に増加する。またガラスゴブの
上下方向に存在していた切断痕は水平方向にその位置を
変える。更にガラスゴブの直径に対する長さの比が約0
.9より大きいものであれば、ガラスゴブが成形用下型
に到達したときガラスゴブは水平方向に横たわった状態
の方がエネルギー的により安定になる。このときガラス
ゴブの切断痕は、水平方向の端部に移動しており、この
ような状態にあるガラスゴブを成形用金型で加熱成形す
るならば、ガラスゴブの切断痕を光学ガラス素子の非光
学面あるいは側面部に位置させることができる。このよ
うに切断痕を光学ガラス素子の非光学面あるいは側面部
にもってくることにより、光学面において表面欠陥のな
い高精度な光学ガラス素子を成形することが可能になっ
た。
If, as in the present invention, the glass gob is supplied to the lower mold by a rotatable conduit whose upper part expands into a funnel shape and whose lower pipe is inclined or curved relative to the mold, the glass gob As the glass gob falls along the conduit, it falls gradually tilted horizontally, and its kinetic energy gradually increases. Furthermore, the cutting marks that were present in the vertical direction of the glass gob change their position in the horizontal direction. Furthermore, the length to diameter ratio of the glass gob is approximately 0.
.. If it is larger than 9, the glass gob will be more energetically stable if it lies horizontally when it reaches the lower mold. At this time, the cutting marks of the glass gob have moved to the horizontal ends, and if the glass gob in this state is heated and molded using a mold, the cutting marks of the glass gob will be moved to the non-optical surface of the optical glass element. Alternatively, it can be located on the side. By placing cutting marks on the non-optical surface or side surface of the optical glass element in this manner, it has become possible to mold a highly accurate optical glass element with no surface defects on the optical surface.

この時成形用下型及び成形用上型を、ガラスの粘度が約
106〜約10鱒ポアズを示す温度範囲に加熱して保持
すれば、ガラスゴブと成形用金型との温度差が非常に小
さくなり且つガラスゴブが粘性流動できる温度にあるた
め、ガラスゴブと成形用金型とがほぼ一体化して高精度
なプレス成形面を正確に転写し、光学ガラス素子にオレ
ンジマークまたはヒケが発生しないことがわかる。
At this time, if the lower molding mold and the upper molding mold are heated and maintained within a temperature range where the viscosity of the glass is approximately 106 to approximately 10 poise, the temperature difference between the glass gob and the molding die will be very small. It can be seen that because the temperature is such that the glass gob can viscous flow, the glass gob and the molding die are almost integrated, and the high-precision press molding surface is accurately transferred, and no orange marks or sink marks occur on the optical glass element. .

本実施例から、導管の下部パイプが回転できるため、複
数組の前記成形用金型にガラスゴブを順次供給すること
が非常に容易になり、また複数組の前記成形用金型を装
置に固定してプレス成形するため、中心軸のずれ、面倒
れ、寸法精度等の成形精度を非常に高精度にすることが
できる、成形装置全体をシンプルなものにできる、成形
雰囲気のコントロールが容易である、量産性の向上を図
ることができる等のメリットがあることであることがわ
かる。
From this embodiment, since the lower pipe of the conduit can be rotated, it is very easy to sequentially supply glass gobs to the plurality of molding molds, and the plurality of molding molds can be fixed to the device. Since the mold is press-formed using a press mold, it is possible to achieve extremely high molding accuracy in terms of center axis misalignment, surface inclination, dimensional accuracy, etc., the entire molding equipment can be simplified, and the molding atmosphere can be easily controlled. It can be seen that there are advantages such as being able to improve mass productivity.

なお本発明は高精度な光学ガラス素子を連続的に成形す
るためのガラスゴブの供給方法を定めたものであり、ガ
ラスの種類、成形方法、あるいは成形用金型の個数は本
実施例で用いたものに限定されるものではない、成形用
金型の周辺部に余剰のガラスをパリとして逸出させるこ
とができると同時に、必要に応じて、光学面以外の不要
なガラスは加工して除去することができる。また、本実
施例で用いた成形用金型は、超硬合金を母材とし、その
上に立方晶BNfi)l!をコーティングしたもの(立
方晶BNI膜/超硬合金)に限定されるものではなく、
たとえばガラスと接触する部分にAIN、CrN、Si
3N、、HfN、TiN。
Note that the present invention defines a method for supplying glass gobs for continuously molding high-precision optical glass elements, and the type of glass, molding method, and number of molds used in this example are different from those used in this example. Excess glass can be released from the periphery of the mold, and at the same time, if necessary, unnecessary glass other than the optical surface can be processed and removed. be able to. Further, the molding die used in this example has a cemented carbide as a base material, and a cubic crystal BNfi)l! It is not limited to those coated with (cubic BNI film / cemented carbide),
For example, AIN, CrN, and Si are used in the parts that come into contact with glass.
3N, HfN, TiN.

TaN等の窒化物、あるいは白金族合金をバルクか薄膜
の形で用い、母材にアルテンサイド系ステンレスまたは
サーメットを用いた場合でも本実施例と同様の効果が得
られる。
Effects similar to those of this embodiment can be obtained even when a nitride such as TaN or a platinum group alloy is used in the form of a bulk or thin film, and alumenside stainless steel or cermet is used as the base material.

発明の効果 以上の説明から明らかなように、本発明のガラスゴブの
供給方法は、上部が漏斗状に拡大し、かつ成形用金型に
対して傾斜または湾曲した形状の下部パイプが回転でき
る導管によって、複数組の前記成形用金型にガラスゴブ
を順次供給することを特徴とするガラスゴブの供給方法
である。
Effects of the Invention As is clear from the above explanation, the method for supplying glass gobs of the present invention uses a rotatable conduit whose upper part expands into a funnel shape and whose lower part is tilted or curved with respect to the molding die. , a method for supplying glass gobs, characterized in that glass gobs are sequentially supplied to a plurality of sets of the molding molds.

ガラス溶融坩堝のノズルから流出した溶融ガラスを切断
刃で切断する際に発生する切断痕が最小になるように、
溶融ガラスの温度を管理し、一対の成形用金型に対して
傾斜または湾曲した形状の下部パイプが回転できる導管
により前記成形用金型に前記ガラスゴブを供給し、この
ようなガラスゴブを加熱した成形用金型で直ちにプレス
成形すれば、切断痕やオレンジマーク等の表面欠陥のな
い高精度な光学ガラス素子を連続的に成形することが可
能になる。
In order to minimize the cutting marks that occur when cutting the molten glass flowing out of the nozzle of the glass melting crucible with a cutting blade,
The temperature of the molten glass is controlled, and the glass gob is supplied to the molding mold through a conduit that can rotate a lower pipe having an inclined or curved shape with respect to a pair of molding molds, and the glass gob is heated and molded. Immediate press molding using a mold makes it possible to continuously mold high-precision optical glass elements without surface defects such as cut marks or orange marks.

したがって、本発明の光学ガラス素子の成形方法により
、非常に容易にかつ安価に高精度な光学ガラス素子を製
造することが可能となり、その工業的価値は極めて大な
るものがある。
Therefore, the method for molding an optical glass element of the present invention makes it possible to manufacture a highly accurate optical glass element very easily and inexpensively, and has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による上部が漏斗状に拡大し、
かつ成形用金型に対して傾斜または湾曲した形状の下部
パイプが回転できる導管によって、me組の前記成形用
金型にガラスゴブを順次供給し、ガラスゴブを成形用金
型で成形していることを示す側断面図、第2図は同実施
例によるガラスゴブを湾曲した導管により成形用金型に
供給し、ガラスゴブを成形用金型で成形していることを
示す側断面図である。 l・・・・・・プランジャー、2・・・・・・ン容融ガ
ラス、3・・・・・・ヒータ、4・・・・・・るつぼ、
5・・・・・・ヒータ、6・・・・・・切断刃、7・・
・・・・導管、8・・・・・・ガラスゴブ、9・・・・
・・成形用上型、10・・・・・・成形用下型、1)・
・・・・・ヒータ、12・・・・・・回転軸、13・・
・・・・モータ、14・・・・・・おおい、15・・・
・・・ノズル、16・・・・・・切断痕。 代理人の氏名 弁理士 中尾敏男 はか1名第1図
FIG. 1 shows an enlarged upper part in a funnel shape according to an embodiment of the present invention;
and that glass gobs are sequentially supplied to the molding molds of the me group by a conduit in which a lower pipe having an inclined or curved shape relative to the molding molds can be rotated, and the glass gobs are molded by the molding molds. FIG. 2 is a side sectional view showing that the glass gob according to the same embodiment is supplied to a molding die through a curved conduit, and the glass gob is molded by the molding die. 1... Plunger, 2... Molten glass, 3... Heater, 4... Crucible,
5... Heater, 6... Cutting blade, 7...
...Conduit, 8...Glass gob, 9...
... Upper mold for molding, 10 ... Lower mold for molding, 1).
... Heater, 12 ... Rotating shaft, 13 ...
...Motor, 14...Oi, 15...
... Nozzle, 16... Cutting marks. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)上部が漏斗状に拡大し、かつ成形用金型に対して
傾斜または湾曲した形状の下部パイプが回転できる導管
によって、複数組の前記成形用金型にガラスゴブを順次
供給することを特徴とするガラスゴブの供給方法。
(1) The glass gob is sequentially supplied to a plurality of sets of molding molds through a rotatable conduit whose upper part expands into a funnel shape and whose lower pipe is inclined or curved with respect to the molding molds. How to supply glass gobs.
(2)複数組の成形用金型が気密性を有した装置内に固
定されていることを特徴とする特許請求の範囲第(1)
項記載のガラスゴブの供給方法。
(2) Claim (1) characterized in that a plurality of sets of molding molds are fixed in an airtight device.
How to supply glass gobs as described in Section 1.
(3)ガラスゴブの粘度が約10^3〜約10^5ポア
ズであることを特徴とする特許請求の範囲第(1)項又
は第(2)項記載のガラスゴブの供給方法。
(3) The method for supplying a glass gob according to claim (1) or (2), wherein the viscosity of the glass gob is about 10^3 to about 10^5 poise.
(4)成形用金型が、ガラスの粘度が約10^6〜約1
0^1^0ポアズを示す温度に加熱されていることを特
徴とする特許請求の範囲第(1)項、第(2)項又は第
(3)項記載のガラスゴブの供給方法。
(4) The mold for forming the glass has a viscosity of about 10^6 to about 1
A method for supplying a glass gob as set forth in claim (1), (2) or (3), wherein the glass gob is heated to a temperature showing 0^1^0 poise.
(5)ガラスゴブの直径に対する長さの比が、約0.9
より大きいことを特徴とする特許請求の範囲第(1)項
、第(2)項、第(3)項又は第(4)項記載のガラス
ゴブの供給方法。
(5) The length to diameter ratio of the glass gob is approximately 0.9
A method for supplying a glass gob as set forth in claim 1, 2, 3, or 4, wherein the glass gob is larger.
JP15191687A 1987-06-18 1987-06-18 Method for feeding glass gob Pending JPS63315524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15191687A JPS63315524A (en) 1987-06-18 1987-06-18 Method for feeding glass gob

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15191687A JPS63315524A (en) 1987-06-18 1987-06-18 Method for feeding glass gob

Publications (1)

Publication Number Publication Date
JPS63315524A true JPS63315524A (en) 1988-12-23

Family

ID=15529000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15191687A Pending JPS63315524A (en) 1987-06-18 1987-06-18 Method for feeding glass gob

Country Status (1)

Country Link
JP (1) JPS63315524A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446051B1 (en) * 1999-06-29 2004-08-30 호야 가부시키가이샤 Method of producing glass products, method of producing press-molded products, and apparatus for producing glass mass products
US7127917B2 (en) * 2001-09-20 2006-10-31 Hoya Corporation Method of manufacturing molded glass objects, method of manufacturing press molded articles, and method of manufacturing glass optical elements
WO2009044768A1 (en) * 2007-10-05 2009-04-09 Konica Minolta Opto, Inc. Method and apparatus for manufacturing optical element
CN109574466A (en) * 2018-11-29 2019-04-05 东旭科技集团有限公司 The production equipment and production method of bend glass for electronic product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446051B1 (en) * 1999-06-29 2004-08-30 호야 가부시키가이샤 Method of producing glass products, method of producing press-molded products, and apparatus for producing glass mass products
US7127917B2 (en) * 2001-09-20 2006-10-31 Hoya Corporation Method of manufacturing molded glass objects, method of manufacturing press molded articles, and method of manufacturing glass optical elements
WO2009044768A1 (en) * 2007-10-05 2009-04-09 Konica Minolta Opto, Inc. Method and apparatus for manufacturing optical element
CN109574466A (en) * 2018-11-29 2019-04-05 东旭科技集团有限公司 The production equipment and production method of bend glass for electronic product

Similar Documents

Publication Publication Date Title
US4738703A (en) Method of molding optical lenses
EP0408065B1 (en) Method of producing optical glass element and production apparatus using this method
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JPH0214839A (en) Molding of glass material and device therefor
JPS63315524A (en) Method for feeding glass gob
TWI408109B (en) A manufacturing apparatus of optical device and a method of manufacturing optical device
JP3229942B2 (en) Method for manufacturing glass optical element
JPS61183134A (en) Die for press-forming optical glass element
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2001302273A (en) Mold for molding optical glass element
JPH0421608B2 (en)
JP2002128535A (en) Forming method of glass gob for optical element
JP2008074636A (en) Method and device for producing optical element
JP3243219B2 (en) Method for manufacturing glass optical element
JPH0692658A (en) Mold for molding optical element and method for molding optical element
JP2003277078A (en) Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element
JP2001278631A (en) Glass forming die manufacturing method of glass formed body and glass optical element
JPS63297224A (en) Molding of optical glass element
JP2002274867A (en) Optical glass element press forming die and optical glass element
JPH0451495B2 (en)
KR102076983B1 (en) Method of manufacturing optical dummy lens
JPH08245223A (en) Method for forming optical element
JP3199825B2 (en) Optical element molding method
JPH03265528A (en) Method for molding optical element
JPS63162540A (en) Process for forming optical glass element