JP2008074636A - Method and device for producing optical element - Google Patents

Method and device for producing optical element Download PDF

Info

Publication number
JP2008074636A
JP2008074636A JP2006252496A JP2006252496A JP2008074636A JP 2008074636 A JP2008074636 A JP 2008074636A JP 2006252496 A JP2006252496 A JP 2006252496A JP 2006252496 A JP2006252496 A JP 2006252496A JP 2008074636 A JP2008074636 A JP 2008074636A
Authority
JP
Japan
Prior art keywords
molten glass
molding
optical
outer diameter
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006252496A
Other languages
Japanese (ja)
Inventor
Toshiya Tomisaka
俊也 富阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006252496A priority Critical patent/JP2008074636A/en
Publication of JP2008074636A publication Critical patent/JP2008074636A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/49Complex forms not covered by groups C03B2215/47 or C03B2215/48

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optical element where the cooling rates of the center and the edge parts in a molten glass are uniformized, thus an optical element having an optical face with high precision can be produced at high productive efficiency. <P>SOLUTION: A molding die is heated to a prescribed temperature, a molten glass is fed to a receiving face in the lower die, and the molten glass is subjected to press molding by the molding die, so as to form a molded body having a first optical face transferred with the molding face of the upper die. At this time, the shape of the receiving face of the lower die has been formed in such a manner that the edge parts in the obtained molded body are made thicker than the center thereof. Further, a second optical face is formed on the back side of the first optical face in the molded body by additional working. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶融ガラスを成形金型で加圧成形してガラス製の光学素子を得る光学素子の製造方法、及び、製造装置に関する。   The present invention relates to an optical element manufacturing method and a manufacturing apparatus for obtaining a glass optical element by pressure molding molten glass with a molding die.

今日、ガラス製の光学素子は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、各種ミラーなどとして広範にわたって利用されている。かかるガラス製の光学素子は、ガラス素材を成形金型で加圧成形するプレス成形法により製造されることが多くなってきた。特に、光学面として非球面を有する光学素子は、研削・研磨加工による面形成が容易でないことから、成形金型によるプレス成形法による製造が一般的になりつつある。その中でも、溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得るダイレクトプレス法は、高い生産効率を期待できることから注目されている。   Today, glass optical elements are widely used as digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, various mirrors, and the like. Such glass optical elements are often manufactured by a press molding method in which a glass material is pressure-molded with a molding die. In particular, an optical element having an aspheric surface as an optical surface is not easily formed by grinding / polishing, and therefore is generally manufactured by a press molding method using a molding die. Among them, a direct press method for obtaining a glass optical element by directly pressure-molding molten glass with a molding die is attracting attention because high production efficiency can be expected.

溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得る方法として、ノズル先端からの溶融ガラスを支持部材に滞留させたあと、該支持部材をノズル先端から退避させ、得られたガラスゴブを上型と下型とで加圧成形する方法が知られている(例えば、特許文献1を参照。)。   As a method for obtaining a glass optical element by directly pressure-molding molten glass with a molding die, the molten glass from the nozzle tip is retained in the support member, and then the support member is withdrawn from the nozzle tip. A method of pressure-molding a glass gob with an upper mold and a lower mold is known (see, for example, Patent Document 1).

しかし、成形の過程で溶融ガラスが冷却される速度が、溶融ガラスの上面と下面、あるいは中心と端部において異なり、冷却による収縮量が不均一になることから、かかる方法により精度の高い光学面を形成することは困難であった。特に、溶融ガラスが最初に支持部材に接触して急冷される下面側に精度の高い光学面を形成することは非常に困難であった。   However, the rate at which the molten glass is cooled during the molding process differs between the upper and lower surfaces of the molten glass, or the center and edges, and the amount of shrinkage due to cooling becomes uneven. It was difficult to form. In particular, it has been very difficult to form a highly accurate optical surface on the lower surface side where the molten glass first contacts with the support member and is rapidly cooled.

また、受け型に供給された溶融ガラスを下型の上に搬送した後、上下金型で加圧成形することによって、溶融ガラスの温度が比較的安定する上面側の光学面のみを上型の成形面の転写によって形成し、下面側の光学面は追加工(研削・研磨加工)によって形成してガラスレンズを製造する方法が提案されている(例えば、特許文献2を参照。)。   In addition, after conveying the molten glass supplied to the receiving mold onto the lower mold, only the upper optical surface on which the temperature of the molten glass is relatively stable is formed by pressing with the upper and lower molds. There has been proposed a method of manufacturing a glass lens by forming a molding surface by transfer and forming an optical surface on the lower surface side by additional processing (grinding / polishing) (see, for example, Patent Document 2).

特許文献2には、更に、成形されるレンズの肉厚が全面にわたって均一になるように下型の受け面を形成することで、レンズの径方向の冷却速度の分布が小さくなり、レンズの上面側に高精度な光学面が得られる旨が開示されている。
特開平6−206730号公報 特開平8−208248号公報
In Patent Document 2, the distribution of the cooling rate in the radial direction of the lens is reduced by forming the receiving surface of the lower mold so that the thickness of the molded lens is uniform over the entire surface. It is disclosed that a highly accurate optical surface can be obtained on the side.
JP-A-6-206730 JP-A-8-208248

しかしながら、実際には、たとえ成形される光学素子の肉厚が全面にわたって均一になるように下型の受け面を形成したとしても、溶融ガラスを下型の受け面に溜めた状態においては、溶融ガラスの表面張力によって端部よりも中心の肉厚の方が大きくなるのが一般的である。従って、上型と下型とで加圧成形される段階では、既に中心よりも端部の方が冷却が進んだ状態になっていることから、成形時における収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることはできないという問題があった。   However, in practice, even if the lower mold receiving surface is formed so that the thickness of the optical element to be molded is uniform over the entire surface, the molten glass is melted in the state where the molten glass is stored on the lower mold receiving surface. Generally, the wall thickness at the center is larger than the edge due to the surface tension of the glass. Therefore, at the stage where pressure molding is performed between the upper mold and the lower mold, the cooling is already advanced at the end rather than the center, so the amount of shrinkage during molding is not uniform, and the optical There was a problem that a highly accurate optical surface could not be obtained on the upper surface side of the element.

また、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型の受け面に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備えた成形金型を使用する必要がある。この場合、供給された溶融ガラスは下型の受け面と接触するだけでなく、外径規制部材の外径規制面とも接触することになる。溶融ガラスは、これら成形金型との接触面から急速に冷却されるため、このような外径規制部材を備えた成形金型を使用する場合には、溶融ガラスの端部の冷却がいっそう急速に進むことになる。このように、溶融ガラスの中心と端部の冷却速度に大きな差が生じることから、成形時における溶融ガラスの収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることは更に困難となっていた。   Further, when manufacturing a relatively large optical element having an outer diameter of, for example, φ20 mm or more, it is necessary to store a large amount of molten glass on the receiving surface of the lower mold, so that the outer diameter for regulating the outer diameter of the molten glass is limited. It is necessary to use a molding die provided with an outer diameter regulating member having a diameter regulating surface. In this case, the supplied molten glass not only contacts the receiving surface of the lower mold but also contacts the outer diameter regulating surface of the outer diameter regulating member. Since the molten glass is rapidly cooled from the contact surface with these molding dies, when using a molding die having such an outer diameter regulating member, the end of the molten glass is cooled more rapidly. Will proceed to. Thus, a large difference occurs in the cooling rate between the center and the end of the molten glass, so that the amount of shrinkage of the molten glass during molding is not uniform, and a high-precision optical surface is obtained on the upper surface side of the optical element. Became even more difficult.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、溶融ガラスの中心と端部の冷却速度を均一化することで、高精度な光学面を有する光学素子を高い生産効率で製造することができる光学素子の製造方法、及び、製造装置を提供することである。   The present invention has been made in view of the technical problems as described above, and an object of the present invention is to provide an optical device having a highly accurate optical surface by uniformizing the cooling rate of the center and the end of the molten glass. An optical element manufacturing method and a manufacturing apparatus capable of manufacturing an element with high production efficiency are provided.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための成形面を有する上型とを備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有し、前記下型の前記受け面は、前記成形工程で得られる成形体の端部の肉厚が中心の肉厚よりも大きくなるように形成されていることを特徴とする光学素子の製造方法。   1. A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a molding surface for forming the first optical surface of the optical element, a predetermined temperature lower than the temperature of the molten glass A heating step of heating the molten glass, a molten glass supplying step of supplying the molten glass to the receiving surface of the lower mold, and the molten glass was pressure-molded by the molding die, and the molding surface of the upper mold was transferred Forming a molded body having a first optical surface, and the receiving surface of the lower mold has a thickness of an end portion of the molded body obtained in the molding process larger than a central thickness. It is formed so that it may become. The manufacturing method of the optical element characterized by the above-mentioned.

2. 前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする前記1に記載の光学素子の製造方法。   2. 2. The method of manufacturing an optical element according to 1 above, further comprising an additional processing step of forming a second optical surface on the back surface side of the first optical surface of the molded body by additional processing after the molding step. .

3. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする前記1又は2に記載の光学素子の製造方法。   3. The molding die includes an outer diameter regulating member having an outer diameter regulating surface for regulating the outer diameter of the molten glass, and the molten glass supplied to the receiving surface of the lower mold in the molten glass supply step The method for manufacturing an optical element according to 1 or 2, wherein the outer diameter regulating member contacts an outer diameter regulating surface.

4. 溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための成形面を有する上型とを備える成形金型と、前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有し、前記下型の前記受け面は、加圧成形時における前記上型の成形面との間隔が、中心よりも端部の方が大きくなるように形成されていることを特徴とする光学素子の製造装置。   4). A molding die comprising a lower die having a receiving surface for receiving molten glass and an upper die having a molding surface for forming the first optical surface of the optical element, and the molding die at a temperature of the molten glass Heating means for heating to a lower predetermined temperature, molten glass supply means for supplying the molten glass to the receiving surface of the lower mold, and press molding the molten glass with the molding die, Pressurizing means for forming a molded body having a first optical surface onto which the molding surface of the upper mold is transferred, and the receiving surface of the lower mold is molded by the upper mold at the time of pressure molding An apparatus for manufacturing an optical element, characterized in that the distance between the surface and the surface is larger at the end than at the center.

本発明の光学素子の製造方法によれば、下型の受け面を、成形工程で得られる成形体の端部の肉厚が中心の肉厚よりも大きくなるように形成することで、成形金型に供給された溶融ガラスの冷却速度が均一化され、成形時における溶融ガラスの収縮量を均一化することができる。そのため、成形によって少なくとも上面側の光学面が高精度に形成された成形体を得ることができ、高精度な光学面を有する光学素子を高い生産効率で製造することができる。   According to the method for manufacturing an optical element of the present invention, the receiving surface of the lower mold is formed so that the thickness of the end portion of the molded body obtained in the molding process is larger than the thickness of the center. The cooling rate of the molten glass supplied to the mold is made uniform, and the amount of shrinkage of the molten glass at the time of molding can be made uniform. Therefore, a molded body in which at least the optical surface on the upper surface side is formed with high accuracy by molding can be obtained, and an optical element having a high accuracy optical surface can be manufactured with high production efficiency.

以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態における光学素子の製造装置である成形装置の一例を示す模式図である。   FIG. 1 is a schematic diagram illustrating an example of a molding apparatus which is an optical element manufacturing apparatus according to the present embodiment.

本実施形態においては、溶融ガラスの温度よりも低い所定温度に加熱された成形金型10の下型11の受け面に、溶融槽2の下部に設けられたノズル5より溶融ガラスを供給する。このとき、溶融槽2とノズル5はヒーター3によってそれぞれ所定の温度に加熱されている。溶融ガラスが供給された下型11は上型12の下方まで移動し、下型11と上型12とで溶融ガラスを加圧成形して、上型12の成形面が転写された第1の光学面を有する成形体を得る。その後、第1の光学面の裏面側に追加工によって第2の光学面を形成することで光学素子が完成する。   In the present embodiment, molten glass is supplied from the nozzle 5 provided at the lower part of the melting tank 2 to the receiving surface of the lower mold 11 of the molding die 10 heated to a predetermined temperature lower than the temperature of the molten glass. At this time, the melting tank 2 and the nozzle 5 are each heated to a predetermined temperature by the heater 3. The lower mold 11 to which the molten glass is supplied moves to a position below the upper mold 12, the molten glass is pressure-molded by the lower mold 11 and the upper mold 12, and the molding surface of the upper mold 12 is transferred to the first mold 11. A molded body having an optical surface is obtained. Then, an optical element is completed by forming a 2nd optical surface by an additional process in the back surface side of a 1st optical surface.

(成形金型)
図2は、本実施形態における光学素子の製造方法に用いる成形金型10の断面図である。成形金型10は、下型11と上型12とを有し、更に、外径規制部材13を備えている。下型11は溶融ガラスを受けるための受け面17を有し、上型12は光学素子の第1の光学面を形成するための成形面18を有している。外径規制部材13は、溶融ガラスの外径を規制するための外径規制面19を有し、下型11に組み合わされて固定されている。また、下型11、上型12、外径規制部材13は、加熱手段としてのヒーター14a、15a、16a及び温度センサー14b、15b、16bをそれぞれ有している。
(Molding mold)
FIG. 2 is a cross-sectional view of a molding die 10 used in the method for manufacturing an optical element in the present embodiment. The molding die 10 has a lower die 11 and an upper die 12, and further includes an outer diameter regulating member 13. The lower mold 11 has a receiving surface 17 for receiving molten glass, and the upper mold 12 has a molding surface 18 for forming a first optical surface of the optical element. The outer diameter regulating member 13 has an outer diameter regulating surface 19 for regulating the outer diameter of the molten glass, and is fixed in combination with the lower mold 11. The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 have heaters 14a, 15a, 16a and temperature sensors 14b, 15b, 16b as heating means, respectively.

外径規制部材13は、本発明の製造方法において必ずしも必須の部材ではないが、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型11の受け面17に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面19を有する外径規制部材13を備えていることが好ましい。外径規制部材13は、図2のように下型11と別部材で構成しても良いし、同一部材に受け面17と外径規制面19とを形成し、下型11と外径規制部材13の両方の機能を兼ね備えた部材を用いても良い。   The outer diameter regulating member 13 is not necessarily an essential member in the manufacturing method of the present invention. However, when a relatively large optical element having an outer diameter of, for example, φ20 mm or more is manufactured, a large amount is provided on the receiving surface 17 of the lower mold 11. Since it is necessary to store molten glass, it is preferable to include an outer diameter regulating member 13 having an outer diameter regulating surface 19 for regulating the outer diameter of the molten glass. The outer diameter regulating member 13 may be configured as a separate member from the lower mold 11 as shown in FIG. 2, or a receiving surface 17 and an outer diameter regulating surface 19 are formed on the same member, so that the lower mold 11 and the outer diameter regulating member 13 are formed. A member having both functions of the member 13 may be used.

下型11、上型12、及び外径規制部材13の材質は、炭化タングステンを主成分とする超硬材料、炭化珪素、窒化珪素、窒化アルミニウム、カーボンなど、ガラス製光学素子を加圧成形するための成形金型として公知の材料の中から用途に応じて適宜選択して用いることができる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。下型11、上型12、及び外径規制部材13を全て同一の材料で構成しても良いし、それぞれ別の材料で構成しても良い。   The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 are formed by press-molding a glass optical element such as a super hard material mainly composed of tungsten carbide, silicon carbide, silicon nitride, aluminum nitride, carbon, or the like. As a molding die for this purpose, it can be appropriately selected from known materials according to the use. Moreover, what formed protective films, such as various metals, ceramics, and carbon, on the surface of these materials can also be used. The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 may all be made of the same material, or may be made of different materials.

本発明においては、成形工程で得られる成形体の端部の肉厚が中心の肉厚よりも大きくなるように成形金型を構成する。ここで、上型12の成形面18は、光学素子の第1の光学面を形成するための面であるから、製造する光学素子の第1の光学面の形状に対応した形状とする必要がある。そのため、成形工程で得られる成形体の端部の肉厚が中心の肉厚よりも大きくなるようにするためには、下型11の受け面17を適切な形状とする必要がある。   In the present invention, the molding die is configured so that the thickness of the end portion of the molded body obtained in the molding process is larger than the thickness of the center. Here, since the molding surface 18 of the upper mold 12 is a surface for forming the first optical surface of the optical element, it is necessary to have a shape corresponding to the shape of the first optical surface of the optical element to be manufactured. is there. Therefore, in order to make the thickness of the end portion of the molded body obtained in the molding process larger than the thickness of the center, the receiving surface 17 of the lower mold 11 needs to have an appropriate shape.

図3は、製造する光学素子である光学レンズ20と、それを製造するために用いる成形金型10の断面図である。ヒーター及び温度センサーは図示していない。   FIG. 3 is a cross-sectional view of an optical lens 20 that is an optical element to be manufactured and a molding die 10 used for manufacturing the optical lens 20. The heater and temperature sensor are not shown.

図3(a)は、光学レンズ20の断面図である。光学レンズ20の二つの光学面のうち、上面側の第1の光学面21は上型12の成形面18の転写によって形成し、下面側の第2の光学面22は、成形工程の後に行う追加工によって形成する。二つの光学面のうちいずれの面を上型12の成形面18の転写によって形成する面とするかについては、特に制限はない。ただし、光学レンズ20の二つの光学面のうち、一方の面が、いわゆる非球面等の追加工による形成が困難な形状であり、他方の面が一般的な球面である場合には、非球面を上型12の成形面18の転写によって形成する第1の光学面とし、球面を追加工によって形成する第2の光学面とすることが、生産性の観点から好ましい。尤も、製造する光学素子が、ミラーのように一つの光学面のみを有する物の場合には、その面を第1の光学面として成形によって形成すれば良い。   FIG. 3A is a cross-sectional view of the optical lens 20. Of the two optical surfaces of the optical lens 20, the first optical surface 21 on the upper surface side is formed by transferring the molding surface 18 of the upper mold 12, and the second optical surface 22 on the lower surface side is formed after the molding process. Formed by additional machining. There is no particular limitation on which of the two optical surfaces is to be formed by transferring the molding surface 18 of the upper mold 12. However, when one of the two optical surfaces of the optical lens 20 has a shape that is difficult to form by additional processing such as a so-called aspheric surface, and the other surface is a general spherical surface, the aspherical surface. Is the first optical surface formed by transferring the molding surface 18 of the upper mold 12, and the spherical surface is preferably the second optical surface formed by additional machining, from the viewpoint of productivity. However, when the optical element to be manufactured is an object having only one optical surface such as a mirror, the surface may be formed by molding as the first optical surface.

図3(b)は、光学レンズ20を製造するために用いる成形金型10と、供給された溶融ガラス6の断面図、図3(c)は、成形工程で得られる成形体23の断面図である。成形体23は、成形後の追加工によって図3(c)の波線で示した形状に仕上げられ光学レンズ20が完成する。   3B is a cross-sectional view of the molding die 10 used for manufacturing the optical lens 20 and the supplied molten glass 6. FIG. 3C is a cross-sectional view of the molded body 23 obtained in the molding process. It is. The molded body 23 is finished into the shape shown by the wavy line in FIG. 3C by additional processing after molding, and the optical lens 20 is completed.

上型12の成形面18は、光学レンズ20の第1の光学面21に対応した形状とする。これに対して、光学レンズ20の第2の光学面22は成形後の追加工によって形成するため、下型11の受け面17は第2の光学面22に対応した形状とする必要はない。ここでは、受け面17の形状を、第1の光学面21よりも曲率半径の大きなゆるい凹形状としている。そのため、加圧成形時における上型12の成形面18と下型11の受け面17との間隔が、中心よりも端部で大きくなり、成形工程で得られる成形体23は、端部の肉厚tBが中心の肉厚tAよりも大きい形状となる。ここで、中心の肉厚tAとは、成形体の中心における肉厚をいい、端部の肉厚tBとは、成形体の隅R部分24を除いた最端部における肉厚をいう。   The molding surface 18 of the upper mold 12 has a shape corresponding to the first optical surface 21 of the optical lens 20. On the other hand, since the second optical surface 22 of the optical lens 20 is formed by additional machining after molding, the receiving surface 17 of the lower mold 11 does not need to have a shape corresponding to the second optical surface 22. Here, the shape of the receiving surface 17 is a concave shape having a larger curvature radius than that of the first optical surface 21. Therefore, the distance between the molding surface 18 of the upper mold 12 and the receiving surface 17 of the lower mold 11 at the time of pressure molding is larger at the end than at the center, and the molded body 23 obtained in the molding process has a thickness at the end. The thickness tB is larger than the central wall thickness tA. Here, the thickness tA at the center refers to the thickness at the center of the molded body, and the thickness tB at the end refers to the thickness at the extreme end excluding the corner R portion 24 of the molded body.

図3(b)のように、供給された溶融ガラス6は、下型11の受け面17と外径規制部材13の外径規制面19に接触する。下型11と外径規制部材13の温度は供給される溶融ガラス6よりも低温であることから、溶融ガラス6は主にこれらの接触面から冷却される。また、溶融ガラス6は、表面張力によって中心が盛り上がった形状となるのが普通である。そのため、溶融ガラス6は、受け面17に溜められた後、上型12によって加圧されるまでの間に、中心が高温で端部が低温という温度分布が生じることになる。   As shown in FIG. 3B, the supplied molten glass 6 contacts the receiving surface 17 of the lower mold 11 and the outer diameter regulating surface 19 of the outer diameter regulating member 13. Since the temperature of the lower mold | type 11 and the outer diameter control member 13 is lower than the molten glass 6 supplied, the molten glass 6 is mainly cooled from these contact surfaces. Moreover, it is normal that the molten glass 6 becomes a shape where the center rose by surface tension. Therefore, after the molten glass 6 is collected on the receiving surface 17, a temperature distribution in which the center is high temperature and the end is low temperature is generated until the molten glass 6 is pressed by the upper mold 12.

その後、下型11と上型12による加圧が始まると、今度は溶融ガラス6の上面側に上型12の成形面18が接触し、溶融ガラス6は更に急速に冷却される。加圧成形が始まってから全体が固化するまでの冷却速度は、得られる成形体の各部の肉厚に影響され、肉厚の大きい部分よりも肉厚の小さい部分の方が速く冷却される。   Thereafter, when pressurization by the lower mold 11 and the upper mold 12 starts, the molding surface 18 of the upper mold 12 comes into contact with the upper surface side of the molten glass 6 and the molten glass 6 is further cooled more rapidly. The cooling rate from the start of pressure molding to the solidification of the whole is affected by the thickness of each part of the resulting molded body, and the portion with a small thickness is cooled faster than the portion with a large thickness.

上述のように、加圧の直前の段階では中心よりも端部の方が低温になるため、下型11の受け面17を、成形体の端部の肉厚tBが中心の肉厚tAよりも大きくなるように形成して、成形中の冷却速度が中心よりも端部の方が遅くなるようにすることで、溶融ガラス6が固化するタイミングを均一化することができる。固化するタイミングが均一化されれば、成形時における溶融ガラス6の収縮量が均一化されるため、成形体23の上面側の第1の光学面21を高精度に形成することが可能となるのである。   As described above, at the stage immediately before pressurization, the end portion is cooler than the center, so that the receiving surface 17 of the lower mold 11 has a thickness tB at the end of the molded body that is greater than the thickness tA at the center. And the cooling rate during molding is made slower at the end than at the center, so that the timing at which the molten glass 6 solidifies can be made uniform. If the solidification timing is made uniform, the amount of shrinkage of the molten glass 6 at the time of molding is made uniform, so that the first optical surface 21 on the upper surface side of the molded body 23 can be formed with high accuracy. It is.

成形体23の中心の肉厚tAに対する端部の肉厚tBの比率については、一般的には、tB/tAが1.1〜2とすることが好ましい。tB/tAが1.1より小さいと端部から先に固化しやすく、2より大きいと逆に中心から先に固化しやすくなる。ただし、実際に溶融ガラス6が固化するタイミングは、受け面17や成形面18の形状、成形体23の外径、下型11、上型12、外径規制部材13の各部材の温度や材質、溶融ガラス6の温度や材質など多くの因子に影響されるため、具体的な構成に応じて適宜適切な値を選択する必要がある。   Regarding the ratio of the wall thickness tB at the end to the wall thickness tA at the center of the molded body 23, it is generally preferable that tB / tA is 1.1-2. If tB / tA is smaller than 1.1, it tends to solidify first from the end, and if it is larger than 2, it tends to solidify first from the center. However, the timing at which the molten glass 6 is actually solidified includes the shape of the receiving surface 17 and the molding surface 18, the outer diameter of the molded body 23, the temperature and material of each member of the lower mold 11, the upper mold 12, and the outer diameter regulating member 13. Since it is influenced by many factors such as the temperature and material of the molten glass 6, it is necessary to select an appropriate value according to the specific configuration.

図4は、別の形状の光学素子である光学レンズ30と、それを製造するために用いる成形金型10bの断面図である。図3と同様に、ヒーター及び温度センサーは図示していない。   FIG. 4 is a cross-sectional view of an optical lens 30 which is an optical element of another shape and a molding die 10b used for manufacturing the same. As in FIG. 3, the heater and temperature sensor are not shown.

図4(a)は、光学レンズ30の断面図である。光学レンズ30は、凸非球面形状の第1の光学面31と、凹球面形状の第2の光学面32とを有している。そのため、凸非球面形状の第1の光学面31は上型12bの成形面18bの転写によって形成し、凹球面形状の第2の光学面32は、成形工程の後に行う追加工によって形成する。   FIG. 4A is a cross-sectional view of the optical lens 30. The optical lens 30 includes a first optical surface 31 having a convex aspheric shape and a second optical surface 32 having a concave spherical shape. Therefore, the first optical surface 31 having a convex aspheric shape is formed by transferring the molding surface 18b of the upper mold 12b, and the second optical surface 32 having a concave spherical shape is formed by an additional process performed after the molding process.

図4(b)は、光学レンズ30を製造するために用いる成形金型10bと、供給された溶融ガラス6bの断面図、図4(c)は、成形工程で得られる成形体33の断面図である。成形体33は、成形後の追加工によって図4(c)の波線で示した形状に仕上げられ光学レンズ30が完成する。   4B is a sectional view of the molding die 10b used for manufacturing the optical lens 30 and the supplied molten glass 6b, and FIG. 4C is a sectional view of the molded body 33 obtained in the molding process. It is. The molded body 33 is finished into the shape shown by the wavy line in FIG. 4C by additional processing after molding, and the optical lens 30 is completed.

上型12bの成形面18bは、光学レンズ30の第1の光学面31に対応した形状とする。下型11bの受け面17bは、第1の光学面31よりも曲率半径の小さな凸形状としている。そのため、成形工程で得られる成形体33は、端部の肉厚tBが中心の肉厚tAよりも大きい形状となる。   The molding surface 18 b of the upper mold 12 b has a shape corresponding to the first optical surface 31 of the optical lens 30. The receiving surface 17 b of the lower mold 11 b has a convex shape with a smaller radius of curvature than the first optical surface 31. Therefore, the molded body 33 obtained in the molding process has a shape in which the thickness tB at the end is larger than the thickness tA at the center.

このような形状の場合においても、図3の場合と同様に、加圧の直前の段階では溶融ガラス6bの中心よりも端部の方が低温になる。そのため、下型11bの受け面17bを、成形体33の端部の肉厚tBが中心の肉厚tAよりも大きくなるように形成して、成形中の冷却速度が中心よりも端部の方が遅くなるようにすることで、溶融ガラス6bが固化するタイミングを均一化することができる。固化するタイミングが均一化されれば、成形時における溶融ガラス6bの収縮量が均一化されるため、成形体33の上面側の第1の光学面31を高精度に形成することが可能となる。   Even in the case of such a shape, as in the case of FIG. 3, the end portion is cooler than the center of the molten glass 6 b at the stage immediately before pressurization. Therefore, the receiving surface 17b of the lower mold 11b is formed so that the wall thickness tB of the end portion of the molded body 33 is larger than the center wall thickness tA, and the cooling rate during molding is closer to the end portion than the center. By making it slow, the timing which the molten glass 6b solidifies can be equalize | homogenized. If the solidification timing is made uniform, the shrinkage amount of the molten glass 6b at the time of molding is made uniform, so that the first optical surface 31 on the upper surface side of the molded body 33 can be formed with high accuracy. .

(加熱工程)
加熱工程は、成形金型を溶融ガラスの温度よりも低い所定温度に加熱する工程である。図2に示すように、成形金型10は、下型11と上型12とを有し、更に、必要に応じて外径規制部材13を備えていても良い。
(Heating process)
The heating step is a step of heating the molding die to a predetermined temperature lower than the temperature of the molten glass. As shown in FIG. 2, the molding die 10 includes a lower die 11 and an upper die 12, and may further include an outer diameter regulating member 13 as necessary.

下型11、上型12、外径規制部材13は、加熱手段としてのヒーター14a、15a、16a及び温度センサー14b、15b、16bをそれぞれ有している。このように、それぞれの部材を独立して温度調節することができる構成としても良いし、成形金型全体を一つ、あるいは複数のヒーターでまとめて加熱するような構成としても良い。ヒーターは、公知の各種のヒーターの中から適宜選択して用いることができる。例えば、部材の内部に埋め込んで使用するカートリッジヒーターや、部材の外側に接触させて使用するシート状のヒーターなどを用いることができる。また、温度センサーとしては、種々の熱電対の他、白金測温抵抗体、各種サーミスタなど公知の手段を使用することができる。   The lower die 11, the upper die 12, and the outer diameter regulating member 13 have heaters 14a, 15a, 16a and temperature sensors 14b, 15b, 16b as heating means, respectively. Thus, it is good also as a structure which can adjust temperature of each member independently, and it is good also as a structure which heats the whole shaping die collectively with one or several heaters. The heater can be appropriately selected from known various heaters. For example, a cartridge heater that is used by being embedded inside the member, or a sheet heater that is used while being in contact with the outside of the member can be used. In addition to various thermocouples, known means such as a platinum resistance thermometer and various thermistors can be used as the temperature sensor.

成形金型10の内、上型12の加熱温度は、溶融ガラスに成形面18の形状を良好に転写できる温度範囲に設定する必要がある。通常、成形するガラスのTg(ガラス転移点)−100℃からTg+100℃程度の温度範囲とすることが好ましい。加熱温度が低すぎると溶融ガラスに成形面18の形状を良好に転写させることが困難になってくる。逆に、必要以上に温度を高くしすぎることは、ガラスと成形金型との融着を防止する観点や、成形金型の寿命の観点から好ましくない。実際には、成形するガラスの材質や、成形体の形状、大きさ、成形金型の材質、保護膜の種類、ヒーターや温度センサーの位置等種々の条件を考慮に入れて適正な温度を決定する。   Of the molding die 10, the heating temperature of the upper die 12 needs to be set in a temperature range in which the shape of the molding surface 18 can be satisfactorily transferred to the molten glass. Usually, it is preferable to make it the temperature range of Tg (glass transition point) -100 degreeC of glass to shape | mold to about Tg + 100 degreeC. If the heating temperature is too low, it becomes difficult to transfer the shape of the molding surface 18 to the molten glass. On the contrary, it is not preferable to raise the temperature more than necessary from the viewpoint of preventing fusion between the glass and the molding die and the life of the molding die. In practice, the appropriate temperature is determined taking into account various conditions such as the glass material to be molded, the shape and size of the molded body, the material of the molding die, the type of protective film, the position of the heater and temperature sensor, etc. To do.

下型11と外径規制部材13の加熱温度については、上型12とは異なり成形面の転写性を考慮する必要はないが、溶融ガラス6の冷却速度に影響することから、上型12と同様に、成形するガラスのTg−100℃からTg+100℃程度の温度範囲とすることが好ましい。   Unlike the upper mold 12, the heating temperature of the lower mold 11 and the outer diameter regulating member 13 does not need to consider the transferability of the molding surface, but affects the cooling rate of the molten glass 6. Similarly, it is preferable to make it the temperature range of Tg-100 degreeC of the glass to shape | mold to Tg + 100 degreeC.

(溶融ガラス供給工程)
溶融ガラス供給工程は、下型11の受け面17に溶融ガラス6を供給する工程である。供給された溶融ガラス6は、下型11の受け面17に接触して冷却される。成形金型が、溶融ガラスの外径を規制するための外径規制面19を有する外径規制部材13を備えている場合には、外径規制面19にも接触して冷却される。
(Molten glass supply process)
The molten glass supply step is a step of supplying the molten glass 6 to the receiving surface 17 of the lower mold 11. The supplied molten glass 6 comes into contact with the receiving surface 17 of the lower mold 11 and is cooled. When the molding die is provided with the outer diameter regulating member 13 having the outer diameter regulating surface 19 for regulating the outer diameter of the molten glass, it is also cooled by contacting the outer diameter regulating surface 19.

溶融ガラス6を供給する方法について特に制限はなく、公知の手法を適宜選択して用いることができる。例えば、ノズル先端から溶融状態のガラス滴が自重により落下する状態で、下型11をノズル先端に接近させて受け面17に所定量の溶融ガラスを滞留させた後、下型11を下方に引き下げて溶融ガラスを切断する方法(特許文献1を参照。)を用いることも好ましい。また、ノズル先端から溶融ガラスが液線状態で流出する状態で、下型11に所定量の溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断する方法を用いることもできる。   There is no restriction | limiting in particular about the method of supplying the molten glass 6, A well-known method can be selected suitably and can be used. For example, in a state where a molten glass droplet falls from the tip of the nozzle due to its own weight, the lower die 11 is brought close to the nozzle tip and a predetermined amount of molten glass is retained on the receiving surface 17, and then the lower die 11 is pulled down. It is also preferable to use a method of cutting molten glass (see Patent Document 1). Alternatively, a method of cutting a molten glass with a metal blade after a predetermined amount of molten glass is retained in the lower mold 11 in a state where the molten glass flows out from the nozzle tip in a liquid state.

使用できるガラスの種類に特に制限はなく、光学的用途に用いられる公知のガラスを用途に応じて選択して用いることができる。例えば、リン酸系ガラス、ランタン系ガラスなどが挙げられる
(成形工程)
成形工程は、成形金型で溶融ガラスを加圧成形し、上型の成形面が転写された第1の光学面を有する成形体を形成する工程である。上述のように、この成形工程で得られる成形体は、中心の肉厚よりも端部の肉厚の方が大きい形状を有している。
There is no restriction | limiting in particular in the kind of glass which can be used, The well-known glass used for an optical use can be selected and used according to a use. For example, phosphate glass, lanthanum glass, etc. (molding process)
The molding step is a step of forming a molded body having a first optical surface on which the molding surface of the upper mold is transferred by pressure-molding molten glass with a molding die. As described above, the molded body obtained in this molding step has a shape in which the thickness of the end portion is larger than the thickness of the center.

加圧手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータを用いた電動シリンダ等の公知の加圧手段を適宜選択して用いることができる。   The pressurizing means is not particularly limited, and known pressurizing means such as an air cylinder, a hydraulic cylinder, and an electric cylinder using a servo motor can be appropriately selected and used.

加圧の間に溶融ガラスの冷却が更に進む。溶融ガラスが十分固化する温度まで冷却された後、加圧を解除して成形金型から成形体を取り出す。加圧を解除する際の成形体の温度は、ガラスの種類や、成形体の大きさや形状、必要な精度等によるが、通常はガラスのTg近傍の温度まで冷却されていれば良い。必要な加圧時間、荷重も種々の条件によって異なるが、通常は、加圧時間が10秒〜300秒、荷重が500N〜20000Nの範囲の中から適切な値を選択すれば良い。   Cooling of the molten glass further proceeds during pressing. After being cooled to a temperature at which the molten glass is sufficiently solidified, the pressure is released and the molded body is taken out from the molding die. The temperature of the molded body at the time of releasing the pressure depends on the type of glass, the size and shape of the molded body, the required accuracy, and the like, but it may be usually cooled to a temperature in the vicinity of Tg of the glass. Necessary pressurization time and load vary depending on various conditions, but normally, an appropriate value may be selected from the range of pressurization time of 10 seconds to 300 seconds and load of 500 N to 20000 N.

なお、溶融ガラスと外径規制部材が接触した状態のままで加圧を行っても良いし、成形工程の前に外径規制部材を退避させて溶融ガラスと外径規制部材との接触を解除した後に加圧を行っても良い。後者の場合、溶融ガラスが外部に流れ出さない程度の粘度になるまで冷却された後に外径規制部材を退避させる必要がある。   Note that pressurization may be performed while the molten glass and the outer diameter regulating member are in contact with each other, or the outer diameter regulating member is retracted before the molding process to release the contact between the molten glass and the outer diameter regulating member. After that, pressurization may be performed. In the latter case, it is necessary to retract the outer diameter regulating member after cooling until the viscosity reaches a level at which the molten glass does not flow outside.

また、得られた成形体に残存する歪みを除去し、屈折率等の品質を均一化して更に高精度の光学素子とするために、成形体をアニールする工程を設けることもできる。   In addition, a step of annealing the molded body can be provided in order to remove distortion remaining in the obtained molded body and to make the quality such as the refractive index uniform and to obtain a more accurate optical element.

(追加工工程)
追加工工程とは、成形工程の後に、成形体の第1の光学面の裏面側に第2の光学面を形成する工程である。
(Additional process)
The additional processing step is a step of forming the second optical surface on the back side of the first optical surface of the molded body after the molding step.

一般的には、高速研削機(カーブジェネレータ)等を用いた粗摺工程、ダイヤモンドペレット等を用いた精研削工程、研磨剤で表面を仕上げる研磨工程といった工程によって光学面を形成することができるが、これに限定されることはなく、公知の手法を適宜選択して用いることができる。   In general, an optical surface can be formed by a process such as a roughing process using a high-speed grinding machine (curve generator), a fine grinding process using diamond pellets, or a polishing process for finishing the surface with an abrasive. However, the present invention is not limited to this, and a known method can be appropriately selected and used.

また、研削等によって光学素子の外径面を形成する工程を備えていても良い。   Moreover, you may provide the process of forming the outer diameter surface of an optical element by grinding etc.

(実施例1、2)
図1に示す成形装置を用いて成形体を作製し、上型の成形面の転写によって形成された第1の光学面の形状精度の評価を行った。成形金型は図3(b)に示す成形金型10を用いて、図3(c)に示す成形体23を作製した。第1の光学面21は、通常、非球面とすることが多いが、ここでは評価を容易にするため曲率半径12mmの球面とした。
(Examples 1 and 2)
A molded body was produced using the molding apparatus shown in FIG. 1, and the shape accuracy of the first optical surface formed by transferring the molding surface of the upper mold was evaluated. A molding die 23 shown in FIG. 3C was produced using a molding die 10 shown in FIG. The first optical surface 21 is usually an aspherical surface in many cases, but here a spherical surface having a curvature radius of 12 mm is used for easy evaluation.

成形体23の外径はφ25mm、中心の肉厚tAは3mmとした。端部の肉厚tBは、それぞれ3.3mm(実施例1)、5mm(実施例2)となるように下型11を作製した。下型11、上型12、外径規制部材13は、いずれも炭化タングステンを主成分とする超硬材料を用いた。加熱温度は、下型11と外径規制部材13が520℃、上型12が430℃に設定した。   The molded body 23 had an outer diameter of 25 mm and a center thickness tA of 3 mm. The lower mold 11 was fabricated so that the wall thickness tB of the end portion was 3.3 mm (Example 1) and 5 mm (Example 2), respectively. The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 are all made of a super hard material mainly composed of tungsten carbide. The heating temperature was set to 520 ° C. for the lower die 11 and the outer diameter regulating member 13, and 430 ° C. for the upper die 12.

ガラス材料にはリン酸系ガラスを用いた。ノズル先端を1000℃に加熱し、溶融状態のガラス滴が自重により落下する状態で、下型11をノズル先端に接近させて受け面17に溶融ガラスを滞留させた後、下型11を下方に引き下げて溶融ガラスを切断し、成形体と同体積の溶融ガラスを供給した。その後、下型11を上型12に対向する位置まで移動し、1800Nの荷重で70秒の間溶融ガラスを加圧した。   Phosphoric glass was used as the glass material. The nozzle tip is heated to 1000 ° C., and the molten glass drops fall under its own weight, the lower die 11 is brought close to the nozzle tip and the molten glass is retained on the receiving surface 17, and then the lower die 11 is moved downward. The molten glass was cut by pulling down, and a molten glass having the same volume as the compact was supplied. Then, the lower mold | type 11 was moved to the position facing the upper mold | type 12, and the molten glass was pressurized for 70 second with the load of 1800N.

取り出した成形体の光学面21の形状精度を評価した。評価は、テーラーホブソン株式会社製の表面形状測定器PGI840を用いて球面からのずれ量の最大値を求め、球面からのずれ量の最大値が150nm以下であり極めて良好な場合を◎、150nmより大きく300nm以下であり良好な場合を○、300nmより大きく問題となる場合を×とした。   The shape accuracy of the optical surface 21 of the molded body taken out was evaluated. For evaluation, the maximum value of the deviation from the spherical surface was obtained using a surface shape measuring instrument PGI840 manufactured by Taylor Hobson Co., Ltd., and the maximum value of the deviation from the spherical surface was 150 nm or less. The case where it was large and 300 nm or less and good was rated as ○, and the case where the problem was larger than 300 nm was marked as x.

評価結果を表1に示す。実施例1、2共に光学面21の形状精度は150nm以下であり、成形によって高精度な光学面を形成することができた。   The evaluation results are shown in Table 1. In both Examples 1 and 2, the shape accuracy of the optical surface 21 was 150 nm or less, and a high-precision optical surface could be formed by molding.

Figure 2008074636
Figure 2008074636

(比較例1、2)
成形体の端部の肉厚tBが、それぞれ3mm(比較例1)、2.5mm(比較例2)となるように下型を作製した。それ以外は実施例1と同じ条件で成形体を作製し、取り出した成形体の光学面の形状精度を評価した。
(Comparative Examples 1 and 2)
The lower mold was manufactured so that the thickness tB of the end portion of the molded body was 3 mm (Comparative Example 1) and 2.5 mm (Comparative Example 2), respectively. Other than that, a molded body was produced under the same conditions as in Example 1, and the shape accuracy of the optical surface of the removed molded body was evaluated.

評価結果を表1に併せて示す。実施例1、2の場合と異なり、光学面の形状精度は何れも300nmよりも大きく、高精度な光学面を形成することはできなかった。   The evaluation results are also shown in Table 1. Unlike the cases of Examples 1 and 2, the shape accuracy of the optical surface was larger than 300 nm, and a highly accurate optical surface could not be formed.

(実施例3〜6)
図1に示す成形装置を用いて成形体を作製し、上型の成形面の転写によって形成された第1の光学面の形状精度の評価を行った。成形金型は図4(b)に示す成形金型10bを用いて、図4(c)に示す成形体33を作製した。第1の光学面31は曲率半径20mmの球面とした。
(Examples 3 to 6)
A molded body was produced using the molding apparatus shown in FIG. 1, and the shape accuracy of the first optical surface formed by transferring the molding surface of the upper mold was evaluated. As a molding die, a molding body 33 shown in FIG. 4C was produced using a molding die 10b shown in FIG. 4B. The first optical surface 31 was a spherical surface having a curvature radius of 20 mm.

成形体33の外径はφ40mm、中心の肉厚tAは5mmとした。端部の肉厚tBは、それぞれ5.5mm(実施例3)、8mm(実施例4)、10mm(実施例5)、12mm(実施例6)となるように下型11bを作製した。下型11b、上型12b、外径規制部材13bの材質は、いずれも炭化珪素とした。加熱温度は、下型11bが710℃、外径規制部材13bが730℃、上型12bが680℃に設定した。   The molded body 33 had an outer diameter of 40 mm and a center thickness tA of 5 mm. The lower mold 11b was manufactured so that the wall thickness tB of the end portion was 5.5 mm (Example 3), 8 mm (Example 4), 10 mm (Example 5), and 12 mm (Example 6), respectively. The materials of the lower mold 11b, the upper mold 12b, and the outer diameter regulating member 13b are all silicon carbide. The heating temperature was set to 710 ° C. for the lower die 11b, 730 ° C. for the outer diameter regulating member 13b, and 680 ° C. for the upper die 12b.

ガラス材料には、ランタン系ガラスを用いた。ノズル先端を1200℃に加熱し、ノズル先端から溶融ガラスが液線状態で流出する状態で下型11bに溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断し、成形体と同体積の溶融ガラスを供給した。その後、下型11bを上型12bに対向する位置まで移動し、3200Nの荷重で110秒の間溶融ガラスを加圧した。   Lanthanum-based glass was used as the glass material. The nozzle tip is heated to 1200 ° C., and the molten glass is retained in the lower mold 11b in a state where the molten glass flows out in a liquid line state from the nozzle tip, and then the molten glass is cut with a metal blade to have the same volume as the compact. Molten glass was supplied. Then, the lower mold | type 11b was moved to the position facing the upper mold | type 12b, and the molten glass was pressurized for 110 second with the load of 3200N.

取り出した成形体の光学面31の形状精度を評価した。評価は、実施例1と同様の方法で行った。評価結果を表2に示す。光学面21の形状精度は、実施例3〜5では150nm以下、実施例6で300nm以下であり、何れも成形によって高精度な光学面を形成することができた。   The shape accuracy of the optical surface 31 of the molded body taken out was evaluated. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 2. The shape accuracy of the optical surface 21 was 150 nm or less in Examples 3 to 5 and 300 nm or less in Example 6, and in both cases, a highly accurate optical surface could be formed by molding.

Figure 2008074636
Figure 2008074636

(比較例3、4)
成形体の端部の肉厚tBが、それぞれ5mm(比較例3)、4mm(比較例4)となるように下型を作製した。それ以外は実施例3〜6と同じ条件で成形体を作製し、取り出した成形体の光学面の形状精度を評価した。
(Comparative Examples 3 and 4)
The lower mold was manufactured so that the thickness tB of the end portion of the molded body was 5 mm (Comparative Example 3) and 4 mm (Comparative Example 4), respectively. Other than that produced the molded object on the same conditions as Examples 3-6, and evaluated the shape accuracy of the optical surface of the taken-out molded object.

評価結果を表2に併せて示す。実施例3〜6の場合と異なり、光学面の形状精度は何れも300nmよりも大きく、高精度な光学面を形成することはできなかった。   The evaluation results are also shown in Table 2. Unlike the cases of Examples 3 to 6, the shape accuracy of the optical surface was larger than 300 nm, and a highly accurate optical surface could not be formed.

本実施形態において用いる成形装置の一例を示す模式図Schematic diagram showing an example of a molding apparatus used in the present embodiment 本実施形態において用いる成形金型の断面図Sectional view of the molding die used in this embodiment 製造する光学素子である光学レンズ20と、それを製造するために用いる成形金型10の断面図Sectional drawing of the optical lens 20 which is an optical element to manufacture, and the molding die 10 used in order to manufacture it 別の形状の光学素子である光学レンズ30と、それを製造するために用いる成形金型10bの断面図Sectional drawing of the optical lens 30 which is an optical element of another shape, and the molding die 10b used in order to manufacture it

符号の説明Explanation of symbols

1 成形装置
2 溶融槽
5 ノズル
6 溶融ガラス
10、10b 成形金型
11、11b 下型
12、12b 上型
13、13b 外径規制部材
17、17b 受け面
18、18b 成形面
19、19b 外径規制面
20、30 光学レンズ(光学素子)
21、31 第1の光学面
22、32 第2の光学面
23、33 成形体
tA 中心の肉厚
tB 端部の肉厚
DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Melting tank 5 Nozzle 6 Molten glass 10, 10b Molding die 11, 11b Lower mold 12, 12b Upper mold 13, 13b Outer diameter regulating member 17, 17b Receiving surface 18, 18b Molded surface 19, 19b Outer diameter regulation Surface 20, 30 Optical lens (optical element)
21, 31 First optical surface 22, 32 Second optical surface 23, 33 Molded body tA Center thickness tB End thickness

Claims (4)

溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための成形面を有する上型とを備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、
前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、
前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有し、
前記下型の前記受け面は、前記成形工程で得られる成形体の端部の肉厚が中心の肉厚よりも大きくなるように形成されていることを特徴とする光学素子の製造方法。
A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a molding surface for forming the first optical surface of the optical element, a predetermined temperature lower than the temperature of the molten glass A heating step of heating to
A molten glass supply step of supplying the molten glass to the receiving surface of the lower mold;
Pressing the molten glass with the molding die, and forming a molded body having a first optical surface onto which the molding surface of the upper mold is transferred, and
The method of manufacturing an optical element, wherein the receiving surface of the lower mold is formed such that the thickness of the end portion of the molded body obtained in the molding process is larger than the thickness of the center.
前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする請求項1に記載の光学素子の製造方法。 2. The optical element manufacturing method according to claim 1, further comprising an additional processing step of forming a second optical surface on the back surface side of the first optical surface of the molded body by additional processing after the molding step. Method. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、
前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする請求項1又は2に記載の光学素子の製造方法。
The molding die includes an outer diameter regulating member having an outer diameter regulating surface for regulating the outer diameter of the molten glass,
3. The optical element according to claim 1, wherein in the molten glass supply step, the molten glass supplied to the receiving surface of the lower mold is in contact with an outer diameter regulating surface of the outer diameter regulating member. Manufacturing method.
溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための成形面を有する上型とを備える成形金型と、
前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、
前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、
前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有し、
前記下型の前記受け面は、加圧成形時における前記上型の成形面との間隔が、中心よりも端部の方が大きくなるように形成されていることを特徴とする光学素子の製造装置。
A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a molding surface for forming the first optical surface of the optical element;
Heating means for heating the molding die to a predetermined temperature lower than the temperature of the molten glass;
Molten glass supply means for supplying the molten glass to the receiving surface of the lower mold,
Pressurizing the molten glass with the molding die, and forming a molded body having a first optical surface to which the molding surface of the upper mold is transferred, and
The optical element manufacturing method according to claim 1, wherein the receiving surface of the lower mold is formed such that an interval between the receiving surface of the lower mold and the molding surface of the upper mold is larger at the end than at the center. apparatus.
JP2006252496A 2006-09-19 2006-09-19 Method and device for producing optical element Pending JP2008074636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252496A JP2008074636A (en) 2006-09-19 2006-09-19 Method and device for producing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252496A JP2008074636A (en) 2006-09-19 2006-09-19 Method and device for producing optical element

Publications (1)

Publication Number Publication Date
JP2008074636A true JP2008074636A (en) 2008-04-03

Family

ID=39347081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252496A Pending JP2008074636A (en) 2006-09-19 2006-09-19 Method and device for producing optical element

Country Status (1)

Country Link
JP (1) JP2008074636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153051A (en) * 2010-01-28 2011-08-11 Ishizuka Glass Co Ltd Forming method for glass formed product and apparatus for the same
US20110215492A1 (en) * 2008-11-19 2011-09-08 Toshiya Tomisaka Manufacturing method of aspheric surface lens
JPWO2021084586A1 (en) * 2019-10-28 2021-11-18 株式会社ダイテック How to mold display lenses, display lens mold set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208248A (en) * 1995-01-25 1996-08-13 Olympus Optical Co Ltd Glass lens and formation of the lens
JP2002338265A (en) * 2001-05-08 2002-11-27 Canon Inc Optical glass forming die, optical glass forming and formed optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208248A (en) * 1995-01-25 1996-08-13 Olympus Optical Co Ltd Glass lens and formation of the lens
JP2002338265A (en) * 2001-05-08 2002-11-27 Canon Inc Optical glass forming die, optical glass forming and formed optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110215492A1 (en) * 2008-11-19 2011-09-08 Toshiya Tomisaka Manufacturing method of aspheric surface lens
JP2011153051A (en) * 2010-01-28 2011-08-11 Ishizuka Glass Co Ltd Forming method for glass formed product and apparatus for the same
JPWO2021084586A1 (en) * 2019-10-28 2021-11-18 株式会社ダイテック How to mold display lenses, display lens mold set

Similar Documents

Publication Publication Date Title
JP2008074636A (en) Method and device for producing optical element
JP4368368B2 (en) Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element
JPH0471853B2 (en)
JP4784454B2 (en) Optical element manufacturing method and manufacturing apparatus
JP4992035B2 (en) Optical element manufacturing method
CN101801862B (en) Process for producing glass shaped article
JP5081717B2 (en) Mold, method for manufacturing precision press-molding preform, method for manufacturing optical element
JP4289716B2 (en) Glass element molding method
JP2010254519A (en) Apparatus for manufacturing glass molding and method for manufacturing the glass molding
JPH0513096B2 (en)
WO2010122844A1 (en) Apparatus for manufacturing glass molding
JP4779861B2 (en) Manufacturing method of glass optical element
JP2008094654A (en) Method and apparatus for manufacturing optical element
JP2000001321A (en) Method for forming glass gob as glass optical element or blank for producing the same
JP2008230874A (en) Method for producing optical element
JP2008297159A (en) Molten glass dropping nozzle, and method and apparatus for manufacturing shaped glass
JP2501585B2 (en) Optical element molding method
JP2001278631A (en) Glass forming die manufacturing method of glass formed body and glass optical element
JP2010184830A (en) Method and apparatus for producing glass molded body
JP5197696B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JPH0372016B2 (en)
JP2011251887A (en) Apparatus and method for producing optical element
JPH0472777B2 (en)
JP2008239423A (en) Method for manufacturing optical element
WO2011021550A1 (en) Method for manufacturing a molded glass body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Effective date: 20110225

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524