JPH03265528A - Method for molding optical element - Google Patents

Method for molding optical element

Info

Publication number
JPH03265528A
JPH03265528A JP6458090A JP6458090A JPH03265528A JP H03265528 A JPH03265528 A JP H03265528A JP 6458090 A JP6458090 A JP 6458090A JP 6458090 A JP6458090 A JP 6458090A JP H03265528 A JPH03265528 A JP H03265528A
Authority
JP
Japan
Prior art keywords
glass
viscosity
mold
molding
poise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6458090A
Other languages
Japanese (ja)
Other versions
JP2746454B2 (en
Inventor
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2064580A priority Critical patent/JP2746454B2/en
Publication of JPH03265528A publication Critical patent/JPH03265528A/en
Application granted granted Critical
Publication of JP2746454B2 publication Critical patent/JP2746454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent the heat shock at the time of molding and to suppress the generation of large sink marks and cracks by specifying the viscosity of the glass to be molded and the temp., etc., of forming molds. CONSTITUTION:The glass 3 which is heated and melted until the viscosity attains 10<2> to 10<3> poises is run out of an outflow port 2 and after the glass is cut by a shear 4, the glass is dropped onto the preforming lower mold 1 held at the temp. at which the viscosity corresponds to 10<7> to 10<9> poises. Tbe glass is thereby preformed between a matrix 5 and a preforming upper mold 6 and is forcibly cooled until the viscosity of the glass attains 10<7> to 10<8> poises. The matrix 5 and the preformed glass 8 are then supported by a transporting arm 7 at the point of the time when the viscosity of the glass attains 10<8> to 10<9> poises. The lower mold 1 is lowered and is transported to the spacing be tween the lower mold P for normal molding and the upper mold 10 for normal molding held at the temp. at which the viscosity of the glass corresponds to 10<12> to 10<13> poises. The glass is then subjected to normal molding and the molded glass 11 is forcibly cooled until the glass attains the temp. below the glass transition point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガラスレンズやプリズム等の光学素子の成形
方法に係り、特に光学ガラス素材を加熱溶融し、成形型
によりプレス成形するだけで高い面精度と面粗度を有す
る光学素子を成形し得るようにした成形方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for molding optical elements such as glass lenses and prisms, and in particular, the present invention relates to a method for molding optical elements such as glass lenses and prisms. The present invention relates to a molding method capable of molding an optical element having surface precision and surface roughness.

〔従来の技術〕[Conventional technology]

従来、レンズやプリズム等を製造するには、材料をダイ
ヤモンド砥石等によって研削した後、酸化セリウム等に
よって研磨する方法が採られてきた。ところが、非球面
レンズ等のニーズが高まり、従来の方法では、低コスト
で大量の光学素子を製造するのは難しくなった。そこで
近年、成形型によりプレス成形するだけで非球面レンズ
等を生産する製造方法が提案されている。
Conventionally, in order to manufacture lenses, prisms, etc., a method has been adopted in which materials are ground with a diamond grindstone or the like and then polished with cerium oxide or the like. However, as the need for aspherical lenses and the like has increased, it has become difficult to manufacture large quantities of optical elements at low cost using conventional methods. Therefore, in recent years, a manufacturing method has been proposed in which aspherical lenses and the like are produced simply by press molding with a mold.

例えば、特開昭63−307130号公報では、ガラス
転移点温度からその温度より110°C低い温度までの
間に成形型の型温を保持し、この予備成形型により溶融
ガラスの予備成形を行った後、型温をガラス転移点温度
からその温度より50°C低い温度までの間に保持した
本成形型により、前記予備成形後のガラスに対して本成
形を行う方法が開示されている。また、特開昭63−3
10735号公報では、ガラスを成形し、成形終了時で
成形型と成形品との温度差を20℃以内に維持しておい
た状態で、ガラス転移点温度まで冷却を行う一次冷却と
、次いで成形型内に成形品を収容したまま除去歪下限温
度まで一次冷却より遅い速度で冷却する二次冷却とを行
い、成形品を得る方法が開示されている。
For example, in Japanese Patent Application Laid-Open No. 63-307130, the mold temperature of the mold is maintained between the glass transition point temperature and a temperature 110°C lower than that temperature, and molten glass is preformed using this preform mold. After that, a method is disclosed in which the preformed glass is subjected to main molding using a main mold in which the mold temperature is maintained between the glass transition point temperature and a temperature 50° C. lower than that temperature. Also, JP-A-63-3
In Publication No. 10735, glass is molded, and the temperature difference between the mold and the molded product is maintained within 20°C at the end of molding, followed by primary cooling in which the glass is cooled to the glass transition temperature, and then molding. A method is disclosed in which a molded product is obtained by performing secondary cooling in which the molded product is cooled to the lower limit removal strain temperature at a slower rate than the primary cooling while the molded product is housed in a mold.

[発明が解決しようとするIN) しかし、特開昭63−307130号公報の成形方法で
は、予備成形工程での型温かガラス転移点付近若しくは
その温度以下であるため、溶融ガラスを成形すると、成
形型とガラスとの温度差から、大きなヒケを生したり、
ヒートショックがガラスに加えられて割れを生してしま
った。一方、特開昭63−310735号公報の成形方
法では、成形後、成形品をプレス状態でガラス転移点温
度まで冷却し、さらに冷却歪下限温度まで冷却するため
、成形のサイクルタイムが長くなり、また成形型が長時
間高温にさらされるため、型寿命が短くなってしまうと
いう問題があった。
[Invention to be Solved by the Invention] However, in the molding method of JP-A-63-307130, the temperature of the mold in the preforming step is near or below the glass transition point, so when the molten glass is molded, the molding Large sink marks may occur due to the temperature difference between the mold and the glass.
Heat shock was applied to the glass, causing it to crack. On the other hand, in the molding method disclosed in JP-A-63-310735, after molding, the molded product is cooled in a pressed state to the glass transition point temperature and then further cooled to the lower limit temperature of cooling strain, which increases the molding cycle time. Furthermore, since the mold is exposed to high temperatures for a long period of time, there is a problem that the life of the mold is shortened.

このような問題は、生産性および生産能率を著しく低下
させるものであった。
Such problems have significantly reduced productivity and production efficiency.

本発明は、かかる従来の問題点に鑑みてなされたもので
、多大なヒケや割れを防止しつつサイクルタイムを短縮
した効率のよい光学素子の成形方法を提供することを目
的とする。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an efficient method for molding an optical element that shortens cycle time while preventing large sink marks and cracks.

〔課題を解決するための手段および作用〕上記目的を達
成するために、本発明は光学ガラスを加熱溶融し、プレ
スして光学素子を得る光学素子の成形方法において、光
学ガラスをその粘度が10”〜103ポアズになるまで
加熱溶融し、この溶融ガラスを前記光学ガラスの粘度で
10″〜10″ポアズに相当する温度に保持した予備成
形型にて予備プレス成形するとともに、予備成形したガ
ラスが107〜108ポアズの粘度になるまで強制冷却
を行い、冷却したガラスが10”〜109ポアズの粘度
になった時点で光学ガラスの粘度で10′!〜1013
ポアズに相当する温度に保持した本成形型にて本プレス
成形するとともに、成形したガラスがガラス転移点以下
の温度になるまで強制冷却した後にプレスを絆了するこ
ととした。
[Means and operations for solving the problems] In order to achieve the above object, the present invention provides a method for molding an optical element in which an optical element is obtained by heating and melting optical glass and pressing the optical glass. This molten glass is pre-press-molded in a pre-forming mold held at a temperature corresponding to 10-10 poise based on the viscosity of the optical glass, and the pre-formed glass is Forced cooling is performed until the viscosity of the cooled glass reaches 107 to 108 poise, and when the viscosity of the cooled glass reaches 10'' to 109 poise, the viscosity of optical glass is 10'! ~1013
The main press molding was carried out using the main mold held at a temperature corresponding to poise, and the pressing was completed after the formed glass was forcibly cooled to a temperature below the glass transition point.

なお、本発明において、予備成形開始時点での成形型の
型温を光学ガラスの粘度での107〜10’ポアズに相
当する温度に保持したのは、それ以下にすると、融着は
生しにくくなくなるが、溶融ガラスをプレス成形したと
きムこヒケを生し易くかつ、と−トシタックが大きいた
めに割れが生しる場合があるからである。ただし、本発
明においては、成形中に不活性ガスにより強制冷却を行
うため、融着は生じにくくなる。一方、成形型の型温を
上記以上に保持すると、本発明よりもヒケがさらに生じ
にくくなるが、高温保持のために型寿命が短くなってし
まう。
In addition, in the present invention, the mold temperature of the mold at the start of preforming was maintained at a temperature corresponding to 107 to 10' poise in terms of the viscosity of optical glass.If the temperature is lower than that, fusion is difficult to occur. However, when molten glass is press-molded, it tends to cause sink marks, and cracks may occur due to large tack. However, in the present invention, since forced cooling is performed using an inert gas during molding, fusion is less likely to occur. On the other hand, if the mold temperature of the mold is maintained above the above level, sink marks will be less likely to occur than in the present invention, but the life of the mold will be shortened due to the high temperature maintenance.

また、本成形開始時点での本成形型の型温をガラスの粘
度で1012〜1013ポアズに相当する温度に保持し
たのは、それ以下にすると、前記予備成形後のガラスを
プレス成形するときに、完全に成形ガラスを押しきれず
、高精度な面形状が得られないからである。一方、本成
形型の型温を上記以上に保持すると、冷却時によるヒケ
が大きいため、高精度な面形状が得られないからである
In addition, the mold temperature of the main mold at the start of main molding was maintained at a temperature corresponding to 1012 to 1013 poise in terms of glass viscosity. This is because the molded glass cannot be completely pressed and a highly accurate surface shape cannot be obtained. On the other hand, if the mold temperature of the mold is maintained above the above level, a highly accurate surface shape cannot be obtained due to large sink marks during cooling.

さらに、予備成形工程において、溶融ガラスの粘度を1
02〜103ポアズとしたのは、その粘度以下からプレ
ス成形を行うと、型温との差が大きくなるために融着が
生し易くなり、不活性ガスによる強制冷却でも抑制でき
ないからである。一方、102〜103ポアズの粘度以
上からプレス成形を行うと、融着は生しにくくなるが、
短時間成形で予備形状まで押しきれず、かつ成形時間が
長くなるので高温高圧保持により型寿命が短くなってし
まうからである。
Furthermore, in the preforming process, the viscosity of the molten glass is reduced to 1
The reason why the viscosity is set at 02 to 103 poise is because if press molding is performed from a viscosity below that viscosity, the difference between the mold temperature and the mold temperature becomes large, which tends to cause fusion, which cannot be suppressed even by forced cooling with an inert gas. On the other hand, if press molding is performed at a viscosity of 102 to 103 poise or higher, fusion will be less likely to occur, but
This is because the mold cannot be pressed into a preliminary shape in a short time, and the molding time becomes long, so the life of the mold is shortened due to high temperature and high pressure maintenance.

また、本成形工程において、成形ガラスの粘度が108
〜109ポアズになった時点でプレスすることとしたの
は、その粘度以下で成形するためには、予備成形型の型
温が107〜109ポアズに相当する温度のため、リヒ
ートさせる必要性があり、サイクルタイムの短縮になら
ないからである。
In addition, in this molding process, the viscosity of the molded glass is 108
The reason why we decided to press when the viscosity reached ~109 poise was that in order to mold it below that viscosity, the temperature of the preforming mold was equivalent to 107 to 109 poise, so it was necessary to reheat it. This is because the cycle time will not be shortened.

方、上記粘度以上でプレス成形すると、ガラス粘度が高
く、割れが生し、光学レンズが得られないからである。
On the other hand, if the glass is press-molded at a viscosity higher than the above, the viscosity of the glass will be high and cracks will occur, making it impossible to obtain an optical lens.

本発明に係る光学素子の成形方法の概念図を第1図(a
)〜(e)にて示す。
A conceptual diagram of the method for molding an optical element according to the present invention is shown in FIG.
) to (e).

先ず、第1図(a)に示すように、上下動可能な予備成
形下型1上に、移動可能な溶融ガラス流出口2から流出
した溶融ガラス3を切断用シャー4により所定量切断し
て落下させる。5は予備成形下型1の上端に取付は自在
に嵌合された別型であり、予備および本成形後のガラス
(レンズ)を取り出すためのものである。この時点で、
溶融ガラス3の粘度は10”〜103ポアズに加熱溶融
されている。
First, as shown in FIG. 1(a), a predetermined amount of molten glass 3 flowing out from a movable molten glass outlet 2 is cut onto a preforming lower mold 1 which is movable up and down by a cutting shear 4. let it fall. Reference numeral 5 denotes a separate mold which is freely fitted to the upper end of the lower preforming mold 1, and is used to take out glass (lenses) after preliminary and main molding. at this point
The molten glass 3 is heated and melted to have a viscosity of 10'' to 103 poise.

また、予備成形下型1は、成形するガラスの粘度で10
7〜109ポアズに相当する温度に保持されている。
In addition, the preforming lower mold 1 has a viscosity of 10
The temperature is maintained at a temperature corresponding to 7 to 109 poise.

その後、第111D(b)にて示すように、熔融ガラス
流出口2等を移動させ、予備成形下型1の上方に、図示
を省略した移動可能な上部マウントに固定された予備成
形上型6を同軸上に配置させる。ここに、予備成形上型
6は、予備成形下型1と同様の温度に保持されている。
Thereafter, as shown in No. 111D(b), the molten glass outlet 2 etc. are moved, and the preforming upper mold 6 fixed to the movable upper mount (not shown) is placed above the preforming lower mold 1. are placed on the same axis. Here, the upper preform mold 6 is maintained at the same temperature as the lower preform mold 1.

そして、第1図(C)に示すように、予備成形下型1を
上昇させて予備成形を行うとともに、不活性ガス噴出装
置(図示省略)にて冷却を行い、成形されたガラスが1
0?〜108ポアズの粘度になるまで強制冷却を行い、
予備成形を終了する。
Then, as shown in FIG. 1(C), the preforming lower mold 1 is raised to perform preforming, and an inert gas blowing device (not shown) is used to cool the molded glass.
0? Forced cooling is performed until the viscosity reaches ~108 poise,
Finish preforming.

次に、第1図(d)に示すように、搬送アーム7により
別型5および予備成形ガラス8を支持し、かつ予備成形
下型1を下降させ、同軸上に対向配置された本成形下型
9および本成形上型10間に別型5および予備成形ガラ
ス8を搬送する。そして、別型5を本成形下型9上部に
セントする。
Next, as shown in FIG. 1(d), the transfer arm 7 supports the separate mold 5 and the preformed glass 8, lowers the preforming lower mold 1, and lowers the main molding mold 1 which is coaxially opposed to the main molding glass 8. Another mold 5 and preformed glass 8 are conveyed between mold 9 and main molding upper mold 10 . Then, the separate mold 5 is placed on the upper part of the main molding lower mold 9.

予備成形ガラス8の粘度が10″〜109ポアズになっ
た時点で、第1図(e)に示すように、予め成形するガ
ラスの粘度で1012〜10′′ポアズに相当する温度
に保持した本成形上下型9,10により、本成形を行う
とともに、不活性ガス噴出装置(図示省略)にて冷却を
行い、本成形ガラス11が10′2〜10”ポアズの粘
度になるまで強制冷却を行い、本成形を終了し、成形品
がガラス転移点以下の温度になったところで全成形を完
了する。
When the viscosity of the preformed glass 8 reaches 10'' to 109 poise, as shown in FIG. Main molding is performed using the upper and lower forming molds 9 and 10, and cooling is performed using an inert gas blowing device (not shown), and forced cooling is performed until the main formed glass 11 has a viscosity of 10'2 to 10'' poise. , the main molding is completed, and the entire molding is completed when the molded product reaches a temperature below the glass transition point.

このような成形方法によれば、予備成形時の型温が高温
であるため、溶融ガラス3をプレス成形する際にヒート
ショックが加わらず、割れが生じにくく、またヒケも極
めて少なくなるように抑制することができる。さらに、
短時間でプレス成形できるので、型寿命が延びる。また
、予備成形と本成形との間にリヒートを必要としないの
で、サイクルタイムの短縮化を図ることができる。
According to such a forming method, since the mold temperature during preforming is high, no heat shock is applied when press forming the molten glass 3, making it difficult for cracks to occur, and suppressing sink marks to an extremely low level. can do. moreover,
Press molding can be done in a short time, extending the life of the mold. Further, since reheating is not required between preforming and main molding, cycle time can be shortened.

[実 施 例] (第1実施例) 第2回は、本実施例で使用した成形装置を示すもので、
成形方向と直交する方向に移動可能な上ベースエ2には
、温度設定が個別に行なえる予備成形上型13と本成形
上型14とが取り付けられている。また、上ヘース12
と同一方向に移動可能でかつ上下方向にも移動可能な下
ベース15には、温度設定が個別に行なえる予備成形下
型16と本成形上型17とが取り付けられている。工8
は雨下型16,17の上端に取り付は自在に嵌合される
別型である。19は熔融ガラス20を供給するガラスる
つぼで、このガラスるつぼ19の下端近傍には、溶融ガ
ラス20を所定量に切断する切断シャー21が配設され
ている。22は別型18を載置して搬送する搬送アーム
であり、23は冷却治具である。
[Example] (First Example) The second example shows the molding equipment used in this example.
A preforming upper mold 13 and a main molding upper mold 14, whose temperatures can be individually set, are attached to the upper base 2, which is movable in a direction perpendicular to the molding direction. Also, upper heath 12
A lower base 15, which is movable in the same direction as the above and also movable up and down, is attached with a lower preforming mold 16 and an upper molding mold 17 whose temperature can be set individually. Engineering 8
is a different type that can be freely fitted to the upper ends of the rain molds 16 and 17. A glass crucible 19 supplies the molten glass 20, and a cutting shear 21 for cutting the molten glass 20 into a predetermined amount is disposed near the lower end of the glass crucible 19. Reference numeral 22 represents a transfer arm for placing and transporting the separate mold 18, and reference numeral 23 represents a cooling jig.

第2図に示す成形装置で光学素子の成形を行った。先ず
、ガラスるつぼ19により熔融された103ポアズ程度
の溶融ガラス20を排出するとともに、切断シャー21
により所定量に切断した。
The optical element was molded using the molding apparatus shown in FIG. First, the molten glass 20 of about 103 poise melted by the glass crucible 19 is discharged, and the cutting shear 21
It was cut into a predetermined amount.

切断された溶融ガラス20は、予め成形するガラスの粘
度で10’〜109ポアズに相当する温度に保持した予
備成形下型16上に落下する。その後、上ベース12移
動させ、予備成形上下型1316を同軸的に配置させた
。そして、下ベース15を上昇させ、同一温度に設定し
た予備成形上下型13.16により予備プレス成形を行
うとともに、冷却治具23からN2ガスを噴出させ、強
制冷却を行って予備成形されたガラスを107〜10’
ポアズの粘度となるようにした。この予備プレス成形後
、ガラスは予備成形下型16上の調型18に係合載置さ
れる(第1図(C)参照)。
The cut molten glass 20 falls onto a preforming lower mold 16 which is maintained at a temperature corresponding to 10' to 109 poise, which is the viscosity of the glass to be formed. Thereafter, the upper base 12 was moved, and the upper and lower preform molds 1316 were coaxially arranged. Then, the lower base 15 is raised, and preliminary press molding is performed using the upper and lower preforming molds 13.16 set at the same temperature, and N2 gas is jetted out from the cooling jig 23 to perform forced cooling, and the glass is preformed. 107~10'
The viscosity was set to Poise. After this preliminary press molding, the glass is engaged and placed on the mold 18 on the lower preform 16 (see FIG. 1(C)).

次に、上下ベース12.15と直交方向に延在する搬送
アーム22により別型18を支持し、下ベース15を下
降させるとともに、別型18と同軸的に本成形上下型1
4.17が位置するように、上下ベース12.15を移
動させた。
Next, the separate mold 18 is supported by the transport arm 22 extending perpendicularly to the upper and lower bases 12.15, and the lower base 15 is lowered, and the main molding upper and lower molds 1 are coaxially moved with the separate mold 18.
The upper and lower bases 12.15 were moved so that 4.17 was located.

予備成形ガラスの粘度が108〜109ポアズになった
時点で、予め成形するガラスの粘度で101t〜101
3に相当する温度に保持した本成形上下型14.17に
より本成形を行うとともに、冷却治具23からN2ガス
を噴出させて強制冷却を行って、本成形ガラスが101
2〜10”ポアズの粘度になるまで冷却し、本成形を終
了し、さらに冷却を続けて成形品がガラス転移点以下の
温度になったところで全成形を完了した。その後、下ベ
ース15を下降させるとともに、搬送アーム22により
成形品(光学レンズ)を取り出した。
When the viscosity of the preformed glass reaches 108 to 109 poise, the viscosity of the glass to be preformed is 101t to 101
Main molding is carried out using the main molding upper and lower molds 14 and 17 held at a temperature corresponding to 3. At the same time, forced cooling is performed by blowing out N2 gas from the cooling jig 23, so that the main molded glass becomes 101.
The main molding was completed by cooling to a viscosity of 2 to 10" poise, and cooling was continued until the molded product reached a temperature below the glass transition point, completing the entire molding. Thereafter, the lower base 15 was lowered. At the same time, the molded product (optical lens) was taken out using the transport arm 22.

本実施例によれば、ヒケや割れを住しず、短時間でプレ
ス成形でき、型寿命が長くなる。特に、予備成形中、高
温の予備成形型13.16と溶融ガラス20との焼き付
きは、N2ガスによる冷却により防止される。
According to this embodiment, press molding can be performed in a short time without sink marks or cracks, and the life of the mold is extended. In particular, during preforming, seizure of the hot preform mold 13, 16 and the molten glass 20 is prevented by cooling with N2 gas.

なお、第2図に示す成形装置では、上下ベース12.1
5に型13,14,16.17を取り付けるため、型1
3,14,16.17の搬送精度は、上下ベース12.
15の動きのみで決定され、搬送精度が高くなって高精
度の面間偏心を得ることができる。
In addition, in the molding apparatus shown in FIG. 2, the upper and lower bases 12.1
In order to attach molds 13, 14, 16 and 17 to 5, mold 1
The conveyance accuracy of 3, 14, 16, and 17 is based on the upper and lower bases 12.
15, the conveyance accuracy is increased, and highly accurate inter-plane eccentricity can be obtained.

(第2実施例) 第3図は、本実施例で使用した成形装置を示すもので、
ガラスるつぼ19および切断シャー21は移動自在に設
けられている。また、下ベース15は上下動自在であり
、上ベース12は水平移動自在である。さらに、上ベー
ス12には、モータ(図示省略)によって回転自在の上
型レボルバ24が取り付けられており、その回転により
、上型レボルバ24に固設され予備成形上型I3と本成
形上型14とを使用に応して変換することができるよう
に設けられている。また、同様にして、下ベース15に
は、モータ(図示省略)によって回転自在の下型レボル
バ25が取り付けられており、その回転により、下型レ
ボルバ25に固設された予備成形下型16と本成形下型
17とを使用に応して変換することができるように設け
られている。
(Second Example) Figure 3 shows the molding device used in this example.
Glass crucible 19 and cutting shear 21 are provided movably. Further, the lower base 15 is vertically movable, and the upper base 12 is horizontally movable. Further, an upper mold revolver 24 is attached to the upper base 12 and is rotatable by a motor (not shown).The rotation of the upper mold revolver 24 causes the preforming upper mold I3 and the main molding upper mold 14 to be fixedly attached to the upper mold revolver 24. It is provided so that it can be converted depending on the use. Similarly, a lower mold revolver 25 is attached to the lower base 15 and is rotatable by a motor (not shown), and the rotation of the lower mold revolver 25 causes the preformed lower mold 16 fixedly attached to the lower mold revolver 25 to be rotated. The main molding lower mold 17 is provided so that it can be changed according to the use.

このような成形装置で光学素子の成形を行ったが、成形
するガラスの粘度、成形型13.14゜16.17の設
定温度およびN2ガスによる冷却等は、前記第1実施例
と同様に行った。ただし、構成部材の動作は前記第1実
施例と異なるので、以下に相違点について説明する。
Although the optical element was molded using such a molding apparatus, the viscosity of the glass to be molded, the set temperatures of the molds 13.14° and 16.17, cooling with N2 gas, etc. were carried out in the same manner as in the first embodiment. Ta. However, since the operations of the constituent members are different from those of the first embodiment, the differences will be explained below.

すなわち、溶融ガラス20を切断した後、ガラスるつば
19および切断シャー21は移動し、上ベース12が移
動して予備成形上型13が予備成形下型16と同軸上に
位置する。そして、その下型16が上昇し、予備プレス
成形を行うとともに、冷却を行う。
That is, after cutting the molten glass 20, the glass crucible 19 and the cutting shear 21 move, the upper base 12 moves, and the preform upper mold 13 is positioned coaxially with the preform lower mold 16. Then, the lower mold 16 is raised to perform preliminary press molding and cooling.

予備プレス成形終了後、搬送アーム22により予備成形
ガラスを搭載した別型18を取り出し、上下型の各レボ
ルバ24.25を90度回転させ、本成形型14.17
に変更する。その後、再び搬送アーム22により別型1
8を移動させ、本成形下型17上部にセントする。そし
て、下ベース15を上昇させて本成形を行うとともに、
冷却を行う。その後、搬送アーム22により成形品を取
り出す。
After the preliminary press molding is completed, the separate mold 18 carrying the preformed glass is taken out by the transfer arm 22, the upper and lower revolvers 24.25 are rotated 90 degrees, and the main mold 14.17 is removed.
Change to After that, another mold 1 is transferred again by the transfer arm 22.
8 is moved and placed on the upper part of the lower mold 17 for main molding. Then, the lower base 15 is raised to perform the main molding, and
Perform cooling. Thereafter, the molded product is taken out by the transport arm 22.

本実施例においても、第1実施例と同様の効果を得るこ
とができる。また、本実施例で使用した成形装置によれ
ば、上下ベース12.15のコンパクト化が可能であり
、光学ガラスの性質により2回以上のプレスが必要な場
合でも、各レボルバ24.25に適宜成形型を取り付け
ることにより、成形装置本体の大きさを変えずに多段成
形することができる。
In this embodiment as well, the same effects as in the first embodiment can be obtained. Furthermore, according to the molding device used in this example, it is possible to make the upper and lower bases 12.15 more compact, and even if pressing is required two or more times due to the properties of the optical glass, each revolver 24.25 can be By attaching a mold, multi-stage molding can be performed without changing the size of the molding device main body.

(第3実施例) 第4図は、本実施例で使用した成形装置の要部を示すも
ので、第2図に示す成形装置と異なる点は、下ベース1
5上にそれぞれ冷却治具26,27を介して予備成形下
型16および本成形下型17を固設し、第2図における
冷却治具23を省略したことである。
(Third Embodiment) FIG. 4 shows the main parts of the molding device used in this example. The difference from the molding device shown in FIG.
5, the preforming lower mold 16 and the main molding lower mold 17 are fixedly installed on the cooling jigs 26 and 27, respectively, and the cooling jig 23 in FIG. 2 is omitted.

このような構成の成形装置により光学素子の成形を行う
には、第1実施例と同様の方法で行うが、特に本実施例
では、各成形条件により予備成形と本成形とでN2ガス
の流量や圧力を変えることができ、予備成形時のN2ガ
スを短時間で高圧、多量にセットすることにより、成形
上下型13,16へのガラスの融着を防止でき、本成形
時に低圧、少量にセットすることにより、ヒケを防止で
きる。
Molding of an optical element using a molding apparatus having such a configuration is carried out in the same manner as in the first embodiment, but in particular, in this embodiment, the flow rate of N2 gas is changed between preforming and main molding depending on each molding condition. By setting a high pressure and large amount of N2 gas during preforming in a short time, it is possible to prevent the glass from adhering to the upper and lower forming molds 13 and 16, and during main molding, it is possible to use a low pressure and a small amount of N2 gas. By setting it, you can prevent sink marks.

〔発明の効果] 以上のように、本発明の光学素子の成形方法によれば、
成形するガラスの粘度(温度)や成形型の型温等を適当
な条件としているので、成形時にヒートショックが加わ
らず、割れが生じにくく、またヒケの発生を抑制するこ
とができ、高精度の光学素子を得ることができる。また
、サイクルタイムの短縮化を図ることができ、作業能率
が向上するとともに、短時間でプレス成形できるので型
寿命が長くなり、製造コストの低減化を図ることができ
る。
[Effects of the Invention] As described above, according to the method for molding an optical element of the present invention,
Since the viscosity (temperature) of the glass to be molded and the mold temperature of the mold are set to appropriate conditions, there is no heat shock during molding, making it difficult for cracks to occur, suppressing the occurrence of sink marks, and achieving high precision. An optical element can be obtained. In addition, cycle time can be shortened, work efficiency is improved, and since press molding can be performed in a short time, mold life can be extended, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)はそれぞれ本発明に係る光学素子
の成形方法を概念的に示す工程別の縦断面図、第2図、
第3図および第4図はそれぞれ本発明の第1、第2およ
び第3実施例で使用した成形装置を示す斜視図である。 1.16・・・予備成形下型 3.20・・・溶融ガラス 6.13・・・予備成形上型 8・・・予備成形ガラス 9.17・・・本成形下型 10、14・・・本成形上型 11・・・本成形上型 23.26.27・・・冷却治具 第 1.事件の表示 平成2年 2、発明の名称 光学素子の成形方法 3、補正をする者 第64580号 特許願 平成2年6月18日 6、補正の内容 (1)明細書第6頁第7〜8行目に「その粘度以下から
」とあるのを「その粘度以上から」と補正する。 (2)同書第6頁第11行目に「10”〜10’ポアズ
の粘度以上から」とあるのを[102〜10’ポアズの
粘度以下からJと補正する。 以  上 事件との関係  特 許 出 願 大 佐 所 東京都渋谷区幡ケ谷2丁目43番2号名 称 
(037)  オリンパス光学工業株式会社代表者  
下  山  敏  部 4、代 理人〒105
FIGS. 1(a) to 1(e) are vertical cross-sectional views of each process conceptually showing the method for molding an optical element according to the present invention, FIG.
3 and 4 are perspective views showing molding apparatuses used in the first, second and third embodiments of the present invention, respectively. 1.16... Preforming lower mold 3.20... Molten glass 6.13... Preforming upper mold 8... Preforming glass 9.17... Main molding lower mold 10, 14...・Main molding upper mold 11...Main molding upper mold 23.26.27...Cooling jig 1st. Display of the case, 1990, 2, Name of the invention, Method for molding optical elements 3, Amendment No. 64580 Patent application, June 18, 1990, 6, Contents of the amendment (1) Specification, page 6, No. 7 - In the 8th line, "from the viscosity or lower" is corrected to "from the viscosity or higher". (2) In the same book, page 6, line 11, the phrase "from viscosity of 10" to 10' poise or more" is corrected to "from viscosity of 102 to 10' poise or less" to J. Relationship to the above incident Patent application Colonel Office 2-43-2 Hatagaya, Shibuya-ku, Tokyo Name
(037) Representative of Olympus Optical Industry Co., Ltd.
Satoshi Shimoyama Department 4, Agent 〒105

Claims (1)

【特許請求の範囲】[Claims] (1)光学ガラスを加熱溶融し、プレスして光学素子を
得る光学素子の成形方法において、光学ガラスをその粘
度が10^2〜10^3ポアズになるまで加熱溶融し、
この溶融ガラスを前記光学ガラスの粘度で10^7〜1
0^9ポアズに相当する温度に保持した予備成形型にて
予備プレス成形するとともに、予備成形したガラスが1
0^7〜10^8ポアズの粘度になるまで強制冷却を行
い、冷却したガラスが10^8〜10^9ポアズの粘度
になった時点で光学ガラスの粘度で10^1^2〜10
^1^3ポアズに相当する温度に保持した本成形型にて
本プレス成形するとともに、成形したガラスがガラス転
移点以下の温度になるまで強制冷却した後にプレスを終
了することを特徴とする光学素子の成形方法。
(1) In a method for forming an optical element in which an optical element is obtained by heating and melting optical glass and pressing, heating and melting optical glass until its viscosity becomes 10^2 to 10^3 poise,
This molten glass has a viscosity of 10^7 to 1
Preliminary press molding is performed in a preforming mold held at a temperature equivalent to 0^9 poise, and the preformed glass is
Forced cooling is performed until the viscosity of the cooled glass reaches 0^7~10^8 poise, and when the viscosity of the cooled glass reaches 10^8~10^9 poise, the viscosity of optical glass is 10^1^2~10.
An optical device characterized by performing main press molding using a main mold held at a temperature equivalent to ^1^3 poise, and finishing the pressing after the molded glass is forcibly cooled to a temperature below the glass transition point. Element molding method.
JP2064580A 1990-03-15 1990-03-15 Optical element molding method Expired - Fee Related JP2746454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2064580A JP2746454B2 (en) 1990-03-15 1990-03-15 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2064580A JP2746454B2 (en) 1990-03-15 1990-03-15 Optical element molding method

Publications (2)

Publication Number Publication Date
JPH03265528A true JPH03265528A (en) 1991-11-26
JP2746454B2 JP2746454B2 (en) 1998-05-06

Family

ID=13262324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064580A Expired - Fee Related JP2746454B2 (en) 1990-03-15 1990-03-15 Optical element molding method

Country Status (1)

Country Link
JP (1) JP2746454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000604A3 (en) * 2001-06-23 2003-12-18 Schott Glas Method and device for producing a glass blank
JP2012082096A (en) * 2010-10-08 2012-04-26 Ohara Inc Method for manufacturing molded glass body, glass molding tool and component for glass molding tool
JP2012201523A (en) * 2011-03-24 2012-10-22 Fujifilm Corp Method for manufacturing infrared lens
CN106348574A (en) * 2015-07-15 2017-01-25 赵崇礼 Mold equipment of lens array and use method of mold equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000604A3 (en) * 2001-06-23 2003-12-18 Schott Glas Method and device for producing a glass blank
JP2012082096A (en) * 2010-10-08 2012-04-26 Ohara Inc Method for manufacturing molded glass body, glass molding tool and component for glass molding tool
JP2012201523A (en) * 2011-03-24 2012-10-22 Fujifilm Corp Method for manufacturing infrared lens
CN106348574A (en) * 2015-07-15 2017-01-25 赵崇礼 Mold equipment of lens array and use method of mold equipment

Also Published As

Publication number Publication date
JP2746454B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US4738703A (en) Method of molding optical lenses
EP0408065B1 (en) Method of producing optical glass element and production apparatus using this method
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
US5346523A (en) Method of molding chalcogenide glass lenses
JP4918182B2 (en) Manufacturing method and manufacturing apparatus for glass molded body, and manufacturing method for optical element
JPS6067118A (en) Manufacture of optical element
JP6739131B2 (en) Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold
JP2006256938A (en) Method of manufacturing glass formed body, method of manufacturing glass base material for press-forming, and method of manufacturing optical device
JPH03265528A (en) Method for molding optical element
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
JPS6337044B2 (en)
JPS61291427A (en) Molded lens and production thererof
JP2718452B2 (en) Glass optical element molding method
JPS6360114A (en) Method for molding optical element
JP2805715B2 (en) Optical element molding method and glass lens obtained by the method
JPS63315524A (en) Method for feeding glass gob
JPS6296328A (en) Method of molding optical glass element
KR101347619B1 (en) Manufacturing method of aspheric lens using glass powder
JPH08245223A (en) Method for forming optical element
CN113998869B (en) Compression molding process of optical glass part for optical lens camera
JP2501585B2 (en) Optical element molding method
JPS59150728A (en) Forming of optical element
JP2010138052A (en) Method of producing preform of optical device
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPH0372016B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees