JPS63289707A - Nonreducible dielectric ceramic constituent - Google Patents

Nonreducible dielectric ceramic constituent

Info

Publication number
JPS63289707A
JPS63289707A JP62124733A JP12473387A JPS63289707A JP S63289707 A JPS63289707 A JP S63289707A JP 62124733 A JP62124733 A JP 62124733A JP 12473387 A JP12473387 A JP 12473387A JP S63289707 A JPS63289707 A JP S63289707A
Authority
JP
Japan
Prior art keywords
weight
parts
dielectric ceramic
specific resistance
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124733A
Other languages
Japanese (ja)
Inventor
Masaru Fujino
優 藤野
Goro Nishioka
西岡 吾朗
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62124733A priority Critical patent/JPS63289707A/en
Publication of JPS63289707A publication Critical patent/JPS63289707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at reduction in electrode cost with the promotion of large capacity in a laminated condenser by containing a specific amount of Mn, SiO2 and Al2O3 each in a main component to be expressed by a formular (Sr1-xCax)m(Ti1-y)O3 as a subcomponent. CONSTITUTION:A main component is expressed by a formular (Sr1-xCax)m(Ti1-yZry)O3, and x, y and m are of 0.30<=x<=0.50, 0.92<=y<=0.98, 0.95<=m<=1.08, respectively. And Mn is converted into MnO2 and its 0.01-400pts.wt., a 0.01-800 pts.wt. of SiO and a 0.01-100pts.wt. of Al2O3 are contained in a 100pts.wt. this main component as a subcomponent. A nonreducible dielectric ceramic constituent of suchlike composition is used for material of a laminated condenser, and a base metal such as Ni, Fe, Cr or the like is usable as an internal electrode, thus reduction in cost of the electrode with the promotion of large capacity in the laminated condenser can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非還元性誘電体磁器組成物に関し、特にたと
えば積層コンデンサなどの誘電体材料として好適な非還
元性誘電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-reducible dielectric ceramic composition, and more particularly to a non-reducible dielectric ceramic composition suitable as a dielectric material for laminated capacitors and the like.

(従来技術) 従来、積層コンデンサを製造する際には、誘電体グリー
ンシートの上面にたとえば印刷することによって内部電
極となる金属層を形成し、それを複数枚積み重ねて圧着
、一体化した後、焼成するという工程が採用されている
(Prior art) Conventionally, when manufacturing a multilayer capacitor, a metal layer that will become an internal electrode is formed by printing on the top surface of a dielectric green sheet, and after stacking a plurality of layers and crimping and integrating them, A firing process is used.

(発明が解決しようとする問題点) 従来の誘電体磁器材料は、中性または還元性の低酸素分
圧下で焼成すると還元され、半導体化するという性質を
有していた。そのため、内部電極の材料として、誘電体
磁器材料の焼結する温度で熔融せず、かつ誘電体磁器材
料を半導体化しない高い酸素分圧の下で焼成しても酸化
されない、たとえばパラジウム、白金などの貴金属を用
いなければならず、製造される積層コンデンサの小型大
容量化および低価格化の大きな妨げとなっていた。
(Problems to be Solved by the Invention) Conventional dielectric ceramic materials have the property of being reduced and turned into semiconductors when fired under neutral or reducing low oxygen partial pressure. Therefore, materials such as palladium and platinum, which do not melt at the sintering temperature of the dielectric ceramic material and do not oxidize even when fired under high oxygen partial pressures that do not convert the dielectric ceramic material into a semiconductor, can be used as materials for the internal electrodes. This required the use of noble metals, which was a major hindrance to making multilayer capacitors smaller, larger in capacity, and lower in price.

そこで、上述の問題を解決するために、たとえばニッケ
ルなどの安価な卑金属を内部電極の材料として使用する
ことが望まれていた。しかし、このような卑金属を内部
電極の材料として使用し、従来の条件下で焼成すると、
電極材料が酸化したり溶融したりしてしまう。そのため
、このような卑金属を内部電極の材料として使用するた
めに、酸素分圧の低い中性または還元性の雰囲気中にお
いて低温で焼成しても半導体化せず、コンデンサ用の誘
電体磁器材料として十分な比抵抗と優れた誘電特性とを
有する誘電体磁器材料が必要とされていた。
Therefore, in order to solve the above-mentioned problems, it has been desired to use an inexpensive base metal such as nickel as a material for the internal electrodes. However, when such base metals are used as internal electrode materials and fired under conventional conditions,
The electrode material will oxidize or melt. Therefore, in order to use such base metals as materials for internal electrodes, they do not turn into semiconductors even when fired at low temperatures in a neutral or reducing atmosphere with low oxygen partial pressure, and are used as dielectric ceramic materials for capacitors. There was a need for dielectric porcelain materials with sufficient resistivity and excellent dielectric properties.

それゆえに、この発明の主たる目的は、酸素分圧の低い
中性または還元性の雰囲気中において、1.360℃以
下の温度で焼結し、かつ還元されることなく、静電容量
の温度係数の絶対値が10Qppm/”C以下で、誘電
率が40以上で、誘電損失が0.1%以下であり、20
℃における比抵抗および85℃における比抵抗が1×1
013Ω口以上の、非還元性誘電体磁器組成物を提供す
ることである。
Therefore, the main object of the present invention is to sinter at a temperature of 1.360°C or lower in a neutral or reducing atmosphere with a low oxygen partial pressure, and to achieve a temperature coefficient of capacitance without being reduced. The absolute value of is 10Qppm/''C or less, the dielectric constant is 40 or more, the dielectric loss is 0.1% or less,
The specific resistance at ℃ and the specific resistance at 85℃ are 1×1
It is an object of the present invention to provide a non-reducible dielectric ceramic composition having a resistance of 0.013Ω or more.

(問題点を解決するための手段) この発明は、一般式(S r +−x Ca x ) 
m  (Ti l−y Z r、 ) Osで表され、
この一般式のモル比率x、yおよびmが、それぞれ2O
.30≦x≦0.50.0.92≦y≦0.98、およ
び0.95≦m≦1.08の範囲にある主成分に、10
0重量部の主成分に対して、副成分として、MnをMn
O,に換算して0.01〜4.00重量部、S i O
,を2.00〜8.00重量部、およびAltosを0
.01〜1.00重量部含有した、非還元性誘電体磁器
組成物である。
(Means for solving the problem) The present invention solves the problem by solving the general formula (S r +−x Ca x )
m (Til-y Z r, ) Os,
The molar ratios x, y and m of this general formula are each 2O
.. 30≦x≦0.50, 0.92≦y≦0.98, and 0.95≦m≦1.08, 10
Mn was added as a subcomponent to 0 parts by weight of the main component.
0.01 to 4.00 parts by weight converted to O, S i O
, 2.00 to 8.00 parts by weight, and 0 parts by weight of Altos.
.. This is a non-reducible dielectric ceramic composition containing 01 to 1.00 parts by weight.

(発明の効果) この発明によれば、還元性雰囲気中において、1.36
0℃以下で焼結し、温度に対する静電容量の温度係数の
絶対値が1100pp/”c以下で、誘電率が40以上
で、誘電損失が0.1%以下であり、20℃における比
抵抗および85℃における比抵抗がlXl0”0cm以
上の特性を有する非還元性誘電体磁器組成物を得ること
ができる。したがって、この非還元性誘電体磁器組成物
を積層コンデンサ用材料として用いれば、Ni、Fe。
(Effect of the invention) According to this invention, in a reducing atmosphere, 1.36
Sintered at 0°C or lower, the absolute value of the temperature coefficient of capacitance with respect to temperature is 1100 pp/''c or lower, the dielectric constant is 40 or higher, the dielectric loss is 0.1% or lower, and the specific resistance at 20°C is A non-reducible dielectric ceramic composition having a resistivity at 85° C. of 1×10”0 cm or more can be obtained. Therefore, if this non-reducible dielectric ceramic composition is used as a material for a multilayer capacitor, Ni, Fe.

Crなどの卑金属を内部電極として使用することが可能
になる。そのため、積層コンデンサの大容量化にともな
う電極のコストの増大を解消することができ、低価格の
積層コンデンサを提供することができる。
It becomes possible to use base metals such as Cr as internal electrodes. Therefore, it is possible to eliminate the increase in cost of electrodes due to an increase in the capacity of a multilayer capacitor, and it is possible to provide a low-cost multilayer capacitor.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、出発原料として工業用のSrCO3,CacO3
,Zr0z 、TiO2、Mn0z 、S iO2およ
びAI!ZO3を準備した。そして、これらの原料を組
成式(S rl−x Cax ) m  (T i+−
、Zry”)O3+MnO,+S to2+Al2O3
において、表1に示す配合比になるように配合した。
(Example) First, industrial SrCO3 and CacO3 were used as starting materials.
, Zr0z, TiO2, Mn0z, SiO2 and AI! ZO3 was prepared. Then, these raw materials are given the compositional formula (S rl-x Cax ) m (T i+-
,Zry”)O3+MnO,+S to2+Al2O3
The ingredients were blended at the blending ratio shown in Table 1.

次に、これらの配合原料をボールミルで湿式混合し、粉
砕した後蒸発乾燥し、自然雰囲気中において1,150
℃で2時間仮焼した。そして、仮焼した原料に結合材と
して酢酸ビニル系バインダを5重量部加え、ボールミル
で湿式混合した。さらに、この混合物を蒸発乾燥した後
整粒して粉末原料を得た。得られた粉末原料を2.5t
on/−の圧力で直径20m、厚さ1.2nの円板状に
成形した。
Next, these blended raw materials were wet mixed in a ball mill, pulverized, and then evaporated to dryness.
It was calcined at ℃ for 2 hours. Then, 5 parts by weight of a vinyl acetate binder was added as a binding material to the calcined raw materials, and wet-mixed in a ball mill. Furthermore, this mixture was evaporated to dryness and then sized to obtain a powder raw material. 2.5 tons of the obtained powder raw material
It was molded into a disk shape with a diameter of 20 m and a thickness of 1.2 nm using on/- pressure.

次に、この円板状の成形物をジルコニア粉末を敷粉とし
たアルミナ質の箱に入れ、自然雰囲気中において500
℃で2時間酢酸ビニル系バインダを燃焼させた。その後
、体積比率でH2:N、=3:100の還元ガス雰囲気
中において、円板状の成形物を1,300〜1.440
℃で2時間焼成して、素子を得た。得られた素子の両面
にIn−Ga合金を塗布して電極を形成し、試料(コン
デンサ)を作成した。
Next, this disc-shaped molded product was placed in an alumina box lined with zirconia powder, and left in a natural atmosphere for 500 min.
The vinyl acetate binder was burned for 2 hours at .degree. Thereafter, in a reducing gas atmosphere with a volume ratio of H2:N = 3:100, a disc-shaped molded product with a volume ratio of 1,300 to 1.440
The device was baked at ℃ for 2 hours to obtain a device. An In-Ga alloy was applied to both sides of the obtained element to form electrodes, thereby creating a sample (capacitor).

そして、得られた試料の誘電率°ε、誘電損失tanδ
、静電容量の温度係数α(ppm/”c)。
Then, the dielectric constant °ε and dielectric loss tanδ of the obtained sample are
, temperature coefficient α of capacitance (ppm/”c).

20℃における比抵抗ρ2゜(9cm)および85℃に
おける比抵抗ρ6.(Ωc!1)を測定した。
Specific resistance ρ2° (9 cm) at 20°C and specific resistance ρ6 at 85°C. (Ωc!1) was measured.

なお、誘電損失tanδは、1kHz、IVrms、2
0℃の条件で測定した。
Note that the dielectric loss tan δ is 1kHz, IVrms, 2
Measurement was performed at 0°C.

さらに、静電容量の温度係数α(ppm/、’C)は、
20°Cにおける静電容量C2゜および85℃における
静電容M Ca sから次式によって求めた。
Furthermore, the temperature coefficient α (ppm/, 'C) of capacitance is
It was determined from the capacitance C2° at 20°C and the capacitance M Cas at 85°C using the following equation.

また、20℃における比抵抗ρ2゜(9口)および85
℃における比抵抗ρ8.(Ωc11)は、それぞれ20
°Cおよび85℃において500■の直流電圧を印加し
たときに流れる電流値より求めた。
In addition, the specific resistance ρ2° (9 ports) at 20°C and 85
Specific resistance ρ8 at °C. (Ωc11) are each 20
It was determined from the current value flowing when a DC voltage of 500 μ was applied at 85°C and 85°C.

そして、これらの結果を表2に示した。These results are shown in Table 2.

次に、この発明にかかる非還元性誘電体磁器組成物の主
成分の数値を限定した理由について説明する。
Next, the reason for limiting the numerical values of the main components of the non-reducible dielectric ceramic composition according to the present invention will be explained.

つまり、試料番号1のようにXが0.30より小さいか
、または試料番号5のようにXが0.50より大きいと
、焼成温度が1.]60℃を超え、かつ静電容量の温度
係数の絶対値が1100pp/’cより大きくなって好
ましくない。
In other words, if X is smaller than 0.30 as in sample number 1, or larger than 0.50 as in sample number 5, the firing temperature is 1. ] 60° C. and the absolute value of the temperature coefficient of capacitance becomes larger than 1100 pp/′c, which is not preferable.

また、試料番号9のようにyが0.92より小さいと、
静電容量の温度係数の絶対値が100pp m / ’
cより大きくなり、かつ20℃における比抵抗および8
5℃における比抵抗がlXl013Ωcmより小さくな
って好ましくない。さらに、試料番号6のように、yが
0.98より大きいと、焼成温度が1,360℃を超え
、かつ静電容量の温度係数の絶対値が1100pp/゛
cより大きくなって好ましくない。
Also, if y is smaller than 0.92 as in sample number 9,
The absolute value of the temperature coefficient of capacitance is 100 ppm/'
c, and the specific resistance at 20°C and 8
The specific resistance at 5° C. becomes smaller than 1X1013 Ωcm, which is not preferable. Furthermore, if y is larger than 0.98 as in sample number 6, the firing temperature will exceed 1,360° C. and the absolute value of the temperature coefficient of capacitance will become larger than 1,100 pp/゛c, which is not preferable.

また、試料番号10のようにmが0.95より小さいと
、20℃における比抵抗および85℃における比抵抗が
1×10′3ΩCIIIより小さくなり、かつ誘電損失
が0.1%より大きくなって好ましくない。さらに、試
料番号14のように、mが1.08より大きいと、焼成
温度が1.360℃を超えて好ましくない。
Furthermore, if m is smaller than 0.95 as in sample number 10, the specific resistance at 20°C and the specific resistance at 85°C will be smaller than 1×10'3ΩCIII, and the dielectric loss will be larger than 0.1%. Undesirable. Furthermore, if m is larger than 1.08, as in sample number 14, the firing temperature will exceed 1.360° C., which is not preferable.

次に、副成分の含有量の限定理由について説明する。Next, the reason for limiting the content of subcomponents will be explained.

試料番号15のように、主成分100重量部に対してM
nO□の含有量が0.01重量部より少ないと、焼成温
度が1,360℃を超え、かつ誘電損失が0.1%より
大きくなり、さらに20℃における比抵抗および85℃
における比抵抗が1x l Q 13Ωcmより小さく
なって好ましくない。
As in sample number 15, M per 100 parts by weight of the main component.
If the content of nO□ is less than 0.01 part by weight, the firing temperature will exceed 1,360°C, the dielectric loss will be greater than 0.1%, and the resistivity at 20°C and 85°C will increase.
The specific resistance at is less than 1x l Q 13 Ωcm, which is undesirable.

また、試料番号19のようにMnO□の含有量が4.0
0重量部より多いと、20℃における比抵抗および85
℃における比抵抗が1×10′3Ωcmより小さくなっ
て好ましくない。
In addition, as in sample number 19, the content of MnO□ is 4.0
If it is more than 0 parts by weight, the specific resistance at 20°C and 85
The specific resistance at °C becomes less than 1 x 10'3 Ωcm, which is undesirable.

さらに、試料番号20のように主成分100重量部に対
してSiO□の含有量が2.00重量部より少ないと、
焼成温度が1,360℃を超えて好ましくない。
Furthermore, if the content of SiO□ is less than 2.00 parts by weight with respect to 100 parts by weight of the main component, as in sample number 20,
It is not preferable that the firing temperature exceeds 1,360°C.

また、試料番号24のようにS i Ozの含有量が8
.00重量部より多いと、誘電率が40より小さくなり
、かつ20℃における比抵抗および85℃における比抵
抗が1×10′3Ω印より小さくなって好ましくない。
In addition, as in sample number 24, the S i Oz content is 8
.. If the amount is more than 0.00 parts by weight, the dielectric constant becomes less than 40, and the specific resistance at 20° C. and the specific resistance at 85° C. become smaller than the 1×10′3 Ω mark, which is not preferable.

さらに、試料番号25のように主成分100重量部に対
してAltosの含有量が0.01重量部より少ないと
、85℃における比抵抗が1×IQ+3ΩCl11より
小さくなって好ましくない。
Furthermore, if the content of Altos is less than 0.01 parts by weight based on 100 parts by weight of the main component, as in sample number 25, the specific resistance at 85° C. becomes less than 1×IQ+3ΩCl11, which is not preferable.

また、試料番号28のようにAjl!zoiの含有量が
1.00重量部より多いと、誘電率が40より小さくな
り、かつ静電容量の温度係数の絶対値が1100pp/
”cより大きくなって好ましくない。
Also, like sample number 28, Ajl! When the content of zoi is more than 1.00 parts by weight, the dielectric constant is less than 40, and the absolute value of the temperature coefficient of capacitance is 1100 pp/
``It is undesirable to be larger than c.

それに対して、この発明の範囲内の試料では、1.36
0℃以下で焼結し、静電容量の温度係数の絶対値が11
00pp/”c以下で、誘電率が40以上で、誘電損失
が0.1%以下であり、20℃における比抵抗および8
5℃における比抵抗が1×10′3Ω口以上である。
In contrast, for samples within the scope of this invention, 1.36
Sintered at temperatures below 0°C, with an absolute value of temperature coefficient of capacitance of 11
00 pp/”c or less, dielectric constant is 40 or more, dielectric loss is 0.1% or less, resistivity at 20°C and 8
The specific resistance at 5° C. is 1×10′3Ω or more.

なお、この実施例では、Nz  Hzからなる還元性雰
囲気中で、円板状の成形物を焼成したが、A r 、 
CO,COz 、 Hz 、 Nzおよびこれらの混合
ガス雰囲気中で円板状の成形物を焼成してもよい。
In this example, the disc-shaped molded product was fired in a reducing atmosphere consisting of Nz Hz, but A r ,
The disc-shaped molded product may be fired in an atmosphere of CO, COz, Hz, Nz, or a mixed gas thereof.

Claims (1)

【特許請求の範囲】 一般式(Sr_1_−_xCa_x)_m(Ti_1_
−_yZr_y)O_3で表され、この一般式のモル比
率x、yおよびmが、それぞれ、 0.30≦x≦0.50、 0.92≦y≦0.98、および 0.95≦m≦1.08 の範囲にある主成分に、 100重量部の前記主成分に対して、副成分として、 MnをMnO_2に換算して0.01〜4.00重量部
、 SiO_2を2.00〜8.00重量部、および Al_2O_3を0.01〜1.00重量部含有した、
非還元性誘電体磁器組成物。
[Claims] General formula (Sr_1_−_xCa_x)_m(Ti_1_
−_yZr_y)O_3, and the molar ratios x, y, and m of this general formula are 0.30≦x≦0.50, 0.92≦y≦0.98, and 0.95≦m≦, respectively. 1.08 parts by weight of the main component, as subcomponents, Mn is converted to MnO_2 in an amount of 0.01 to 4.00 parts by weight, and SiO_2 is added in an amount of 2.00 to 8 parts by weight. .00 parts by weight, and 0.01 to 1.00 parts by weight of Al_2O_3.
Non-reducible dielectric ceramic composition.
JP62124733A 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent Pending JPS63289707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124733A JPS63289707A (en) 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124733A JPS63289707A (en) 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent

Publications (1)

Publication Number Publication Date
JPS63289707A true JPS63289707A (en) 1988-11-28

Family

ID=14892762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124733A Pending JPS63289707A (en) 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent

Country Status (1)

Country Link
JP (1) JPS63289707A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191408A (en) * 1990-02-28 1993-03-02 Victor Company Of Japan, Ltd. Color imaging system with selectively openable optical shutter
US5204301A (en) * 1992-01-31 1993-04-20 Murata Manufacturing Co., Ltd. Non-reduction type dielectric ceramic composition
US5241376A (en) * 1990-04-17 1993-08-31 Victor Company Of Japan, Ltd. Cinematographic system
WO2000018701A1 (en) * 1998-09-30 2000-04-06 Tdk Corporation Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
KR100415559B1 (en) * 2000-03-31 2004-01-24 삼성전기주식회사 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
US6790801B2 (en) * 2001-12-27 2004-09-14 Samsung Electro-Mechanics Co., Ltd. Nonreducible dielectric ceramic composition
JP2009126754A (en) * 2007-11-26 2009-06-11 Tdk Corp Production method for dielectric ceramic composition
US7916451B2 (en) * 2005-04-07 2011-03-29 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
CN110803927A (en) * 2018-08-06 2020-02-18 三星电机株式会社 Dielectric composition and electronic component using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191408A (en) * 1990-02-28 1993-03-02 Victor Company Of Japan, Ltd. Color imaging system with selectively openable optical shutter
US5241376A (en) * 1990-04-17 1993-08-31 Victor Company Of Japan, Ltd. Cinematographic system
US5204301A (en) * 1992-01-31 1993-04-20 Murata Manufacturing Co., Ltd. Non-reduction type dielectric ceramic composition
EP1036778A4 (en) * 1998-09-30 2009-01-14 Tdk Corp Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
WO2000018701A1 (en) * 1998-09-30 2000-04-06 Tdk Corporation Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
EP1036778A1 (en) * 1998-09-30 2000-09-20 TDK Corporation Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
US6329311B1 (en) 1998-09-30 2001-12-11 Tdk Corporation Non-reducible dielectric ceramic material, making method, and multilayer ceramic capacitor
KR100415559B1 (en) * 2000-03-31 2004-01-24 삼성전기주식회사 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
US6790801B2 (en) * 2001-12-27 2004-09-14 Samsung Electro-Mechanics Co., Ltd. Nonreducible dielectric ceramic composition
US7916451B2 (en) * 2005-04-07 2011-03-29 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
JP2009126754A (en) * 2007-11-26 2009-06-11 Tdk Corp Production method for dielectric ceramic composition
US7820578B2 (en) 2007-11-26 2010-10-26 Tdk Corporation Dielectric ceramic composition and method of production thereof
JP4678022B2 (en) * 2007-11-26 2011-04-27 Tdk株式会社 Method for producing dielectric ceramic composition
CN110803927A (en) * 2018-08-06 2020-02-18 三星电机株式会社 Dielectric composition and electronic component using the same

Similar Documents

Publication Publication Date Title
JPH06206765A (en) Nonreducing dielectric ceramic composition
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JPS63289709A (en) Nonreducible dielectric ceramic constituent
JPS63289710A (en) Nonreducible dielectric ceramic constituent
JP2958819B2 (en) Non-reducing dielectric porcelain composition
JP3143922B2 (en) Non-reducing dielectric ceramic composition
US5202814A (en) Nonreducing dielectric ceramic composition
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS63224108A (en) Non-reducing dielectric ceramic composition
JPS63289708A (en) Nonreducible dielectric ceramic constituent
JPS63224109A (en) Non-reducing dielectric ceramic composition
JPH0824006B2 (en) Non-reducing dielectric ceramic composition
JP3089833B2 (en) Dielectric ceramic composition for temperature compensation
JPH03263708A (en) Nonreducing dielectric porcelain composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JPH04169003A (en) Unreducing dielectric porcelain composition
JP2958820B2 (en) Non-reducing dielectric porcelain composition
JPH04368709A (en) Nonreducing dielectric porcelain composition material
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPS63170804A (en) Manufacture of non-reducing dielectric ceramic
JPS63121209A (en) Non-reducing dielectric ceramic composition
JPS58188121A (en) Laminated ceramic condenser
JPS63170807A (en) Manufacture of non-reducing dielectric ceramic
JPS63170805A (en) Manufacture of non-reducing dielectric ceramic
JPH05266711A (en) Dielectric ceramic composition