JPS63170807A - Manufacture of non-reducing dielectric ceramic - Google Patents

Manufacture of non-reducing dielectric ceramic

Info

Publication number
JPS63170807A
JPS63170807A JP62003000A JP300087A JPS63170807A JP S63170807 A JPS63170807 A JP S63170807A JP 62003000 A JP62003000 A JP 62003000A JP 300087 A JP300087 A JP 300087A JP S63170807 A JPS63170807 A JP S63170807A
Authority
JP
Japan
Prior art keywords
dielectric constant
mol
dielectric
change rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62003000A
Other languages
Japanese (ja)
Inventor
西岡 吾朗
修司 渡部
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62003000A priority Critical patent/JPS63170807A/en
Priority to US07/141,999 priority patent/US4988468A/en
Priority to DE3800198A priority patent/DE3800198C2/en
Publication of JPS63170807A publication Critical patent/JPS63170807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非還元性誘電体磁器の製造方法に関し、特に
たとえば積層コンデンサなどの誘電体材料として用いら
れる非還元性誘電体磁器の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing non-reducible dielectric ceramics, and particularly relates to a method for manufacturing non-reducible dielectric ceramics used as dielectric materials such as multilayer capacitors. .

(従来技術) 従来、積層コンデンサを製造する際には、その上面にた
とえば印刷することによって内部電極となる金属粉末層
が形成された誘電体グリーンシートを、複数枚積み重ね
て圧着、一体化した後、その一体化物を焼成するという
工程が採用されている。
(Prior art) Conventionally, when manufacturing a multilayer capacitor, a plurality of dielectric green sheets, each of which has a metal powder layer that will become an internal electrode by printing on its top surface, are stacked, crimped, and integrated. , a process of firing the integrated product is adopted.

(発明が解決しようとする問題点) 従来の誘電体磁器は、低酸素分圧下で焼成すると還元さ
れ、その比抵抗が著しく劣化するという性質を有してい
た。このため、その焼成は空気中等の高酸素分圧下で、
たとえば1.300℃以上の高い温度で行われていた。
(Problems to be Solved by the Invention) Conventional dielectric ceramics have the property that when fired under low oxygen partial pressure, they are reduced and their specific resistance deteriorates significantly. For this reason, the firing is performed under high oxygen partial pressure such as in air.
For example, it was carried out at a high temperature of 1.300°C or higher.

したがって、このような熱処理条件に耐え得る内部電極
の材料として、たとえばパラジウム、白金などの貴金属
を用いなければならなく、そのため、製造される積層コ
ンデンサの大容量化および低価格化の大きな妨げとなっ
ていた。
Therefore, noble metals such as palladium and platinum must be used as materials for the internal electrodes that can withstand such heat treatment conditions, which is a major hindrance to increasing the capacity and lowering the price of manufactured multilayer capacitors. was.

そこで、本発明者らは、上述の問題を解決するために、
たとえばニッケルなどの卑金属を内部電極の材料として
使用することができるように、低酸素分圧下で焼成して
も還元されず高い比抵抗を有する誘電体磁器を創作した
。この誘電体磁器として、特公昭56−46641号公
報には、((Ba、 Ca)O) −・(Ti、 Zr
)Oxからなる固溶体が開示されている。しかしながら
、この公報に開示されている製造方法で製造された誘電
体磁器では、その磁器組成物が焼結過程で一様な固溶体
をなすため、そのキュリ一点が単一となり、そのため、
その誘電率の温度変化率が大きかった。
Therefore, in order to solve the above-mentioned problem, the present inventors
For example, we created dielectric porcelain that does not reduce even when fired under low oxygen partial pressure and has a high specific resistance so that base metals such as nickel can be used as materials for internal electrodes. As this dielectric ceramic, Japanese Patent Publication No. 56-46641 describes ((Ba, Ca)O) - (Ti, Zr
) A solid solution consisting of Ox is disclosed. However, in the dielectric porcelain manufactured by the manufacturing method disclosed in this publication, since the porcelain composition forms a uniform solid solution during the sintering process, each Curie point is single;
The temperature change rate of its dielectric constant was large.

そこで、本発明者は、鋭意努力の結果、BaTi0゜に
ZrO□およびCaO等を焼結過程で完全には固溶させ
ないことによって、誘電率の温度変化率を小さくするこ
とができることを見出した。
As a result of diligent efforts, the inventors of the present invention have found that the temperature change rate of the dielectric constant can be reduced by not completely dissolving ZrO□, CaO, etc. into BaTi0° during the sintering process.

それゆえに、この発明の主たる目的は、非酸化性雰囲気
中で焼成しても、還元されて半導体化することなく高い
比抵抗を示し、かつ、高い誘電率を有し、しかも、誘電
率の温度変化率が小さい非還元性誘電体磁器を製造する
ことができる、非還元性誘電体磁器の製造方法を提供す
ることである。
Therefore, the main object of the present invention is to exhibit a high resistivity without being reduced and turned into a semiconductor even when fired in a non-oxidizing atmosphere, and to have a high dielectric constant, and also to It is an object of the present invention to provide a method for manufacturing non-reducible dielectric ceramics that can manufacture non-reducible dielectric ceramics with a small rate of change.

(問題点を解決するための手段) この発明は、それぞれが仮焼、粉砕されたBaTiO3
,CaTiOsおよびCaZrOsを、BaTi0+が
82.0〜93.0モル%、CaTiOxが6.0〜1
4.0モル%、およびCaZrO3が1.0〜8.0モ
ル%の範囲で配合したものを主成分として準備し、主成
分100モル部に、副成分としてマンガン酸化物、バリ
ウム酸化物および二酸化けい素を、それぞれ、Mn0t
、 BaOおよび5iftに換算して、MnO,が0.
 1〜4.0モル部、BaOが0.2〜4.0モル部、
およびSiO□が0.1〜3.0モル部の範囲で添加し
、さらに、主成分に副成分を添加したものを焼成する、
非還元性誘電体磁器の製造方法である。
(Means for Solving the Problems) The present invention is based on BaTiO3 which is calcined and pulverized.
, CaTiOs and CaZrOs, BaTi0+ is 82.0 to 93.0 mol%, CaTiOx is 6.0 to 1
4.0 mol% and CaZrO3 in the range of 1.0 to 8.0 mol% are prepared as the main component, and manganese oxide, barium oxide and dioxide are added as subcomponents to 100 mol parts of the main component. Silicon, respectively, Mn0t
, MnO, converted to BaO and 5ift, is 0.
1 to 4.0 mol parts, BaO 0.2 to 4.0 mol parts,
and adding SiO
This is a method for manufacturing non-reducible dielectric ceramics.

(発明の効果) この発明によれば、非酸化性雰囲気中でたとえば1,2
70〜1,360℃の温度で焼成しても、還元されて半
導体化することなく10”Ω1以上の高い比抵抗を示し
、3.000以上の高い誘電率をもち、しかも、−55
℃〜+125℃の広い温度範囲において誘電率の温度変
化率が一15%〜+15%の範囲と小さい、非還元性誘
電磁器を製造することができ゛る。
(Effect of the invention) According to the invention, for example, 1,2
Even when fired at a temperature of 70 to 1,360°C, it does not reduce and become a semiconductor, but exhibits a high specific resistance of 10"Ω1 or more, has a high dielectric constant of 3.000 or more, and -55
It is possible to produce a non-reducible dielectric ceramic whose temperature change rate of dielectric constant is as small as 115% to +15% over a wide temperature range of 125°C to 125°C.

また、この発明の実施例によれば、さらに、誘電損失が
1.00%未満と小さく、かつ、+20 、℃の温度に
おける誘電率を基準とした一25℃〜+85℃の温度範
囲における誘電率の温度変化率が土10%未満と小さい
、優れた特性が得られた。
Further, according to the embodiment of the present invention, the dielectric loss is as small as less than 1.00%, and the dielectric constant in the temperature range of -25°C to +85°C is based on the dielectric constant at a temperature of +20°C. Excellent properties were obtained, with a temperature change rate of less than 10% of that of soil.

したがって、高い誘電率、低い誘電損失および良好な誘
電率温度特性をすべて満足し、かつ、小型で大容量のコ
ンデンサの誘電体材料などとして極めて有用な非還元性
誘電体磁器を製造することができる。しかも、この非還
元性誘電体磁器をたとえば積層セラミックコンデンサの
誘電体材料として用いれば、たとえばニッケルなどの卑
金属を内部電極とした安価な積層セラミックコンデンサ
を得ることができる。
Therefore, it is possible to produce a non-reducible dielectric ceramic that satisfies all of high permittivity, low dielectric loss, and good permittivity-temperature characteristics, and is extremely useful as a dielectric material for small, large-capacity capacitors. . Moreover, if this non-reducible dielectric ceramic is used as a dielectric material for a multilayer ceramic capacitor, for example, an inexpensive multilayer ceramic capacitor can be obtained in which internal electrodes are made of a base metal such as nickel.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、BaC0zとTie、とを、BaTi0:+を形
成するための比率で秤量し、それらをボールミルで十分
に混合して、この混合物を1200℃で1時間仮焼した
後、微粉砕した。
(Example) First, BaC0z and Tie are weighed in a ratio to form BaTi0:+, mixed thoroughly in a ball mill, and this mixture is calcined at 1200°C for 1 hour. Shattered.

これと同様にして、CaC0*およびTiO□から仮焼
、微粉砕されたCaTiO3の粉末と、CaC0,およ
びZrO□から仮焼、微粉砕されたCaZrO3の粉末
とを、それぞれ得た。
Similarly, CaTiO3 powder calcined and finely ground from CaC0* and TiO□ and CaZrO3 powder calcined and finely ground from CaC0 and ZrO□ were obtained, respectively.

これらの粉末のX−ray回折像により、これらの粉末
が均一な結晶性を有することを確認した。
The X-ray diffraction images of these powders confirmed that these powders had uniform crystallinity.

このようにして得られたBaTiO3,CaTiO3お
よびCaZrO3の各粉末と、Mn01. BaQおよ
び5iO1とを、別表1に示した組成比率の誘電体が得
られるように秤量した。なお、表1では、この発明の範
囲外の組成比の数値に下線を付した。
Each powder of BaTiO3, CaTiO3 and CaZrO3 thus obtained and Mn01. BaQ and 5iO1 were weighed so as to obtain a dielectric having the composition ratio shown in Attached Table 1. In Table 1, numerical values of composition ratios outside the scope of the present invention are underlined.

さらに、この秤量原料に酢酸ビニル系有機バインダ5重
量%を加えて湿式混合してから、蒸発。
Furthermore, 5% by weight of a vinyl acetate organic binder was added to this weighed raw material, wet mixed, and then evaporated.

乾燥および整粒の工程を経て粉末を得た。そして、この
粉末を2000 kg/cfflの圧力で直径101゜
厚さ1flに成形して成形物を得た。
A powder was obtained through drying and sizing steps. Then, this powder was molded to a diameter of 101° and a thickness of 1 fl at a pressure of 2000 kg/cffl to obtain a molded product.

この成形物を、ジルコニア粉末を敷粉としてアルミナ質
の匣に入れて、Hz/Ntの体積比率が3/100の還
元性ガス雰囲気中において、1゜270℃〜1,400
℃の温度で焼成して、素子を得た。
This molded product was placed in an alumina box with zirconia powder as a bed powder, and heated at 1°270°C to 1,400°C in a reducing gas atmosphere with a volume ratio of Hz/Nt of 3/100.
An element was obtained by firing at a temperature of .degree.

得られた素子の両面に、In −Ga合金を塗布して、
電極を形成し、各試料を得た。
Applying In-Ga alloy to both sides of the obtained element,
Electrodes were formed and each sample was obtained.

そして、各試料の誘電率ε、誘電損失tan δ。Then, the dielectric constant ε and dielectric loss tan δ of each sample.

誘電率の温度変化率および比抵抗の電気的特性を次の条
件で測定した。
The electrical characteristics of the temperature change rate of dielectric constant and specific resistance were measured under the following conditions.

誘電率εおよび誘電損失tan δは、1kHzの周波
数で25℃の温度で測定した。
The dielectric constant ε and the dielectric loss tan δ were measured at a frequency of 1 kHz and a temperature of 25°C.

誘電率の温度変化率は、+25℃の温度における誘電率
を基準とした一55℃〜+125℃の温度範囲の誘電率
の温度変化率(ΔC/ Czs)と、+20℃の温度に
おける誘電率を基準とした一25℃〜+85℃の温度範
囲の誘電率の温度変化率(ΔC/C,。)とを、それぞ
れ測定した。
The temperature change rate of the dielectric constant is the temperature change rate of the dielectric constant (ΔC/Czs) in the temperature range of -55℃ to +125℃ based on the dielectric constant at a temperature of +25℃, and the dielectric constant at a temperature of +20℃. The temperature change rate (ΔC/C, .) of the dielectric constant in the temperature range of −25° C. to +85° C. as a reference was measured.

比抵抗は、25℃の温度において、DC,500vを2
分間印加した後測定した。
The specific resistance is DC, 500V at 25°C.
Measurements were taken after applying the voltage for a minute.

上述の測定結果を別表2に示した。なお、表2では、特
性の悪い数値に下線を付した。この場合、誘電率εにつ
いては3,000未満のものを、誘電損失tan δに
ついては1%以上のものを、誘電率の温度変化率(ΔC
/C□)については−15〜+15%の範囲外のものを
、誘電率の温度変化率(ΔC/C,。)については−1
0〜+10%の範囲外のものを、比抵抗についてはlO
目Ω・cm未溝のものを、それぞれ、特性の悪いものと
して示した。
The above measurement results are shown in Attached Table 2. In Table 2, numerical values with poor characteristics are underlined. In this case, the dielectric constant ε is less than 3,000, the dielectric loss tan δ is 1% or more, and the temperature change rate of the dielectric constant (ΔC
/C□) outside the range of -15 to +15%, and temperature change rate of dielectric constant (ΔC/C,.) -1
Those outside the range of 0 to +10%, for specific resistance, lO
Those without grooves of Ω·cm were shown as having poor characteristics.

つまり、試料番号4のようにBaTiOsが82モル%
未満では誘電率が小さくなり、試料番号6のようにBa
TiOsが93モル%を超えると誘電率の温度特性が悪
くなる。
In other words, as in sample number 4, BaTiOs is 82 mol%.
If the dielectric constant is less than
If TiOs exceeds 93 mol %, the temperature characteristics of the dielectric constant deteriorate.

また、試料番号1および6のようにCaTiOsが6モ
ル%未満であると誘電率の温度変化率が一15%を超え
、試料番号3のようにCaTiOsが14モル%を超え
ると誘電率が小さくなる。
In addition, when CaTiOs is less than 6 mol% as in sample numbers 1 and 6, the temperature change rate of the dielectric constant exceeds 115%, and when CaTiOs exceeds 14 mol% as in sample number 3, the dielectric constant is small. Become.

試料番号2のようにCaZrO3が1モル%未満である
と誘電率の温度変化率が−15%を超え、試料番号5の
ようにCaZrO3が8モル%を超えると誘電率が小さ
くなる。
When CaZrO3 is less than 1 mol% as in Sample No. 2, the temperature change rate of the dielectric constant exceeds -15%, and when CaZrO3 exceeds 8 mol% as in Sample No. 5, the dielectric constant becomes small.

一方、試料番号15のようにMnO,が0.1モル部未
満であると誘電率が小さくなりかつ誘電率の温度特性が
悪くなり、試料番号18のようにMnO2が4モル部を
超えると誘電率が2,000以下と小さくなる。
On the other hand, if MnO2 is less than 0.1 mol part as in Sample No. 15, the dielectric constant becomes small and the temperature characteristics of the dielectric constant become poor, and if MnO2 exceeds 4 mol part as in Sample No. 18, the dielectric constant decreases and the temperature characteristics of the dielectric constant deteriorate. The ratio becomes small, less than 2,000.

また、試料番号19のようにBaOが0.2モル部未満
であると、還元焼成により比抵抗が小さくなりまた誘電
率の温度変化率が大きくなり、試料番号22のようにB
aOが4モル部を超えると、誘電率が小さくなりかつ焼
結性が悪く、なる。
In addition, when BaO is less than 0.2 mol part as in sample number 19, the specific resistance decreases due to reduction firing and the temperature change rate of the dielectric constant increases, and as in sample number 22, BaO
If aO exceeds 4 mole parts, the dielectric constant will be low and the sinterability will be poor.

試料番号23のようにSin、が0.1モル部未満であ
ると、焼結性が低下するとともに誘電率が小さくなりか
つ誘電率の温度変化率が大きくなり、試料番号26のよ
うにSin、が3モル部を超えると、誘電率が小さくな
りかつ誘電率の温度変化率が大きくなる。
If the amount of Sin is less than 0.1 mole part as in Sample No. 23, the sinterability decreases, the dielectric constant decreases, and the temperature change rate of the dielectric constant increases, and as in Sample No. 26, Sin, If it exceeds 3 molar parts, the dielectric constant becomes small and the temperature change rate of the dielectric constant becomes large.

また、参照例として特公昭56−46641号公報に開
示されているように、BaTiOs、 CaTiO3お
よびCaZr0:+の各成分を経ることなく作成した(
(Ba、 Ca)0) +e  ・(Ti+ Zr)O
zよりなる固溶体の組成と、その誘電率、誘電損失、誘
電率の温度変化率および比抵抗とを、それぞれ、別表1
と別表2とに試料番号28として示した。この試料番号
28に対応する本発明の実施例の組成およびその電気的
特性を、別表1および別表2に、試料番号27として示
した。なお、特公昭56−46641号公報においては
副成分を含有していないが、試料番号28においては副
成分としてMn0g、 SiO□をそれぞれ1モル部、
2モル部添加含有させた。
In addition, as a reference example, as disclosed in Japanese Patent Publication No. 56-46641, it was prepared without passing through each component of BaTiOs, CaTiO3 and CaZr0:+ (
(Ba, Ca)0) +e ・(Ti+ Zr)O
The composition of the solid solution consisting of z, its dielectric constant, dielectric loss, temperature change rate of dielectric constant, and specific resistance are shown in Appendix 1.
It is shown as sample number 28 in Attached Table 2. The composition and electrical characteristics of an example of the present invention corresponding to sample number 28 are shown as sample number 27 in Attached Tables 1 and 2. In addition, in Japanese Patent Publication No. 56-46641, no subcomponents were contained, but in sample No. 28, 0 g of Mn and 1 mole part of SiO□ were each added as subcomponents.
It was added in an amount of 2 moles.

試料番号27および2日の結果を比較して明らかなよう
に、試料番号28では、単一固溶体をなし誘電率が低く
、単一のキュリ一点をもつため誘電率の温度変化率が大
きいという欠点を有しているが、それに対して、本発明
の範囲内の試料番号27では、高い誘電率と平坦な誘電
率の温度変化率を示すことがわかる。
As is clear from comparing the results of sample number 27 and day 2, sample number 28 has a single solid solution, has a low dielectric constant, and has a single Curie point, so it has the disadvantage that the rate of change in dielectric constant with temperature is large. However, on the other hand, it can be seen that sample number 27 within the scope of the present invention exhibits a high dielectric constant and a flat temperature change rate of the dielectric constant.

さらに、別表2から明らかなように、本発明によれば、
誘電率が3.000以上で、誘電損失が1.00%未満
で、しかも、+25℃の温度における誘電率を基準とし
た一55℃〜+125℃の温度範囲の誘電率の温度変化
率が±15%未満であり、かつ、+20℃の温度におけ
る誘電率を基準とした一25℃〜+85℃の温度範囲の
誘電率の温度変化率が±10%未満である、優れた特性
が得られることがわかる。
Furthermore, as is clear from Attached Table 2, according to the present invention,
The dielectric constant is 3.000 or more, the dielectric loss is less than 1.00%, and the temperature change rate of the dielectric constant in the temperature range of -55℃ to +125℃ based on the dielectric constant at +25℃ is ± 15%, and the temperature change rate of the dielectric constant in the temperature range of -25°C to +85°C is less than ±10% based on the dielectric constant at +20°C. I understand.

特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓 (ほか1名)Patent applicant Murata Manufacturing Co., Ltd. Agent: Patent Attorney Oka 1) Zenhiro (1 other person)

Claims (1)

【特許請求の範囲】 それぞれが仮焼、粉砕されたBaTiO_3、CaTi
O_3およびCaZrO_3を、 BaTiO_3が82.0〜93.0モル%、CaTi
O_3が6.0〜14.0モル%、およびCaZrO_
3が1.0〜8.0モル% の範囲で配合したものを主成分として準備し、前記主成
分100モル部に、副成分としてマンガン酸化物、バリ
ウム酸化物および二酸化けい素を、それぞれ、MnO_
2、BaOおよびSiO_2に換算して、MnO_2が
0.1〜4.0モル部、 BaOが0.2〜4.0モル部、および SiO_2が0.1〜3.0モル部 の範囲で添加し、さらに 前記主成分に前記副成分を添加したものを焼成する、非
還元性誘電体磁器の製造方法。
[Claims] BaTiO_3 and CaTi each calcined and pulverized
O_3 and CaZrO_3, BaTiO_3 is 82.0 to 93.0 mol%, CaTi
O_3 is 6.0 to 14.0 mol%, and CaZrO_
3 was blended in the range of 1.0 to 8.0 mol% as the main component, and to 100 mol parts of the main component, manganese oxide, barium oxide, and silicon dioxide were added as subcomponents, respectively. MnO_
2. In terms of BaO and SiO_2, MnO_2 is added in the range of 0.1 to 4.0 mol parts, BaO is 0.2 to 4.0 mol parts, and SiO_2 is added in the range of 0.1 to 3.0 mol parts. A method for producing non-reducible dielectric porcelain, which further comprises firing a mixture of the main component and the subcomponent added thereto.
JP62003000A 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic Pending JPS63170807A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62003000A JPS63170807A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic
US07/141,999 US4988468A (en) 1987-01-08 1988-01-06 Method for producing non-reducible dielectric ceramic composition
DE3800198A DE3800198C2 (en) 1987-01-08 1988-01-07 Process for making a non-reducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003000A JPS63170807A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic

Publications (1)

Publication Number Publication Date
JPS63170807A true JPS63170807A (en) 1988-07-14

Family

ID=11545102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003000A Pending JPS63170807A (en) 1987-01-08 1987-01-08 Manufacture of non-reducing dielectric ceramic

Country Status (1)

Country Link
JP (1) JPS63170807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227212A (en) * 2012-03-30 2013-11-07 Canon Inc Piezoelectric ceramic, piezoelectric element, liquid ejection head, ultrasonic motor, and dust removing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227212A (en) * 2012-03-30 2013-11-07 Canon Inc Piezoelectric ceramic, piezoelectric element, liquid ejection head, ultrasonic motor, and dust removing device

Similar Documents

Publication Publication Date Title
JPH04218207A (en) Dielectric porcelain composition
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
JPH05109319A (en) High dielectric constant dielectric porcilain composition
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JP3634930B2 (en) Dielectric porcelain composition
JPH08151260A (en) Dielectric porcelain composition
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS63170807A (en) Manufacture of non-reducing dielectric ceramic
JPH0261434B2 (en)
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JP2505030B2 (en) High-permittivity porcelain composition for temperature compensation and method for producing the same
JP3064518B2 (en) Dielectric porcelain composition
JPS63170804A (en) Manufacture of non-reducing dielectric ceramic
JP2902925B2 (en) Dielectric porcelain composition
JPS63170803A (en) Manufacture of non-reducing dielectric ceramic
JPS63218102A (en) Manufacture of non-reduction dielectric ceramic
JPS63170806A (en) Manufacture of non-reducing dielectric ceramic
JPS63170805A (en) Manufacture of non-reducing dielectric ceramic
JPS6117087B2 (en)
JP2958826B2 (en) Dielectric porcelain composition
JP2920693B2 (en) Non-reducing dielectric porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JPH08119728A (en) Dielectric porcelain composition
JP2023069307A (en) Dielectric composition and electronic component
JPH10139539A (en) Dielectric porcelain composition