JP3143922B2 - Non-reducing dielectric ceramic composition - Google Patents

Non-reducing dielectric ceramic composition

Info

Publication number
JP3143922B2
JP3143922B2 JP02331098A JP33109890A JP3143922B2 JP 3143922 B2 JP3143922 B2 JP 3143922B2 JP 02331098 A JP02331098 A JP 02331098A JP 33109890 A JP33109890 A JP 33109890A JP 3143922 B2 JP3143922 B2 JP 3143922B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
dielectric
reducing
reducing dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02331098A
Other languages
Japanese (ja)
Other versions
JPH04206109A (en
Inventor
義弘 吉本
晴信 佐野
康信 米田
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18239835&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3143922(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP02331098A priority Critical patent/JP3143922B2/en
Publication of JPH04206109A publication Critical patent/JPH04206109A/en
Application granted granted Critical
Publication of JP3143922B2 publication Critical patent/JP3143922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非還元性誘電体磁器組成物に関し、特にた
とえば積層コンデンサなどの誘電体材料として用いられ
る非還元性誘電体磁器組成物に関する。
Description: TECHNICAL FIELD The present invention relates to a non-reducing dielectric porcelain composition, and more particularly to a non-reducing dielectric porcelain composition used as a dielectric material such as a multilayer capacitor.

(従来技術) 従来、積層コンデンサを製造する際には、誘電体グリ
ーンシートの上面にたとえば印刷することによって内部
電極となる金属層を形成し、それを複数枚積み重ねて圧
着,一体化した後、焼成するという工程が採用されてい
る。
(Prior art) Conventionally, when manufacturing a multilayer capacitor, a metal layer serving as an internal electrode is formed by, for example, printing on the upper surface of a dielectric green sheet, and a plurality of such layers are stacked, pressure-bonded and integrated. A step of firing is employed.

(発明が解決しようとする課題) 従来の誘電体磁器材料は、中性または還元性の低酸素
分圧下で焼成すると還元され、半導体化するという性質
を有していた。そのため、内部電極の材料として、誘電
体磁器材料の焼結する温度で溶融せず、かつ誘電体磁器
材料を半導体化しない高い酸素分圧の下で焼成しても酸
化されない、たとえばパラジウム,白金などの貴金属を
用いなければならず、製造される積層コンデンサの小型
大容量化および低価格化の大きな妨げとなっていた。
(Problems to be Solved by the Invention) Conventional dielectric porcelain materials have the property of being reduced and turned into semiconductors when fired under a neutral or reducing low oxygen partial pressure. Therefore, as a material for the internal electrode, it does not melt at the temperature at which the dielectric ceramic material sinters, and does not oxidize even when fired under a high oxygen partial pressure that does not turn the dielectric ceramic material into a semiconductor, such as palladium and platinum. Noble metal had to be used, which hindered the miniaturization and large-capacity and low price of the manufactured multilayer capacitor.

そこで、上述の問題を解決するために、たとえばニッ
ケルや銅などの安価な卑金属を内部電極の材料として使
用することが望まれていた。しかし、このような卑金属
を内部電極の材料として使用し、従来の条件下で焼成す
ると、電極材料が酸化したり溶融したりしてしまう。そ
のため、このような卑金属を内部電極の材料として使用
するために、酸素分圧の低い中性または還元性の雰囲気
中において低温で焼成しても半導体化せず、コンデンサ
用の誘電体磁器材料として十分な比抵抗と優れた誘電特
性とを有する誘電体磁器材料が必要とされていた。
Therefore, in order to solve the above problem, it has been desired to use an inexpensive base metal such as nickel or copper as a material for the internal electrodes. However, when such a base metal is used as a material for an internal electrode and fired under conventional conditions, the electrode material is oxidized or melted. Therefore, in order to use such a base metal as a material for the internal electrode, it does not turn into a semiconductor even when fired at a low temperature in a neutral or reducing atmosphere with a low oxygen partial pressure, and as a dielectric ceramic material for capacitors. There has been a need for a dielectric porcelain material having sufficient specific resistance and excellent dielectric properties.

このような問題を解決するために、たとえば特開昭63
−86316号公報や特開昭63−224109号公報などに誘電体
磁器組成物が開示されている。このような誘電体磁器組
成物は酸素分圧の低い中性または還元性雰囲気中で焼成
が可能であるので、これを使用してニッケルなどの卑金
属を内部電極とする温度補償用積層コンデンサを作製す
ることができる。しかしながら、上述の公開公報に開示
されている誘電体磁器組成物では、銅を内部電極として
使用するには焼成温度が高く、また焼結後の結晶粒径が
大きいため素子厚の薄層化に対応できない。
In order to solve such a problem, for example, Japanese Patent Application Laid-Open
JP-A-86316 and JP-A-63-224109 disclose dielectric ceramic compositions. Since such a dielectric ceramic composition can be fired in a neutral or reducing atmosphere having a low oxygen partial pressure, it is used to produce a multilayer capacitor for temperature compensation using a base metal such as nickel as an internal electrode. can do. However, in the dielectric ceramic composition disclosed in the above-mentioned publication, the firing temperature is high in order to use copper as the internal electrode, and the crystal grain size after sintering is large, so that the element thickness is reduced. I can not cope.

それゆえに、この発明の主たる目的は、酸素分圧の低
い中性または還元性の雰囲気中において、1100℃以下の
温度で焼結し、かつ還元されることなく、静電容量の温
度係数の絶対値が1000ppm/℃以下で、誘電率が200以上
で、誘電損失が0.1%以下であり、20℃における比抵抗
が1×1012Ωcm以上であり、内部電極として銅を使用す
ることができる、非還元性誘電体磁器組成物を提供する
ことである。
Therefore, the main object of the present invention is to sinter at a temperature of 1100 ° C. or less in a neutral or reducing atmosphere with a low oxygen partial pressure, and to reduce the absolute temperature coefficient of the capacitance without being reduced. The value is 1000 ppm / ° C or less, the dielectric constant is 200 or more, the dielectric loss is 0.1% or less, the specific resistance at 20 ° C is 1 × 10 12 Ωcm or more, and copper can be used as an internal electrode. It is to provide a non-reducing dielectric porcelain composition.

(問題点を解決するための手段) この発明は、主成分が一般式(Sr1-xCax(Ti1-yZ
ry)O3で表され、この一般式のモル比率x、yおよびm
が、それぞれ、0.30≦x≦0.50、0.00≦y≦0.20、およ
び0.95≦m≦1.08の範囲にあり、その結晶粒径が0.1〜
1.0μmの範囲にある、非還元性誘電体磁器組成物であ
る。
(Means for Solving the Problems) In the present invention, the main component is represented by a general formula (Sr 1-x Ca x ) m (Ti 1-y Z
r y ) represented by O 3 , the molar ratios x, y and m of this general formula
Are respectively in the range of 0.30 ≦ x ≦ 0.50, 0.00 ≦ y ≦ 0.20, and 0.95 ≦ m ≦ 1.08, and the crystal grain size is 0.1 to
It is a non-reducing dielectric ceramic composition in a range of 1.0 μm.

さらに、この主成分100重量部に対して、副成分とし
てB2O3,SiO2,Li2Oの中から選ばれる少なくとも1種類を
含む金属酸化物を0.1〜10重量部添加してもよい。
Furthermore, 0.1 to 10 parts by weight of a metal oxide containing at least one selected from B 2 O 3 , SiO 2 , and Li 2 O may be added as auxiliary components to 100 parts by weight of the main component. .

(発明の効果) この発明によれば、還元性雰囲気中において、1100℃
以下で焼結し、温度に対する静電容量の温度係数の絶対
値が1000ppm/℃以下で、誘電率が200以上で、誘電損失
が0.1%以下であり、20℃における比抵抗が1×1012Ωc
m以上の特性を有する非還元性誘電体磁器組成物を得る
ことができる。したがって、この非還元性誘電体磁器組
成物を積層コンデンサ用材料として用いれば、銅などの
卑金属を内部電極として使用することが可能になる。こ
のため、積層コンデンサの大容量化にともなう電極のコ
ストの増大を解消することができ、低価格の積層コンデ
ンサを提供することができる。また、焼結後の結晶粒径
が小さいため、素子厚を薄くすることができ、積層コン
デンサを小型化することができる。
(Effect of the Invention) According to the present invention, 1100 ° C in a reducing atmosphere
Sintered below, the absolute value of the temperature coefficient of capacitance with respect to temperature is 1000 ppm / ° C or less, the dielectric constant is 200 or more, the dielectric loss is 0.1% or less, and the specific resistance at 20 ° C is 1 × 10 12 Ωc
A non-reducing dielectric ceramic composition having a characteristic of m or more can be obtained. Therefore, if this non-reducing dielectric ceramic composition is used as a material for a multilayer capacitor, it becomes possible to use a base metal such as copper as an internal electrode. For this reason, it is possible to eliminate an increase in the cost of the electrodes due to an increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor. Further, since the crystal grain size after sintering is small, the element thickness can be reduced, and the multilayer capacitor can be reduced in size.

この発明の上述の目的,その他の目的,特徴および利
点は、以下の実施例の詳細な説明から一層明らかとなろ
う。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

(実施例) まず、主成分の出発原料として水熱合成法で作製され
た粉末粒径が0.01〜0.1μmの範囲の(Sr1-xCax)TiO2
とZrO2を準備した。これらの出発原料を、一般式(Sr
1-xCax(Ti1-yZry)O3で表され、それぞれの配合比
が表1に示されるように配合して、主成分を得た。
(Example) First, (Sr 1-x Ca x ) TiO 2 powder having a particle size of 0.01 to 0.1 μm produced by a hydrothermal synthesis method as a starting material of a main component.
And ZrO 2 were prepared. These starting materials are represented by the general formula (Sr
1-x Ca x) is represented by m (Ti 1-y Zr y ) O 3, each formulation ratio was formulated as shown in Table 1, to obtain a main component.

また、副成分の材料として、B2O3,SiO2,Li2O,BaO,Zn
O,CuO,MnO,CaOを準備した。これらの材料を表2に示す
割合となるように秤量し、ボールミルで湿式混合,粉砕
した後、蒸発乾燥し、自然雰囲気中において1000℃で溶
融させた。さらに、溶融した材料をボールミルで1μm
以下に湿式粉砕した後、蒸発乾燥させて、A系列とB系
列の2種類の副成分を得た。
In addition, B 2 O 3 , SiO 2 , Li 2 O, BaO, Zn
O, CuO, MnO, CaO were prepared. These materials were weighed so as to have the ratios shown in Table 2, wet-mixed and pulverized by a ball mill, evaporated to dryness, and melted at 1000 ° C in a natural atmosphere. Furthermore, the melted material is 1 μm in a ball mill.
After being wet-pulverized in the following, it was evaporated to dryness to obtain two types of sub-components, A-series and B-series.

得られた主成分と副成分とを表1に示す割合となるよ
うに配合し、配合原料を得た。
The obtained main component and subcomponent were blended so as to have the ratios shown in Table 1 to obtain a blended raw material.

この配合原料に結合材として酢酸ビニル系バインダを
5重量部加え、ボールミルで湿式混合した。さらに、こ
の混合物を蒸発乾燥した後整粒して粉末原料を得た。得
られた粉末原料を2.0ton/cm2の圧力で直径20mm、厚さ1.
0mmの円板状に成形した。
5 parts by weight of a vinyl acetate binder was added as a binder to this compounding raw material, and the mixture was wet-mixed with a ball mill. Further, the mixture was evaporated to dryness and then sized to obtain a powder raw material. The resulting diameter 20mm powder material at a pressure of 2.0ton / cm 2, thickness 1.
It was shaped into a 0 mm disk.

次に、この円板状の成形物をジルコニア粉末を敷粉と
したアルミナ質の箱に入れ、自然雰囲気中において500
℃で2時間酢酸ビニル系バインダを燃焼させた。その
後、体積比率でH2:N2=3:100の還元ガス雰囲気中におい
て、円板状の成形物を820〜1100℃で2時間焼成して、
素子を得た。得られた素子の両面にIn−Ga合金を塗布し
て電極を形成し、試料(コンデンサ)を作製した。
Next, this disc-shaped molded product was placed in an alumina box using zirconia powder as a litter powder, and placed in a natural atmosphere for 500 minutes.
The vinyl acetate binder was burned at a temperature of 2 ° C. for 2 hours. Then, in a reducing gas atmosphere of H 2 : N 2 = 3: 100 in volume ratio, the disc-shaped molded product is fired at 820 to 1100 ° C. for 2 hours,
An element was obtained. An In-Ga alloy was applied to both surfaces of the obtained device to form electrodes, thereby preparing a sample (capacitor).

そして、得られた試料の誘電率ε,誘電損失tanδ,
静電容量の温度係数α(ppm/℃),20℃における比抵抗
ρ20(Ωcm)を測定した。
Then, the dielectric constant ε, dielectric loss tanδ,
The temperature coefficient α (ppm / ° C.) of the capacitance and the specific resistance ρ 20 (Ωcm) at 20 ° C. were measured.

なお、誘電損失tanδは、1kHz,1Vrms,20℃の条件で測
定した。
The dielectric loss tan δ was measured under the conditions of 1 kHz, 1 Vrms, and 20 ° C.

さらに、静電容量の温度係数α(ppm/℃)は、20℃に
おける静電容量C20および85℃における静電容量C85から
次式によって求めた。
Further, the temperature coefficient of capacitance α (ppm / ° C.) was determined from the capacitance C 20 at 20 ° C. and the capacitance C 85 at 85 ° C. by the following equation.

また、20℃における比抵抗ρ20(Ωcm)は、20℃にお
いて500Vの直流電圧を印加したときに流れる電流値より
求めた。
The specific resistance ρ 20 (Ωcm) at 20 ° C. was determined from the value of a current flowing when a DC voltage of 500 V was applied at 20 ° C.

そして、これらの結果を表3に示した。 Table 3 shows the results.

次に、この発明にかかる非還元性誘電体磁器組成物の
主成分の数値を限定した理由について説明する。
Next, the reason for limiting the numerical values of the main components of the non-reducing dielectric ceramic composition according to the present invention will be described.

つまり、試料番号1のようにxが0.30より小さいか、
または試料番号5のようにxが0.50より大きいと、静電
容量の温度係数の絶対値が1000ppm/℃より大きくなって
好ましくない。
That is, if x is smaller than 0.30 as in sample number 1,
Alternatively, when x is greater than 0.50 as in sample number 5, the absolute value of the temperature coefficient of capacitance is undesirably greater than 1000 ppm / ° C.

また、試料番号9のようにyが0.20より大きいと、静
電容量の温度係数の絶対値が1000ppm/℃より大きくな
り、かつ20℃における比抵抗が1×1012Ωcmより小さく
なって好ましくない。
If y is larger than 0.20 as in sample No. 9, the absolute value of the temperature coefficient of capacitance becomes larger than 1000 ppm / ° C., and the specific resistance at 20 ° C. becomes smaller than 1 × 10 12 Ωcm, which is not preferable. .

また、試料番号10のようにmが0.95より小さいと、20
℃における比抵抗が1×1012Ωcmより小さくなり、かつ
誘電損失が0.1%より大きくなって好ましくない。さら
に、試料番号13のようにmが1.08より大きいと、焼成温
度が1100℃を超えて好ましくない。
When m is smaller than 0.95 as in sample No. 10, 20
The specific resistance at 1 ° C. becomes smaller than 1 × 10 12 Ωcm, and the dielectric loss becomes larger than 0.1%, which is not preferable. Further, when m is larger than 1.08 as in the sample No. 13, the firing temperature exceeds 1100 ° C., which is not preferable.

次に、副成分の含有量の限定理由について説明する。 Next, the reason for limiting the content of the subcomponent will be described.

試料番号17のように主成分100重量部に対してA系列
の副成分の添加量が10重量部より大きいと、誘電損失が
0.1%より大きくなり、かつ静電容量の温度係数の絶対
値が1000ppm/℃より大きくなって好ましくない。
As shown in Sample No. 17, when the addition amount of the sub-component of the A series is more than 10 parts by weight with respect to 100 parts by weight of the main component, the dielectric loss is reduced.
This is not preferable because it is larger than 0.1% and the absolute value of the temperature coefficient of capacitance is larger than 1000 ppm / ° C.

また、試料番号22のように主成分100重量部に対して
B系列の副成分の添加量が10重量部より大きいと、誘電
損失が0.1%より大きくなり、かつ静電容量の温度係数
の絶対値が1000ppm/℃より大きくなって好ましくない。
Further, when the addition amount of the sub-component of the B series is more than 10 parts by weight with respect to 100 parts by weight of the main component as in Sample No. 22, the dielectric loss becomes larger than 0.1% and the absolute temperature coefficient of the capacitance becomes larger. The value is more than 1000 ppm / ° C., which is not preferable.

それに対して、この発明の範囲内の試料では、1100℃
以下で焼結し、静電容量の温度係数の絶対値が1000ppm/
℃以下で、誘電率が200以上で、誘電損失が0.1%以下で
あり、20℃における比抵抗が1×1012Ωcm以上である。
したがって、この発明の非還元性誘電体磁器組成物を積
層コンデンサ用材料として用いれば、銅などの卑金属を
内部電極として使用することができる。そのため、積層
コンデンサの大容量化にともなう電極のコスト増大を解
消することができ、低価格の積層コンデンサを提供する
ことができる。また、この非還元性誘電体磁器組成物を
用いれば、結晶粒径の小さい素子を得ることができ、素
子厚を薄くすることができる。そのため、積層コンデン
サを小型化することができる。
In contrast, for samples within the scope of the present invention, 1100 ° C
Sintered below, the absolute value of the temperature coefficient of capacitance is 1000ppm /
It has a dielectric constant of not less than 200 and a dielectric loss of not more than 0.1% at a temperature of not more than ° C, and a specific resistance of not less than 1 × 10 12 Ωcm at 20 ° C.
Therefore, when the non-reducing dielectric ceramic composition of the present invention is used as a material for a multilayer capacitor, a base metal such as copper can be used as an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor. Also, by using this non-reducing dielectric ceramic composition, an element having a small crystal grain size can be obtained, and the element thickness can be reduced. Therefore, the size of the multilayer capacitor can be reduced.

なお、この実施例では、原料粉末として水熱合成法に
よって作製したものを使用したが、これ以外にも共沈法
(アルコキシド法,シュウ酸法)などで作製された原料
粉末を使用してもよい。また、副成分として金属酸化物
を使用したが、それ以外に溶液添加をしてもよい。
In this example, a raw material powder produced by a hydrothermal synthesis method was used. However, a raw material powder produced by a coprecipitation method (alkoxide method, oxalic acid method) or the like may be used. Good. Further, the metal oxide is used as the subcomponent, but a solution may be added in addition to the metal oxide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂部 行雄 京都府長岡京市天神2丁目26番10号 株 式会社村田製作所内 (56)参考文献 特開 昭63−126117(JP,A) 特開 昭59−227769(JP,A) 特開 平1−95406(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/00 - 3/14 C04B 35/42 - 35/51 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukio Sakabe 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd. (56) References JP-A-63-126117 (JP, A) JP-A Sho 59-227769 (JP, A) JP-A-1-95406 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 3/00-3/14 C04B 35/42-35 / 51

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分が一般式(Sr1-xCax(Ti1-yZ
ry)O3で表され、この一般式のモル比率x、yおよびm
が、それぞれ、 0.30≦x≦0.50、 0.00≦y≦0.20、および 0.95≦m≦1.08 の範囲にあり、 その結晶粒径が0.1〜1.0μmの範囲にある、非還元性誘
電体磁器組成物。
The main component is represented by the general formula (Sr 1-x Ca x ) m (Ti 1-y Z
r y ) represented by O 3 , the molar ratios x, y and m of this general formula
Is in the range of 0.30 ≦ x ≦ 0.50, 0.00 ≦ y ≦ 0.20, and 0.95 ≦ m ≦ 1.08, respectively, and has a crystal grain size in the range of 0.1 to 1.0 μm.
【請求項2】さらに、前記主成分100重量部に対して、
副成分としてB2O3,SiO2,Li2Oの中から選ばれる少なくと
も1種類を含む金属酸化物を0.1〜10重量部添加した、
特許請求の範囲第1項記載の非還元性誘電体磁器組成
物。
2. The composition according to claim 1, further comprising:
0.1 to 10 parts by weight of a metal oxide containing at least one selected from among B 2 O 3 , SiO 2 and Li 2 O as subcomponents was added,
The non-reducing dielectric ceramic composition according to claim 1.
JP02331098A 1990-11-28 1990-11-28 Non-reducing dielectric ceramic composition Expired - Lifetime JP3143922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02331098A JP3143922B2 (en) 1990-11-28 1990-11-28 Non-reducing dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02331098A JP3143922B2 (en) 1990-11-28 1990-11-28 Non-reducing dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH04206109A JPH04206109A (en) 1992-07-28
JP3143922B2 true JP3143922B2 (en) 2001-03-07

Family

ID=18239835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02331098A Expired - Lifetime JP3143922B2 (en) 1990-11-28 1990-11-28 Non-reducing dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3143922B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627570B2 (en) 2000-02-09 2003-09-30 Tdk Corporation Dielectric ceramic composition, electronic device, and method of producing the same
US6645895B2 (en) 2000-03-30 2003-11-11 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
US6572793B2 (en) * 2000-03-30 2003-06-03 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
JP3698951B2 (en) * 2000-03-31 2005-09-21 三星電機株式会社 Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
JP4506084B2 (en) 2002-04-16 2010-07-21 株式会社村田製作所 Non-reducing dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
JP4729847B2 (en) * 2002-12-24 2011-07-20 株式会社村田製作所 Non-reducing dielectric ceramic and multilayer ceramic capacitors

Also Published As

Publication number Publication date
JPH04206109A (en) 1992-07-28

Similar Documents

Publication Publication Date Title
EP0605904B1 (en) Nonreducible dielectric ceramic composition
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100201201B1 (en) Monolithic ceramic capacitor
JPH05152158A (en) Ceramic capacitor
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JPH0824007B2 (en) Non-reducing dielectric ceramic composition
JPH0824006B2 (en) Non-reducing dielectric ceramic composition
JP2789110B2 (en) High dielectric constant porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JP3600701B2 (en) Dielectric porcelain composition
JP2568567B2 (en) Dielectric porcelain composition
JP2890865B2 (en) Dielectric ceramic composition for temperature compensation
JP2958820B2 (en) Non-reducing dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JP3291748B2 (en) Dielectric ceramic composition for temperature compensation
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JPH04169003A (en) Unreducing dielectric porcelain composition
JPH08119728A (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JP3450134B2 (en) Dielectric porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JP3469911B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

EXPY Cancellation because of completion of term