JPS6328865B2 - - Google Patents

Info

Publication number
JPS6328865B2
JPS6328865B2 JP57020860A JP2086082A JPS6328865B2 JP S6328865 B2 JPS6328865 B2 JP S6328865B2 JP 57020860 A JP57020860 A JP 57020860A JP 2086082 A JP2086082 A JP 2086082A JP S6328865 B2 JPS6328865 B2 JP S6328865B2
Authority
JP
Japan
Prior art keywords
mortar
foaming
foaming agent
type
surfactants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57020860A
Other languages
Japanese (ja)
Other versions
JPS58140364A (en
Inventor
Shigeru Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP57020860A priority Critical patent/JPS58140364A/en
Publication of JPS58140364A publication Critical patent/JPS58140364A/en
Publication of JPS6328865B2 publication Critical patent/JPS6328865B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、起泡剤、殊に隧道、暗渠、地下構築
物等の裏込めに利用するグラウテイングモルタル
(以下「裏込材」という)用の起泡剤に関する。 隧道、暗渠、地下構築物等の掘穿土木工事にお
いては、巻壁の背後の補強、沓の地固め等の目的
でセメントモルタルを主とする裏込剤が使用され
る(例えば山海堂刊「現場技術者のための新版コ
ンクリート工事ポケツトブツク」昭和51年7月新
版第1刷発行第91頁参照)。この裏込材用モルタ
ルには大別して普通モルタルと気泡モルタルがあ
る。前者は水、セメント、砂、フライアツシユ及
び減水剤等から構成されるが、一般に流動性が低
いのでポンプ輸送は困難であり、このため、大口
径の隧道内において現場で調合して使用するのに
適する。これに反し、後者は水、セメント、砂又
は粘土及び起泡剤等から構成されていて、内部に
存在する気泡のため流動性が良好であるので、ポ
ンプ輸送が可能で、このため現場から数百mも離
れたミキサーから現場まで圧送されることができ
る。 以上の特徴のため、後者の気泡モルタルはミキ
サーを配置する余裕のない小口径の隧道工事はも
ちろん、高層建築における仕切壁用モルタル施行
などに略全面的に採用されており、気泡率(オー
バーラン)は20〜50%が普通である。 ところで、気泡モルタルにおける最も重要な要
素は使用気泡剤の気泡安定性であつて、若し使用
起泡剤の気泡安定性が不充分であれば輸送中に気
泡が潰れてオーバーランが減少する(従つて減少
分だけ材料が余計に必要となる)のみでなく、当
該モルタルの流動性が低下したり、又は離水(ブ
リージング)を起こしたりする等の欠点を生じる
ので、モルタル用の起泡剤は材料に対し充分なオ
ーバーランを与えると共に高圧輸送に耐える充分
な気泡安定性を持つていなければならない。 現在、上の目的で用いられている気泡安定剤は
主として界面活性剤及び蛋白系物質であつて、前
者の例としては例えばアルキルアリルスルホン酸
塩、アルキル硫酸エステル塩、アルキル又はアル
キルアリルエトキシレート及びアルキル又はアル
キルアリルエトキシレート硫酸エステル塩があ
り、また後者の例としては動物の皮、爪、筋等の
コラーゲン又はエラスチン系蛋白のアルカリ加水
分解物が例示される。 以上の各起泡剤の中、界面活性剤によれば高気
泡率のモルタルを得ることができるが、一般に気
泡安定性が劣るため、数種類の界面活性剤を混用
したり又は糊剤や分散剤などの気泡安定性改良剤
を添加したりする試みが行われている。しかし数
種の界面活性剤を併用しても望ましい相乗効果を
期待するのは難かしい。また、ポリビニルアルコ
ール、カルボキシメチルセルローズ、ヒドロキシ
エチルセルロース、又はスチレン・マレイン酸コ
ポリマー塩のような糊剤は、自体溶解性が低いこ
とに加え、添加された起泡剤自体の粘度を高める
性質があるため勢い添加率が制限され、この結
果、実用濃度域では充分な気泡安定効果を望むの
が困難である。なお、以上の欠点を避ける一案と
して、界面活性剤と糊剤を別々にしてモルタルに
添加することも提案されているが、実際問題とし
てモルタルの調合作業が煩雑となる他、多量の糊
剤はモルタルの凝結遅延を起こす恐れがあるので
実用化には問題がある。さらにポリリン酸塩、低
重合度ポリアクリル酸ナトリウム、ナフタリンス
ルホン酸・ホルマリン縮合物などの分散剤は、モ
ルタルの粘度を低下せしめる反面、その大量添加
は気泡の安定性を低下させたり材料分離を起こさ
せる恐れがあるので、これまた気泡安定性を大幅
に改善する目的には不適当である。 上記の界面活性剤又はそれと糊剤ないし分散剤
の併用と比較して、蛋白系起泡剤は気泡の安定性
が優れてはいるが、起泡力が劣るため多量に用い
ないと効果が乏しい。しかも自体悪臭を有するこ
とに加え腐敗しやすいという欠点を持つている。 以上通観したように、既存のモルタル用起泡剤
の性能は未だ充分とは云えないものであつて、気
泡モルタルを大量に使用する業界、例えば隧道土
木業界等においてその改良が強く望まれていた。
本発明はこの要望に応え、自体優れた起泡性を備
えると同時に対象モルタルに対し安定なオーバー
ランを与えるモルタル用起泡剤に関するものであ
る。 本発明者はモルタル用起泡剤の改良について鋭
意研究を進めた結果、ある種の界面活性剤が、
水、砂又は粘土、減水剤等からなるポンプ輸送可
能な裏込材用起泡剤として従来の界面活性剤の概
念を覆す優秀な性能を発揮する事実を見出した。
発明者の知見によれば、この活性剤はアニオン性
とカチオン性とを併有する両性界面活性剤に属す
るものであつて、下式で示される類型を含む。な
お、下式中RはC6〜C22のアルキル基、R′は水素
又はメチル基又はエチレン基、Mは水素又はアル
カリもしくはアルカリ土類金属原子を示す。 (A) カルボキシベタイン型 (B) スルホベタイン型 (C) アミノカルボン酸型 (D) アミドカルボン酸型 (E) アミノスルホン酸型 (F) イミダゾリン型 本発明によれば、裏込材用気泡モルタルの性状
はこれらの両性界面活性剤の添加により大幅に改
善される。即ち、従来の起泡剤と同率の添加によ
りモルタルの流動性が殆んど低下することなしに
遥かに大きな気泡率を有するモルタルが得られ、
しかも気泡率の経時的低下が小く、その上、ブリ
ージング現象も殆んど起こらない。 本発明に係る起泡剤の好ましい使用量は対モル
タル0.01〜5%であるが、特に0.05〜1%の範囲
がより好ましい。使用量が0.01%未満では起泡性
が不充分であり、また5%を超えると気抱率の調
節が困難となるのみでなく、起泡性が強過ぎるた
めモルタルの強度が不足する恐れがある。殊に気
泡率50%以上の起泡モルタルでは粘度の上昇が著
しく、当該モルタルが粘弾性体的性質を示すよう
になるためポンプ輸送が困難となる。 本発明に係る起泡剤は必要に応じ2種以上併用
されてもよい。さらに陰イオン界面活性剤、例え
ばアルキルエトキシサルフエート塩と併用するこ
とも可能であつて、この場合も良好な起泡性と生
成した気泡の安定性を期待できる。 本発明において、両性界面活性剤が何故優れた
気泡安定性を示すのかその理由は明らかではな
い。しかし外見的に見て、本発明の起泡剤を含む
気泡モルタル中の気泡径は平均的に陰イオン系又
は非イオン系界面活性剤による場合に比し小い。
一般にモルタル中の気泡径が小である程浮力は小
さくなり、このことがモルタルから脱気が起りに
くくさせ、ひいてはモルタルの安定性を増加させ
る直接的な原因であると云えるが、より根本的に
は、両性界面活性剤の持つ耐強アルカリ安定性及
びモルタル構成材料に対する高い親和性その他の
要因の相乗効果と見るべきであろう。 本発明に係る起泡剤を含有するモルタルの流動
性は、他種の起泡剤が用いられた場合に比し多少
低いが、ポンプ輸送に際し問題となる程のもので
はなく、後記実施例が示すように500m以上の距
離に亘つて容易に圧送されることができる。 以下実施例により本発明の実施態様及び効果を
説明するが、例示はもちろん単に説明用のもので
あつて、如何なる見地においても発明思想の内
包・外延と直接の関係を有しないものである。 実施例 1 試験用モルタルミキサーに水500mlと所定量の
起泡剤を入れ、低速で30秒間撹拌した。次いで市
販粘土(FCP−1、昌栄産業株式会社製)375g
を加え、さらに30秒間撹拌後、最後に普通ポルト
ランドセメント375gを加え、高速で2分間撹拌
して起泡モルタルを調製した。この起泡モルタル
の物性測定結果を以下第1表として示す。
The present invention relates to a foaming agent, particularly a foaming agent for grouting mortar (hereinafter referred to as "backfilling material") used for backfilling tunnels, culverts, underground structures, etc. In civil engineering work for excavating tunnels, culverts, underground structures, etc., backfilling agents mainly consisting of cement mortar are used for the purpose of reinforcing the back of winding walls, compacting the ground at foothills, etc. (Refer to page 91 of the new edition of "Concrete Construction Pocketbook for Professionals," first edition published in July 1976). Mortar for this backfilling material can be roughly divided into ordinary mortar and cellular mortar. The former consists of water, cement, sand, fly ash, water reducing agent, etc., but it is generally difficult to transport by pump due to its low fluidity, so it is difficult to mix and use on-site in large-diameter tunnels. Suitable. On the other hand, the latter is composed of water, cement, sand or clay, and a foaming agent, etc., and has good fluidity due to the air bubbles inside, so it can be transported by pump, so it can be transported from the site to several places. It can be pumped from a mixer up to 100 meters away to the site. Because of the above characteristics, the latter type of cellular mortar is almost universally used for construction of small-diameter tunnels where there is no room for a mixer, as well as mortar for partition walls in high-rise buildings. ) is normally 20-50%. By the way, the most important factor in foam mortar is the foam stability of the foaming agent used. If the foaming agent used has insufficient foam stability, the foam will collapse during transportation and overrun will decrease ( Therefore, the foaming agent for mortar is not only necessary, but also causes disadvantages such as a decrease in the fluidity of the mortar or causing syneresis (breathing). It must provide sufficient overrun for the material and have sufficient bubble stability to withstand high pressure transport. Foam stabilizers currently used for the above purpose are mainly surfactants and protein-based substances, examples of the former include, for example, alkylaryl sulfonates, alkyl sulfate salts, alkyl or alkylaryl ethoxylates, and Examples include alkyl or alkylaryl ethoxylate sulfate ester salts, and examples of the latter include alkaline hydrolysates of collagen or elastin proteins from animal skin, nails, muscle, etc. Among the above-mentioned foaming agents, mortar with a high cell rate can be obtained using surfactants, but since the foam stability is generally poor, several types of surfactants may be mixed, or a sizing agent or dispersant may be used. Attempts have been made to add foam stability improvers such as However, it is difficult to expect a desirable synergistic effect even when several types of surfactants are used together. In addition, sizing agents such as polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, or styrene-maleic acid copolymer salts have low solubility and also have the property of increasing the viscosity of the foaming agent added. The rate of addition is limited, and as a result, it is difficult to achieve a sufficient bubble stabilizing effect in a practical concentration range. In addition, as a way to avoid the above drawbacks, it has been proposed to add surfactant and sizing agent separately to mortar, but as a practical matter, it complicates the mortar preparation process and requires a large amount of sizing agent. However, there is a problem in practical use because it may cause a delay in setting of mortar. Furthermore, dispersants such as polyphosphates, low-polymerized sodium polyacrylates, naphthalene sulfonic acid/formalin condensates, etc. reduce the viscosity of mortar, but their addition in large quantities may reduce the stability of bubbles or cause material separation. This is also unsuitable for the purpose of significantly improving foam stability. Compared to the above-mentioned surfactants or the combination of surfactants and sizing agents or dispersants, protein-based foaming agents have superior foam stability, but their foaming power is inferior, so they are not effective unless used in large amounts. . Moreover, it has the disadvantage of not only having a bad odor but also being easily rotten. As seen above, the performance of existing foaming agents for mortar is still not sufficient, and improvements are strongly desired in industries that use large amounts of foamed mortar, such as the tunnel civil engineering industry. Ta.
The present invention meets this need and relates to a foaming agent for mortar that has excellent foaming properties and at the same time provides stable overrun to the target mortar. As a result of intensive research into improving foaming agents for mortar, the present inventor found that certain surfactants
We have discovered that this foaming agent exhibits excellent performance as a foaming agent for pumpable backfill materials made of water, sand, clay, water reducing agents, etc., overturning the conventional concept of surfactants.
According to the inventor's findings, this surfactant belongs to amphoteric surfactants having both anionic and cationic properties, and includes the type shown by the following formula. In the following formula, R represents a C 6 -C 22 alkyl group, R' represents hydrogen, a methyl group or an ethylene group, and M represents hydrogen or an alkali or alkaline earth metal atom. (A) Carboxybetaine type (B) Sulfobetaine type (C) Aminocarboxylic acid type (D) Amidocarboxylic acid type (E) Aminosulfonic acid type (F) Imidazoline type According to the present invention, the properties of the cellular mortar for backfilling material are significantly improved by the addition of these amphoteric surfactants. In other words, by adding the foaming agent in the same proportion as a conventional foaming agent, a mortar with a much larger foam ratio can be obtained without substantially reducing the fluidity of the mortar.
Moreover, the decrease in the bubble rate over time is small, and moreover, the breathing phenomenon hardly occurs. The amount of the foaming agent according to the present invention to be used is preferably 0.01 to 5% based on the mortar, and particularly preferably 0.05 to 1%. If the amount used is less than 0.01%, foaming properties will be insufficient, and if it exceeds 5%, not only will it be difficult to control the air retention rate, but the foaming properties will be too strong and there is a risk that the strength of the mortar will be insufficient. be. In particular, foamed mortar with a cell content of 50% or more has a significant increase in viscosity, and the mortar exhibits viscoelastic properties, making pumping difficult. Two or more types of foaming agents according to the present invention may be used in combination, if necessary. Furthermore, it is also possible to use an anionic surfactant, such as an alkyl ethoxy sulfate salt, in combination, and in this case as well, good foaming properties and stability of the generated bubbles can be expected. In the present invention, the reason why the amphoteric surfactant exhibits excellent foam stability is not clear. However, visually, the cell diameter in the foamed mortar containing the foaming agent of the present invention is smaller on average than when using an anionic or nonionic surfactant.
In general, the smaller the bubble diameter in mortar, the smaller the buoyant force, and this can be said to be a direct cause of making it difficult for degassing to occur from the mortar and ultimately increasing the stability of the mortar, but there is a more fundamental reason. This should be seen as a synergistic effect of the amphoteric surfactant's strong alkali stability, high affinity for mortar constituent materials, and other factors. Although the fluidity of the mortar containing the foaming agent according to the present invention is somewhat lower than that when other types of foaming agents are used, it is not so high that it poses a problem during pump transportation, and the following Examples As shown, it can be easily pumped over distances of 500 m or more. The embodiments and effects of the present invention will be described below with reference to Examples, but the examples are, of course, merely for explanatory purposes and have no direct relation to the connotation or extension of the inventive idea in any way. Example 1 500 ml of water and a predetermined amount of foaming agent were placed in a test mortar mixer and stirred at low speed for 30 seconds. Next, 375 g of commercially available clay (FCP-1, manufactured by Shoei Sangyo Co., Ltd.)
After stirring for an additional 30 seconds, 375 g of ordinary Portland cement was finally added and stirred at high speed for 2 minutes to prepare a foaming mortar. The results of measuring the physical properties of this foamed mortar are shown in Table 1 below.

【表】 実施例 2 試験用モルタルミキサーに水230ml及び所定量
の起泡剤を入れ、低速で30秒間撹拌した。次いで
市販川砂(最大寸法5m/m、粗粒率3.14%)
1420gを加え、さらに普通ポルトランドセメント
410gを加えて30秒間低速で、続いて高速で2分
間撹拌して起泡モルタルを調製した。この起泡モ
ルタルの物性測定結果を第2表として示す。
[Table] Example 2 230 ml of water and a predetermined amount of foaming agent were placed in a test mortar mixer and stirred at low speed for 30 seconds. Next was commercially available river sand (maximum dimension 5m/m, coarse grain rate 3.14%)
Add 1420g and then regular Portland cement.
A foamed mortar was prepared by adding 410 g and stirring at low speed for 30 seconds and then at high speed for 2 minutes. The results of measuring the physical properties of this foamed mortar are shown in Table 2.

【表】 上2例から明らかなとおり、本発明による界面
活性剤は同一の添加率で既存起泡剤中最も優れて
いる蛋白系起泡剤に比べて遥かに優れた起泡性を
有し、しかも体積収縮率も小さい。特に第1表に
示したN−ラウロイル−β−イミノジプロピオン
酸ナトリウムは低濃度でも起泡性が良好で体積収
縮率が小さく、またイミダゾリウムベタインは最
大の起泡性を有するに拘わらず体積収縮率が小さ
い点で特に優れたものである。 実施例 3 グラウトミキサー(槽容量750)に水230mlと
N−ラウリル−β−アミノプロピオン酸(本発明
起泡剤)0.36Kgを入れ、2分間撹拌した。次いで
市販粘土(上記FCP−1)180Kgと普通ポルトラ
ンドセメント180Kgとを加え、5分間さらに撹拌
して気泡率42.8%の起泡モルタルを得た。 上の起泡モルタルをグラウトポンプで2.2Kg/
cm2に加圧して耐圧ホースを通して560mの距離を
圧送し、先端からサンプリングしたところ、気泡
率39.6%(体積減少率2.22%)を示し、充分な気
泡安定性を有することが確認された。
[Table] As is clear from the above two examples, the surfactant according to the present invention has far superior foaming properties compared to the protein-based foaming agent, which is the most excellent among existing foaming agents, at the same addition rate. , and the volumetric shrinkage rate is also small. In particular, sodium N-lauroyl-β-iminodipropionate shown in Table 1 has good foaming properties and low volume shrinkage even at low concentrations, and imidazolium betaine has the highest foaming properties but has a low volumetric shrinkage rate. It is particularly excellent in that it has a low shrinkage rate. Example 3 230 ml of water and 0.36 kg of N-lauryl-β-aminopropionic acid (foaming agent of the present invention) were placed in a grout mixer (tank capacity: 750) and stirred for 2 minutes. Next, 180 kg of commercially available clay (the above FCP-1) and 180 kg of ordinary Portland cement were added and stirred for 5 minutes to obtain a foaming mortar with a bubble rate of 42.8%. 2.2Kg/of the foamed mortar above with a grout pump
When the material was pressurized to cm 2 and fed a distance of 560 m through a pressure-resistant hose and sampled from the tip, it showed a bubble rate of 39.6% (volume reduction rate of 2.22%), confirming that it had sufficient bubble stability.

Claims (1)

【特許請求の範囲】[Claims] 1 カルボキシベタイン型、スルホベタイン型、
アミノカルボン酸型、アミドカルボン酸型、アミ
ノスルホン酸型又はイミダゾリン型両性界面活性
剤から選ばれた界面活性剤の一種又はそれ以上を
含有する気泡安定性の優れたポンプ輸送する裏込
材用起泡剤。
1 Carboxybetaine type, sulfobetaine type,
A material for a pump-transported backfill material with excellent bubble stability containing one or more surfactants selected from aminocarboxylic acid type, amidocarboxylic acid type, aminosulfonic acid type or imidazoline type amphoteric surfactants. Foaming agent.
JP57020860A 1982-02-11 1982-02-11 Foaming agent for high foam stability lining material Granted JPS58140364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020860A JPS58140364A (en) 1982-02-11 1982-02-11 Foaming agent for high foam stability lining material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020860A JPS58140364A (en) 1982-02-11 1982-02-11 Foaming agent for high foam stability lining material

Publications (2)

Publication Number Publication Date
JPS58140364A JPS58140364A (en) 1983-08-20
JPS6328865B2 true JPS6328865B2 (en) 1988-06-10

Family

ID=12038873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020860A Granted JPS58140364A (en) 1982-02-11 1982-02-11 Foaming agent for high foam stability lining material

Country Status (1)

Country Link
JP (1) JPS58140364A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679150A (en) * 1996-08-16 1997-10-21 Kerkar; Awdhoot Vasant Drying shrinkage cement admixture
US6039800A (en) * 1998-05-14 2000-03-21 Witco Corporation Production of foamed compositions containing gypsum
US6258161B1 (en) 1998-11-04 2001-07-10 W. R. Grace & Co.-Conn. Masonry blocks and masonry concrete admixture for improved freeze-thaw durability
US6302955B1 (en) 1998-11-04 2001-10-16 W. R. Grace & Co.-Conn. Composition for improving freeze/thaw durability of masonry containing fatty acid-based efflorescence control agents
JP4694273B2 (en) * 2005-06-08 2011-06-08 花王株式会社 Foaming agent composition for hydraulic composition
FR2913350B1 (en) * 2007-03-08 2010-05-21 Rhodia Recherches & Tech USE OF BETAINE AS FOAMING AGENT AND FOAM DRAIN REDUCTION AGENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111084A (en) * 1974-07-17 1976-01-28 Shinnitsuto Kagaku Kk Ganfutsusokaimenkatsuseizai oyobi sonoseiho
JPS5420966A (en) * 1977-07-15 1979-02-16 Tokuyama Soda Co Ltd Cathode
JPS5447258A (en) * 1977-09-21 1979-04-13 Mitsubishi Electric Corp Contoller for speed reduction of elevator
JPS5547259A (en) * 1978-09-25 1980-04-03 Kao Corp Admixing agent for ae concrete or ae mortar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111084A (en) * 1974-07-17 1976-01-28 Shinnitsuto Kagaku Kk Ganfutsusokaimenkatsuseizai oyobi sonoseiho
JPS5420966A (en) * 1977-07-15 1979-02-16 Tokuyama Soda Co Ltd Cathode
JPS5447258A (en) * 1977-09-21 1979-04-13 Mitsubishi Electric Corp Contoller for speed reduction of elevator
JPS5547259A (en) * 1978-09-25 1980-04-03 Kao Corp Admixing agent for ae concrete or ae mortar

Also Published As

Publication number Publication date
JPS58140364A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
JP2635884B2 (en) Concrete composition
US3959003A (en) Thixotropic cementing compositions
US5294255A (en) Pumpable backfill grout
CN111663948B (en) Water-rich sand-gravel stratum shield muck improvement additive and preparation method thereof
JP3686888B2 (en) Gap filling material and gap filling method
JPS6328865B2 (en)
JP2001146457A (en) Cement admixture, cement composition and application of concrete using the same
JP2008088040A (en) Cement composition for fixing bolt and continuous construction method for the same
JP2016138007A (en) Additive for hydraulic material for cast-in-place concrete-based pile, hydraulic material for cast-in-place concrete-based pile and cast-in-place concrete-based pile
CN101654355B (en) Chemical soluble glass slurry for reinforcing and preventing leakage
JP4044887B2 (en) Bolt fixing method
JP5800487B2 (en) Grout manufacturing method
JP4056868B2 (en) Air grout material
JP5002896B2 (en) Gap filler and manufacturing method thereof
JP4159632B2 (en) Foaming agent for lightweight cellular concrete
JPH0692709A (en) Grout material for fixing underwater structure and installation method therefor
JPS5818342B2 (en) Poor mix concrete for pumping
JP2003313060A (en) Foaming agent for hydraulic composition
JP3028120B2 (en) Quick-setting material for casting floating structures
WO1999036665A1 (en) Method for injecting of foamed concrete and a foamed concrete
JP3095431B2 (en) Hardener composition for preparing ground injection chemical, method of preparing ground injection, and method of injecting chemical into ground
JP4441022B2 (en) Concrete construction method to fill gaps and cracks in formwork
JP5641396B2 (en) Light injection material and injection method of light injection material
KR100972665B1 (en) Cement mixture for filling
JPH06146788A (en) Backfilling material and shield method using the same