JPS63282232A - High-strength magnesium alloy for plastic working and its production - Google Patents

High-strength magnesium alloy for plastic working and its production

Info

Publication number
JPS63282232A
JPS63282232A JP11863587A JP11863587A JPS63282232A JP S63282232 A JPS63282232 A JP S63282232A JP 11863587 A JP11863587 A JP 11863587A JP 11863587 A JP11863587 A JP 11863587A JP S63282232 A JPS63282232 A JP S63282232A
Authority
JP
Japan
Prior art keywords
alloy
plastic working
strength
forging
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11863587A
Other languages
Japanese (ja)
Inventor
Shigeru Yanagimoto
茂 柳本
Ryoichi Kondo
近藤 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11863587A priority Critical patent/JPS63282232A/en
Publication of JPS63282232A publication Critical patent/JPS63282232A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high-strength Mg alloy for plastic working excellent in plastic workability such a forgeability, by subjecting a molten Mg containing specific amounts of A$, Zn, and Mn to continuous casting under specific conditions or by subjecting an ingot of the Mg alloy to hot plastic working under specific conditions. CONSTITUTION:A molten Mg alloy containing, by weight, 1.0-10.0% Al, 0.1-2.0% Zn, and 0.05-1.0% Mn is casted continuously and solidified at >=25 deg.C/sec solidification rate to be formed into a continuously cast billet, so that an Mg alloy in which the size of the grains of the secondary phase consisting of one or two intermetallic compounds among Mg-Zn, Al-Mn, Mg-Al- Zn, Al-Mn-Fe, Mg-Si, etc., is regulated to <=30mum and the greater part of the metallic structure has fine a equi-axed crystal of <=200mum average grain size is manufactured, or, an Mg alloy prepared by casting a molten Mg alloy with the above-mentioned composition and subjecting the resulting ingot to hot plastic working at 220-450 deg.C at >=25% draft is manufactured. In this way, the high- strength Mg alloys respectively excellent in plastic workability such as forgeability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鍛造などの塑性加工性に優れた塑性加工用
高強度マグネシウム合金及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-strength magnesium alloy for plastic working, which has excellent plastic workability such as forging, and a method for producing the same.

[従来の技術] 周知のように、マグネシウムを主成分とする合金は軽遺
で比強度か高く、自動車部品や航空機部品、その他各種
機械装置類において強度や耐摩耗性を要する箇所などに
使用されている。このようなマグネシウム合金部材は、
通常、鍛造を行って製造されるが、Mgの結晶構造は最
密六方晶であり、この結晶構造に起因して、常温での塑
性変形が困難であるので260〜510℃の熱間で鍛造
される。
[Prior Art] As is well known, alloys whose main component is magnesium are light in weight and have high specific strength, and are used in automobile parts, aircraft parts, and other mechanical devices where strength and wear resistance are required. ing. Such magnesium alloy members are
Usually, it is manufactured by forging, but Mg has a close-packed hexagonal crystal structure, and because of this crystal structure, it is difficult to plastically deform it at room temperature, so it is manufactured by hot forging at 260 to 510 degrees Celsius. be done.

この鍛造方法としては、自由鍛造と型鍛造とに大別され
、主として大型の鍛造品を得るための自由鍛造の場合に
は、素材として連続鋳造もしくは半連続鋳造によって得
られた直径2501φ以上のビレットが使用されている
。このような大型鍛造用の素材として用いられている従
来のビレットは、その鋳造組織が横断面内で大きくばら
つき、特に中心部と外皮付近の位置とでは大幅に異なり
、そのため機械的特性も横断面の部位によって異なると
ともに、ピンホールや偏析、ミクロシュリンケージやミ
クロ割れ等の欠陥が存在するおそれがあり、従って、満
足すべき機械的性質を有する鍛造品を得るためには、鍛
造素材のビレットを充分に検査して良品を選別する必要
があることはもちろん、鍛造時においては上記欠陥や不
均質な鋳造組織を消失させるために鍛練を何度も繰り返
す必要があり、そのため鍛造に相当な時間と手間を要し
ていた。
This forging method is roughly divided into free forging and die forging. In the case of free forging, which is mainly used to obtain large forged products, the raw material is a billet with a diameter of 2501φ or more obtained by continuous casting or semi-continuous casting. is used. Conventional billets used as materials for such large forgings have a cast structure that varies widely within the cross section, especially between the center and the position near the outer skin, and as a result, the mechanical properties also vary greatly in the cross section. In addition to differing depending on the location, defects such as pinholes, segregation, micro shrinkage, and micro cracks may exist. Therefore, in order to obtain a forged product with satisfactory mechanical properties, it is necessary to Not only is it necessary to thoroughly inspect and select non-defective products, but during forging, it is necessary to repeat the forging process many times to eliminate the defects and non-uniform casting structure, which takes a considerable amount of time. It was time consuming.

一方、小型の鍛造品を得るためには、通常、型鍛造か採
用されているが、その素材として使用されている5〜1
00mmφ程度の細径素材は、従来は、上記の連続鋳造
もしくは半連続鋳造によって得られた250mmφ以上
のビレットを所定の温度に加熱した押出工具を用いて熱
間で押出加工することにより得るのが通常であった。こ
の押出加工は、大径のビレットを細径化して材料取りの
際の便宜を計るとともに、上記のような大径ビレットに
おける組織の不均質さと種々の欠陥の影響を緩和し、鍛
造工程での欠陥の発生を抑え、良好な鍛造品を製造する
ために行われている。
On the other hand, in order to obtain small forged products, die forging is usually adopted, but the material used for this is 5 to 1
Conventionally, materials with a diameter of about 00 mmφ are obtained by hot extrusion processing of a billet of 250 mmφ or more obtained by continuous casting or semi-continuous casting using an extrusion tool heated to a predetermined temperature. It was normal. This extrusion process reduces the diameter of a large-diameter billet to facilitate material removal, and also alleviates the effects of the heterogeneity of the structure and various defects in the large-diameter billet described above, and improves the efficiency of the forging process. This is done to suppress the occurrence of defects and produce good quality forged products.

[発明が解決しようとする問題点コ しかしながら、上記のような従来の細径鍛造素材は押出
加工を必要とするために、製造コストが高い。また、大
径の連続鋳造ビレットの鋳肌は通常逆偏析層が厚いので
そのまま押出を行うと素材に逆偏析層が巻き込まれて不
良品となるため、事前に皮剥きを行って逆偏析層を除い
ているが、マグネシウムは活発な合金であるため、皮剥
き工程で発生した切粉は再溶解するには危険であり、燃
焼するか化学的処理を行って処分することになる。
[Problems to be Solved by the Invention] However, since the conventional small-diameter forged materials as described above require extrusion processing, manufacturing costs are high. In addition, the surface of large-diameter continuous casting billets usually has a thick reverse segregation layer, so if you extrude it as is, the reverse segregation layer will get caught up in the material and result in a defective product. However, since magnesium is an active alloy, the chips generated during the peeling process are dangerous to remelt and must be disposed of by combustion or chemical treatment.

そのために押出加工のコストは一層高価になっている。This makes extrusion processing more expensive.

モして押出加工を行ったものは、上記の他に次のような
鍛造性を悪くするように作用する要因を有している。
In addition to the above, products subjected to extrusion processing have the following factors that act to deteriorate forgeability.

(1)押出時の変形抵抗が大きくかつ変形能が小さいの
で、押出速度等の押出条件の設定か難しく、押出条件が
不適切であれば押出材の表面付近に粗大な再結晶粒が発
生して、その再結晶粒界から微小割れが発生するおそれ
があり、この上うな押出材を鍛造すれば前記粗大な再結
晶粒やその粒界割れを起点として破断等が生じるおそれ
がある。
(1) Since the deformation resistance during extrusion is large and the deformability is small, it is difficult to set extrusion conditions such as extrusion speed, and if the extrusion conditions are inappropriate, coarse recrystallized grains will occur near the surface of the extruded material. Therefore, there is a risk that microcracks will occur from the recrystallized grain boundaries, and if such an extruded material is forged, there is a risk that fractures will occur starting from the coarse recrystallized grains and their intergranular cracks.

(2)前述のように押出時の変形抵抗が大きいため、押
出時のダイスと材料の加工発熱により押出工程の後期は
ど高温で押出加工がなされることになり、その結果押出
材の特性がその長手方向で変化し、鍛造後の特性もばら
つきを生じて製品の特性が不均一となる。
(2) As mentioned above, since the deformation resistance during extrusion is large, extrusion processing is performed at a high temperature in the latter half of the extrusion process due to the heat generated by the processing of the die and material during extrusion, and as a result, the properties of the extruded material deteriorate. This changes in the longitudinal direction, and the properties after forging also vary, resulting in non-uniform product properties.

(3)押出加工においては、材料の変形量が中心部と外
皮付近とで相異するため、押出加工により形成される加
工組織が前記画部分で相異し、特に押出材の外皮付近で
は変形量が多いので微細な加工組織を呈するのに対し、
押出材の中心付近では変形量が小さいため粗大な加工組
織を呈する。このような不均一な加工組織に逆らって鍛
造すれば鍛造時に生じる繊維組織が寸断されて疲労強度
や衝撃値等の動的特性が劣化するおそれがある。
(3) In extrusion processing, the amount of deformation of the material is different between the center and the vicinity of the outer skin, so the processed structure formed by extrusion is different in the image area, and especially near the outer skin of the extruded material, deformation occurs. Since the amount is large, it exhibits a fine processed structure, whereas
Near the center of the extruded material, the amount of deformation is small, resulting in a coarse processed structure. If forging is performed against such a non-uniform working structure, the fiber structure produced during forging may be fragmented, leading to a risk of deterioration of dynamic properties such as fatigue strength and impact value.

(4)押出加工においてはビレット中の金属間化合物等
の品出物や結晶粒が押出方向に伸ばされるから、押出材
は特定の方向性を有する集合組織を持ち、従って鍛造素
材としては等方性の均質なものではないため、鍛造加工
時には押出方向を考慮して鍛造を行わなければならない
。しかし製品の形状によっては必ずしも全ての部分にお
いて最適な方向性で鍛造を行うことが困難な場合が多く
、その場合には割れが発生したり局部的に機械的強度が
低下して疲労強度も低下するお1それがある。
(4) In extrusion processing, products such as intermetallic compounds and crystal grains in the billet are stretched in the extrusion direction, so the extruded material has a texture with a specific direction, and therefore is isotropic as a forging material. Since the properties are not uniform, the direction of extrusion must be considered during forging. However, depending on the shape of the product, it is often difficult to forge in the optimal direction in all parts, and in that case, cracks may occur, mechanical strength locally decreases, and fatigue strength also decreases. There is one possibility.

上述のように、押出加工によって得られた細径鍛造素材
には、押出加工に基づく不可避的な問題、特に異方性で
不均質である問題が存在し、そのため満足な機械的特性
、特に疲労強度や衝撃強度が得られるとは限らないのが
実状であった。
As mentioned above, small-diameter forged materials obtained by extrusion have unavoidable problems due to extrusion, especially anisotropy and inhomogeneity, which makes it difficult to obtain satisfactory mechanical properties, especially fatigue. The reality is that it is not always possible to obtain sufficient strength and impact strength.

[問題点を解決するための手段] 以上のような事情から、この発明の発明者等は、前述の
如く熱間押出加工等、鍛造性に悪影響を与えるおそれの
ある二次塑性加工を行わずに、連続鋳造塊そのものもし
くは連続鋳造塊に熱処理を加えただけの状態で鍛造等の
加工に供しうるような、均質で欠陥が少なくかつ機械的
特性に優れた塑性加工用の合金の開発につき鋭意研究を
重ねた。そして、種々の組成のマグネシウム基合金につ
いて、MgIIIAcn(例えばM g l ? A 
Q r t )、MgZnSArmMnn s Mg−
Al2−Zn(例えばM g3t(A Q−Z n)4
s)、A Q−M n−F e、 M gt S i等
の金属間化合物の合金組織中における存在状態と金属組
織の態様とが合金の塑性加工性及びその他の性質に及ぼ
す影響について究明した。その結果、組成と組織因子を
適切に組み合わせることにより上述のような要求を満足
しうろこと、及び適切な条件で鋳造することにより前記
適切な組織因子を有する合金を製造しうろこと、さらに
、その合金を適切な加工条件のもとて加工を行うことに
よりその機械的性質を飛躍的に向上させることができる
ことを見出し、この発明をなすに至ったのである。
[Means for Solving the Problems] In view of the above-mentioned circumstances, the inventors of the present invention have decided not to perform secondary plastic working such as hot extrusion, which may adversely affect forgeability, as described above. In addition, we are working diligently to develop alloys for plastic working that are homogeneous, have few defects, and have excellent mechanical properties, so that they can be subjected to processing such as forging with the continuous casting ingot itself or with only heat treatment applied to the continuous casting ingot. I did a lot of research. And for magnesium-based alloys of various compositions, MgIIIAcn (e.g. M g l ? A
Q r t ), MgZnSArmMnn s Mg-
Al2-Zn (e.g. M g3t(A Q-Z n)4
We investigated the effects of the state of existence of intermetallic compounds such as s), A Q-M n-F e, and M gt Si in the alloy structure and the aspect of the metal structure on the plastic workability and other properties of the alloy. . As a result, it is possible to manufacture an alloy that satisfies the above requirements by appropriately combining the composition and texture factor, and to produce an alloy having the appropriate texture factor by casting under appropriate conditions. It was discovered that the mechanical properties of an alloy can be dramatically improved by processing the alloy under appropriate processing conditions, leading to the creation of this invention.

以下、これらの条件についてさらに具体的に考察する。Below, these conditions will be considered in more detail.

(1)組成 従来採用されているマグネシウム基合金をベースとして
、種々の成分を検討した結果、A12:1.0〜1O0
0%(重量%、以下同じ)、Zn:0.1〜2.0%、
Mn:’0.05〜1.0%を含有し、残部が実質的に
マグネシウム及び不可避的な不純物とからなるものが最
適であった。
(1) Composition Based on the conventionally used magnesium-based alloy, we investigated various components and found that A12: 1.0 to 1O0
0% (weight%, same below), Zn: 0.1 to 2.0%,
The optimum one was one containing Mn: 0.05 to 1.0%, with the remainder consisting essentially of magnesium and unavoidable impurities.

成分組成の限定理由について説明すると、Alは強度向
上のために添加するもので、適切な量の添加により固溶
硬化または析出硬化による強度向上が顕著となるが、1
.0%以下では効果が小さく、10%を越えると加工が
困難となる。Znも同じく強度向上を目的として添加さ
れるものであるが、鋳造の際、急冷のために平行状態よ
りずれてMg−Zn化合物が形成されるとこれを均質化
しなければならないため、熱間加工温度も340℃以下
に制限されてしまうので、この含有量をO11〜2.0
%の範囲としなければならない。Mnは、耐食性向上の
ために添加するものであり、0.05%以下では効果が
見られず、また、1.0%以上となるとMg−AQの共
晶温度である溶体化処理の上限温度437℃においても
M nh< Mg中に全量固溶せず、MnやMn化合物
が析出して加工性に悪影響を及ぼすことになる。
To explain the reason for limiting the component composition, Al is added to improve strength, and when added in an appropriate amount, strength improvement due to solid solution hardening or precipitation hardening becomes noticeable.
.. If it is less than 0%, the effect is small, and if it exceeds 10%, processing becomes difficult. Zn is also added for the purpose of improving strength, but during casting, if the Mg-Zn compound deviates from the parallel state due to rapid cooling and is formed, it must be homogenized, so hot working is required. Since the temperature is also limited to 340℃ or less, this content should be reduced to O11~2.0.
Must be in the range of %. Mn is added to improve corrosion resistance, and if it is less than 0.05%, no effect will be seen, and if it is more than 1.0%, the upper limit temperature of solution treatment, which is the eutectic temperature of Mg-AQ, will be reduced. Even at 437° C., M nh< The entire amount is not dissolved in Mg, and Mn and Mn compounds precipitate, which adversely affects workability.

なお、上述の各成分以外に、本発明は必要に応じて他の
成分元素を添加することが可能である。
In addition to the above-mentioned components, other component elements can be added to the present invention as necessary.

(2)組織 上記のような成分の合金において、連続鋳造塊そのもの
もしくは連続鋳造塊に熱処理を加えただけの状態で鍛造
等の加工に供しうるようにするために、この発明は次の
2条件を必須としている。
(2) Structure In order to make it possible for an alloy with the above-mentioned components to be subjected to processing such as forging in a continuous cast ingot itself or in a state in which only a heat treatment is applied to the continuous cast ingot, this invention satisfies the following two conditions. is required.

(イ)金属間化合物の1種もしくは2種以上からなる第
2相粒子の大きさを30μ−以下とする。
(a) The size of the second phase particles made of one or more intermetallic compounds is 30 μm or less.

(ロ)金属組織(の大部分)を微細な等軸晶としてその
平均粒径を200μ−以下とする。
(b) The metal structure (most of it) is made into fine equiaxed crystals with an average grain size of 200 μm or less.

ここで、金属間化合物としては、Mg−Zn、Al2−
Mn、Mg−AR−Zn、A12−Mn−Fe、Mg−
Si等が考えられる。上述のように組織条件を規定した
のは、第2相粒子、結晶粒子の各サイズが上記範囲を越
えれば、たとえ合金組成が前述の組成範囲内であったと
しても目的とする高強度が得られず、また組織がその等
方性を失うとともに不均質化する傾向を呈し、その結果
鍛造などの塑性加工における加工性を損ない、この発明
の基本的な目的を達成しえなくなるからである。また、
金属組織が羽毛晶や柱状晶であったり、等軸晶でもその
粒径が200μmを越える場合にはその部分の強度が低
下するために、鍛造などの塑性加工の際に割れが生じて
しまう。
Here, as the intermetallic compound, Mg-Zn, Al2-
Mn, Mg-AR-Zn, A12-Mn-Fe, Mg-
Possible materials include Si. The reason for specifying the microstructural conditions as described above is that if the sizes of the second phase particles and crystal grains exceed the above ranges, the desired high strength can be achieved even if the alloy composition is within the above range. This is because the structure tends to lose its isotropy and become inhomogeneous, which impairs workability in plastic working such as forging, making it impossible to achieve the basic purpose of the present invention. Also,
If the metal structure is a feather crystal or columnar crystal, or if the grain size exceeds 200 μm even if the metal structure is an equiaxed crystal, the strength of that part decreases, resulting in cracking during plastic working such as forging.

(3)製法 上記のような組織を得るために種々の製法を検討した結
果、溶湯を25℃/sec以上、好ましくは30℃/s
ea以上の高い凝固速度で鋳造すればよいことを見出し
た。なお、この凝固速度とは鋳型内の固相一液相境界面
の温度下降速度を意味し、またその値は、実験的には例
えば熱電対を鋳型上方から液相内に挿入して固相に接触
した位置の温度変化を測定することによって検出される
。この発明では、25℃/sec以上の凝固速度で連続
鋳造することとしているが、これは、凝固速度を低い値
から順次上昇して凝固させた場合に、25℃/sea付
近において急激に結晶粒径及び第2相粒子が微細化され
て前述の条件を満足するようになるからである。このよ
うな凝固速度は、連続鋳造において鋳型の径を小さくす
ること、及び鋳型より下の部分て噴水により行われる二
次冷却を強化することによって得られるが、特に前者の
効果が顕著であり円柱状のビレットの径を57100m
mφとすることによって安定して実現しうる。
(3) Manufacturing method As a result of examining various manufacturing methods to obtain the above-mentioned structure, we found that the temperature of the molten metal was 25°C/sec or more, preferably 30°C/s.
It has been found that casting can be performed at a high solidification rate of ea or higher. Note that this solidification rate refers to the temperature drop rate at the solid-liquid phase interface in the mold, and its value can be determined experimentally by inserting a thermocouple into the liquid phase from above the mold. It is detected by measuring the temperature change at the point of contact. In this invention, continuous casting is carried out at a solidification rate of 25°C/sec or more, but this means that when solidifying by increasing the solidification rate sequentially from a low value, crystal grains suddenly increase around 25°C/sea. This is because the diameter and the second phase particles are made finer and the above-mentioned conditions are satisfied. Such a solidification rate can be achieved by reducing the diameter of the mold in continuous casting and by strengthening the secondary cooling performed by water fountains below the mold. The diameter of the columnar billet is 57100m.
This can be stably realized by setting mφ.

また、ここで「連続鋳造」とは、いわゆる完全連続鋳造
のみならず、ある一定の長さだけ連続的に鋳造するいわ
ゆる半連続鋳造も含むことは勿論である。なおまた、上
述のように連続鋳造するための具体的な鋳造方式として
は、従来一般に行われているフロート式連続鋳造法を採
用してもよいが、特に5〜100mmφ程度の細径素材
を鋳造するためには、先に特開昭61−119359号
において提案されている気体加圧ホットトップ連続鋳造
法を採用することが望ましく、また、その気体加圧ホッ
トトップ連続鋳造法をこの発明に採用することにより、
表面付近のピンホールや逆偏析の少ない性状の良好なビ
レットが得られ、この発明の効果を最も良好に発揮でき
るものである。
Moreover, it goes without saying that "continuous casting" here includes not only so-called completely continuous casting but also so-called semi-continuous casting in which a certain length is continuously cast. Furthermore, as a specific casting method for continuous casting as mentioned above, the commonly used float type continuous casting method may be adopted, but it is particularly suitable for casting materials with a small diameter of about 5 to 100 mmφ. In order to achieve this, it is desirable to adopt the gas pressurized hot top continuous casting method previously proposed in JP-A-61-119359, and the gas pressurized hot top continuous casting method is adopted in the present invention. By doing so,
A billet with good properties with few pinholes and reverse segregation near the surface can be obtained, and the effects of the present invention can be best exhibited.

上述のようにして得られた連続鋳造塊は、これをそのま
ま加工用素材としてもよく、あるいは均質化熱処理また
は他の熱処理を施してから各種塑性加工に供してもよい
The continuous casting ingot obtained as described above may be used as a processing material as it is, or may be subjected to various types of plastic working after being subjected to homogenization heat treatment or other heat treatment.

なお、ここで「塑性加工」とは、必ずしも鍛造加工とは
限らず、圧延加工、引抜・伸線加工、押出加工等の他の
塑性加工をも含み、従って、この発明の塑性加工用マグ
ネシウム合金素材は各種の塑性加工に使用可能なもので
ある。
Note that "plastic working" here does not necessarily mean forging, but also includes other plastic working such as rolling, drawing/wire drawing, extrusion, etc. Therefore, the magnesium alloy for plastic working of the present invention The material can be used for various types of plastic processing.

第1の発明の塑性加工用マグネシウム合金を用いてより
高強度の塑性加工品を製造する方法を検討した結果、2
20〜450℃の熱間において加工率25%以上の塑性
加工を行うことにより、より強靭な高強度のマグネシウ
ム合金が得られることを見出した。ここで加工率には、
丸棒を型により鍛伸加工する場合には、加工前の径をr
o、加工後の径をrとすると次式で与えられる。
As a result of studying a method for manufacturing higher-strength plastic processed products using the magnesium alloy for plastic working of the first invention, 2
It has been found that a tougher, high-strength magnesium alloy can be obtained by performing plastic working at a processing rate of 25% or more at a temperature of 20 to 450°C. Here, the processing rate is
When forging and stretching a round bar using a die, the diameter before processing is r.
o and the diameter after processing is r, it is given by the following equation.

k= (ro−r)/r。k=(ro-r)/r.

また、鍛造の場合においては、加工前の厚さをto、加
工後の厚さをtとすると、次式で与えられる。
Further, in the case of forging, when the thickness before processing is to and the thickness after processing is t, it is given by the following equation.

k= (tO−t)/10 [作用コ 本願の第1の発明である塑性加工用マグネシウム合金に
おいては、その成分元素が上述したそれぞれの作用をな
すことによってマグネシウム合金に所要の機械的性質を
付与する。そして、金属組織を微細な等軸晶とすること
により、強度、靭性などの機械的性質を改善し、さらに
、金属間化合物からなる第2相粒子の大きさを限定する
ことにより、不均質さを低下させて塑性加工を行ったと
きに一様な変形を促し、表面あるいは内部における割れ
を防いでいる。
k= (tO-t)/10 [Function] In the magnesium alloy for plastic working, which is the first invention of the present application, the component elements perform the above-mentioned actions to impart the required mechanical properties to the magnesium alloy. Give. By making the metal structure a fine equiaxed crystal, mechanical properties such as strength and toughness are improved, and by limiting the size of the second phase particles consisting of intermetallic compounds, heterogeneity is reduced. It promotes uniform deformation when plastic working is performed by reducing the

本願の第2の発明においては、第1の発明の合金と同一
の組成の溶湯を溶製し、鋳造鋳型に注入すると、溶湯は
鋳型の表面における一次冷却と鋳型の下側での二次冷却
を受けて温度降下し、凝固速度すなわち固液界面での温
度降下速度が25℃/sec以上となる。そして、溶湯
は組成的過冷却の状態になり、凝固核が多数同時に発生
し、それぞれの核を中心に凝固が進行する。従って、核
が熱流方向に沿って肥大成長して形成される柱状晶や、
溶湯の温度が高いときに発生する羽毛品などの生成が抑
制され、細径の等軸晶粒からなる均一な金属組織が得ら
れる。また、溶湯中に含有される各成分元素は、互いに
結合してMgm Aln % MgZn。
In the second invention of the present application, when a molten metal having the same composition as the alloy of the first invention is melted and poured into a casting mold, the molten metal undergoes primary cooling on the surface of the mold and secondary cooling on the underside of the mold. As a result, the temperature decreases, and the solidification rate, that is, the temperature decrease rate at the solid-liquid interface becomes 25° C./sec or more. Then, the molten metal becomes compositionally supercooled, many solidification nuclei are generated simultaneously, and solidification progresses around each core. Therefore, columnar crystals are formed by the nucleus growing enlarged along the direction of heat flow,
The formation of feathers that occur when the temperature of the molten metal is high is suppressed, and a uniform metal structure consisting of small-diameter equiaxed crystal grains is obtained. Further, each component element contained in the molten metal is combined with each other to form Mgm Aln % MgZn.

Al2m Mnn 、 Mg−Al−ZnSA12−M
n−Fe、MgtS i等の低融点の金属間化合物を生
成し、凝固速度が遅いときには凝集して肥大化し粗大な
第2相粒子となってしまうが、本願のように凝固速度が
大きい場合には、凝集する時間が少ないために粗大にな
ることがなく、金属組織中に均一に分散する。
Al2mMnn, Mg-Al-ZnSA12-M
When the solidification rate is slow, intermetallic compounds with low melting points such as n-Fe and MgtSi are produced, and when the solidification rate is slow, they agglomerate and enlarge to form coarse second phase particles. However, when the solidification rate is high as in the present application, Because it takes less time to aggregate, it does not become coarse and is uniformly dispersed in the metal structure.

さらに凝固速度が大きいことにより、ビレット中央や表
面近傍における成分の偏析やミクロシュリンケージなど
の欠陥も少なく、均質化処理が軽減され、あるいは全く
不要になる。このようにして第2の発明の方法により、
第1の発明の金属組織の要件を満たすマグネシウム合金
が製造される。
Furthermore, due to the high solidification rate, there are fewer defects such as component segregation and microshrinkage in the center of the billet or near the surface, and the homogenization process is reduced or completely unnecessary. In this way, by the method of the second invention,
A magnesium alloy is produced that satisfies the metallographic requirements of the first invention.

本願の第3の発明においては、第1の発明のマグネシウ
ム合金を220〜450℃の温度に熱すると、マグネシ
ウムの結晶構造である最密六方晶の特徴である底面すべ
りと非底面すべりがともに作用するようになり、延性が
増し、塑性加工が可能な状態となる。素材であるマグネ
シウム合金は、金属組織及び金属間化合物からなる第2
相粒子が微細であり全体が均一であるとともに、事前の
塑性加工が行われておらず、金属組織中に残留歪みがな
く、材料の鋳造方向あるいはこれに直交する方向での異
方性が少ない。従って、鍛造の際の素材取りの方法にか
かわらず、外表面や内部の割れの発生を防ぐことができ
る。そして、この温度で25%以上の加工率で鍛造を行
うと、金属組織がさらに微細化するとともに、内部歪み
の増大による転位の増加、微細な析出物の増加などによ
り、強度及び靭性が大幅に向上する。
In the third invention of the present application, when the magnesium alloy of the first invention is heated to a temperature of 220 to 450°C, basal slip and non-basal slip, which are characteristics of the close-packed hexagonal crystal structure of magnesium, act together. As a result, the ductility increases and plastic working becomes possible. The magnesium alloy that is the material has a secondary structure consisting of a metal structure and an intermetallic compound.
The phase particles are fine and uniform throughout, there is no prior plastic working, there is no residual strain in the metal structure, and there is little anisotropy in the casting direction of the material or in the direction perpendicular to this. . Therefore, regardless of the method of material removal during forging, cracks on the outer surface and inside can be prevented from occurring. When forging is performed at this temperature and at a processing rate of 25% or more, the metal structure becomes even finer, and the strength and toughness are significantly reduced due to an increase in dislocations due to increased internal strain, an increase in fine precipitates, etc. improves.

[実施例コ 以下、この発明を実施例により具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.

(製造) 表1(次頁)に、本願の実施例として製造した2種の素
材の化学成分を、それぞれの比較例とともに示す。
(Manufacturing) Table 1 (next page) shows the chemical components of two types of materials manufactured as examples of the present application, along with respective comparative examples.

表1 (単位重量%) 実施例1は、ASTM規格におけるAZ31相当のもの
、実施例2はAZ80に相当するものであり、それぞれ
、先に特開昭61−119359号において搗案されて
いる気体加圧ホットトップ連続鋳造法を用いて、表2(
次頁)に示すような鋳造条件によって鋳造されている。
Table 1 (Unit weight %) Example 1 corresponds to AZ31 in the ASTM standard, and Example 2 corresponds to AZ80. Table 2 (
It is cast under the casting conditions shown in the next page).

また、比較例は、表1に示すように実施例に対応する成
分を持つ溶湯を表2に示すような条件で連続鋳造により
鋳造し、この素材を均熱処理を行った後、押出加工を行
ったもので、押出加工は、均熱処理を390℃で20時
間行った後、330℃の押出温度で行って、250mm
φの素材を6011IIlφの丸棒に加工している。
In addition, in the comparative example, a molten metal having components corresponding to the examples as shown in Table 1 was cast by continuous casting under the conditions shown in Table 2, and after soaking this material, it was extruded. After soaking at 390°C for 20 hours, extrusion processing was carried out at an extrusion temperature of 330°C to obtain a 250 mm
A φ material is processed into a 6011IIlφ round bar.

表2 (試験とその結果) り組織観察 実施例及び比較例のそれぞれから、鋳造方向あるいは押
出方向に直交する断面において、その径方向に複数の試
験片を採取し、該断面を研摩した後、顕微鏡観察によっ
て平均結晶粒径、第2相粒子径を測定した。結果を表3
(次頁)に示す。
Table 2 (Tests and results) From each of the microstructure observation examples and comparative examples, a plurality of test pieces were taken in the radial direction in a cross section perpendicular to the casting direction or extrusion direction, and after polishing the cross section, The average crystal grain size and second phase particle size were measured by microscopic observation. Table 3 shows the results.
(Next page).

この表3より明らかなように、平均結晶粒径は実施例1
が140μm、実施例2が80μmであり、より大径に
鋳造されて凝固速度が遅いと思われる比較例よりも粒径
が小さくなっている。また、金属間化合物からなる第2
相の粒子径も、比較例よりも大幅に小さくなっており、
実施例の組織の均表3 均一さを示している。
As is clear from Table 3, the average crystal grain size of Example 1
is 140 μm, and Example 2 is 80 μm, which is smaller than the comparative example, which is cast to a larger diameter and seems to have a slower solidification rate. In addition, a second compound consisting of an intermetallic compound
The particle size of the phase is also significantly smaller than that of the comparative example.
Uniformity of structure of Example 3 Showing uniformity.

2)熱間鍛造性の評価を行うために落槌試験を行った。2) A drop hammer test was conducted to evaluate hot forgeability.

これは、第1図に示すように、中心軸が鋳造方向あるい
は押出方向に平行になるように採取した円柱状の試験片
lを、それぞれ、上下四を拘束する2つの金型2.3で
挟み、上側の金型2の上から重錘4を決められた高さよ
り落としてそのときの変形量と試験片lの側面(バレリ
ング面)の割れの有無を調べるものである。試験片1の
形状は、直径19mmφ、高さ24IIII11であり
、上下2IIImが金型の上下対向面に形成された凹所
5゜6に嵌入されて拘束されている。重錘4は125K
gfで、落下の高さHを選ぶことにより加工率を、変化
させている。試験片lの加熱温度は270℃、320℃
、370℃の3水準とし、試験直前に金型2,3ごと加
熱炉に入れて30分間の予備加熱を行った。加工前の非
拘束部の長さり。、及び加工後の非拘束部の長さhを測
定し、次式により据込率αを求めた。
As shown in Fig. 1, a cylindrical test piece l sampled so that its central axis is parallel to the casting direction or extrusion direction is placed in two molds 2.3 that restrain the upper and lower sides. A weight 4 is dropped from the top of the upper mold 2 from a predetermined height, and the amount of deformation at that time and the presence or absence of cracks on the side surface (barreling surface) of the test piece I are examined. The shape of the test piece 1 is 19 mmφ in diameter and 24III11 in height, and the top and bottom 2IIIm are fitted and restrained in recesses 5°6 formed in the upper and lower opposing surfaces of the mold. Weight 4 is 125K
The machining rate is changed by selecting the falling height H in gf. Heating temperature of test piece l is 270℃, 320℃
, and 370° C., and immediately before the test, the molds 2 and 3 were placed in a heating furnace and preheated for 30 minutes. Length of unconstrained part before processing. , and the length h of the unrestricted portion after processing were measured, and the upsetting rate α was determined using the following formula.

α= (ho −h)/h。α=(ho-h)/h.

そして、加工後に割れが発生しないような最大の据込率
を限界据込率αCとし、これを実施例と比較例の各合金
について加熱温度ごとに比較した結果を第2図に示す。
Then, the maximum upsetting rate at which no cracking occurs after processing is defined as the critical upsetting rate αC, and FIG. 2 shows the results of comparing this at each heating temperature for each alloy of the example and the comparative example.

この結果によれば、AZ31の組成を持つ実施例1にお
いては、加熱温度が低温すなわち320℃、270℃に
おいては限界据込率αCが比較例1を上回っており鍛造
性が向上しているが、加熱温度がより高い370℃にお
いては押出加工を行った比較例1の方が良い結果を得て
いる。これは、加熱温度が高くなると再結晶を起こして
結晶粒が粗大になるためと考えられ、従って、この実施
例1においては加熱温度を高くする必要がなく、320
℃以下の加熱温度で鍛造加工を行えばよい。
According to the results, in Example 1 having the composition of AZ31, the critical upsetting rate αC exceeds Comparative Example 1 at low heating temperatures, that is, 320°C and 270°C, and the forgeability is improved. At a higher heating temperature of 370° C., Comparative Example 1 in which extrusion processing was performed obtained better results. This is thought to be because when the heating temperature becomes high, recrystallization occurs and the crystal grains become coarse.Therefore, in this Example 1, there is no need to increase the heating temperature, and 320
Forging may be performed at a heating temperature of ℃ or less.

このように、連続鋳造のままの素材である実施例1が押
出加工を行った素材である比較例1よりも良好な鍛造性
を示すのは、鋳造時の不均一な組織が完全に再結晶をせ
ずに残留しており、押出加工によっても十分な均質化が
なされていないのに対し、実施例1は結晶粒、第2相粒
子径ともに微細で組織が均一であるためと考えられる。
In this way, the reason why Example 1, which is a material as it is continuously cast, shows better forgeability than Comparative Example 1, which is a material that has been extruded, is that the heterogeneous structure at the time of casting is completely recrystallized. This is thought to be because the crystal grains and second phase particles of Example 1 were fine in both crystal grain size and second phase particle size, and the structure was uniform, whereas the particles of Example 1 were not sufficiently homogenized even by extrusion processing.

一方、AZ80の組成を持つ実施例2においては、押出
材である比較例2よりも、全加熱温度範囲に亙って良好
な結果を得ている。比較例2はAeの含有量が多いので
第2相粒子の量が多いとともにその粒径が大きく、従っ
て、押出加工を行ったときに結晶粒及び第2相粒子が加
工に伴って変形し、既述したような異方性を誘発するた
め、鍛造性が非常に悪い。これに対し、実施例2は結晶
粒、第2相粒子径ともに微細で組織が均一であり、高温
加熱での鍛造性は実施例1と同様に低下する傾向がある
ものの比較例2よりも良好である。
On the other hand, in Example 2 having the composition of AZ80, better results were obtained over the entire heating temperature range than in Comparative Example 2, which was an extruded material. In Comparative Example 2, since the content of Ae is high, the amount of second phase particles is large and the particle size is large. Therefore, when extrusion processing is performed, the crystal grains and second phase particles are deformed due to processing. Because it induces anisotropy as described above, forgeability is very poor. On the other hand, in Example 2, both the crystal grains and the second phase particle size are fine and the structure is uniform, and the forgeability at high temperature heating tends to decrease as in Example 1, but it is better than Comparative Example 2. It is.

(塑性加工及びそれによる機械的特性の変化)(イ)鍛
伸加工 実施例1及び比較例1の合金を円柱状に切削加工し、3
70℃に加熱した後これを型鍛造してより細径化するい
わゆる鍛伸加工を行い、各丸棒の軸と平行にJISA号
試験片を作成し、インストロン試験機により歪み速度l
Xl0−3にて引張試験を行った。その結果を、引張強
度σB、0.2%耐力σ。18、伸びδについて第3図
に示す。なお、加工率にの算出は次式によっている。
(Plastic working and changes in mechanical properties caused by it) (a) Forging and drawing The alloys of Example 1 and Comparative Example 1 were cut into a cylindrical shape, and 3
After heating it to 70°C, it is die-forged to make the diameter smaller, which is called forging processing, and JISA test pieces are made parallel to the axis of each round bar.
A tensile test was conducted using X10-3. The results are tensile strength σB and 0.2% proof stress σ. 18. The elongation δ is shown in Fig. 3. Note that the processing rate is calculated using the following formula.

k= (ro −r)/r。k=(ro-r)/r.

ここで、roは加工前の直径、rは加工後の直径である
。なお、この図では実施例を実線で、比較例を破線で示
している。
Here, ro is the diameter before processing, and r is the diameter after processing. In this figure, the example is shown by a solid line, and the comparative example is shown by a broken line.

この結果によれば、加工前の引張強度及び0゜2%耐力
はほぼ等しいが、25%以上の鍛伸加工を行うと実施例
1においては比較例1よりも大きい向上が見られ、特に
0.2%耐力の向上が著しい。これは、比較例の押出加
工後の組織には、鋳造時の不均一な組織が完全に再結晶
をせずに残留しており、押出加工によっても十分な均質
化がなされていないのに対し、実施例は均質な微細粒が
加工により一層微細化されるためであると思われる。
According to the results, the tensile strength and 0°2% proof stress before processing are almost the same, but when 25% or more of forging is performed, a greater improvement is seen in Example 1 than in Comparative Example 1, especially at 0°2% yield strength. .2% Proof strength improved significantly. This is because in the structure after extrusion processing in the comparative example, the non-uniform structure during casting remains without being completely recrystallized, and sufficient homogenization is not achieved even by extrusion processing. This seems to be because the homogeneous fine grains in Examples were further refined by processing.

(ロ)据込鍛造加工 実施例2及び比較例2の各合金を、均熱処理を410℃
X20Hr行った後、素材温度を350℃として据込鍛
造を行った。各鍛造素材は、据込鍛造後の最終厚さが1
8III11になるように加工率ごとに初期厚さを設定
し、切削加工して形成した。
(b) Upsetting forging processing Each alloy of Example 2 and Comparative Example 2 was soaked at 410°C.
After performing X20 hours, upsetting forging was performed at a material temperature of 350°C. Each forged material has a final thickness of 1 after upsetting.
The initial thickness was set for each processing rate so that the thickness was 8III11, and the thickness was formed by cutting.

なお、加工率には次の式で与えられる。Note that the processing rate is given by the following formula.

k=(to  t)/l。k=(to t)/l.

ここで、toは鍛造前の厚さ、tは鍛造後の厚さである
。JISA号試験片を鍛造における素材の流動方向に平
行な部位から採取し、インストロン試験機を用いて歪み
速度I X 10−’/secで引張試験を行った。そ
の結果を第4図に示す。この図からも上記の鍛伸加工に
おける場合と同じように、据込鍛造においても実施例の
方が塑性加工による機械的性質の改善の効果が著しい。
Here, to is the thickness before forging, and t is the thickness after forging. A JISA No. test piece was taken from a part parallel to the flow direction of the material during forging, and a tensile test was performed using an Instron testing machine at a strain rate of I x 10-'/sec. The results are shown in FIG. This figure also shows that, as in the case of the above-mentioned forging and drawing process, the effect of improving the mechanical properties by plastic working is more remarkable in the example in upsetting forging.

その理由については上述したとおりである。The reason for this is as described above.

[発明の効果コ 以上詳述したように、本願の第1発明は、Ag:1.0
〜10.0%(重量%、以下同じ)、Zn:0゜1〜2
.0%、Mn:0.05〜1.0%を含有し、残部が実
質的にマグネシウム及び不可避的な不純物とからなり、
Mg−Z n、Al−Mn、Mg−AQ−Z、 n、A
Q−Mn−F e、Mg−8i等の金属間化合物の1種
もしくは2種以上からなる第2相粒子の大きさが30μ
m以下であり、金属組織の大部分は微細な等軸晶であっ
てその平均粒径が200μm以下であるような塑性加工
用高強度マグネシウム合金であり、各成分元素が生地に
対して固溶し、あるいは金属間化合物を微細に析出させ
て所要の機械的性質を付与する。そして、結晶粒、第2
相粒子径ともに微細で組織が均一であるために、塑性加
工を行ったときに機械的性質の偏りに起因する欠陥が生
じにくく、良好な塑性加工性を発揮するとともに、切削
加工などにより廃棄する量が少なく、素材のコストが安
いという効果を奏するものである。
[Effects of the Invention As detailed above, the first invention of the present application has Ag: 1.0
~10.0% (weight%, same below), Zn: 0°1-2
.. 0%, Mn: 0.05 to 1.0%, the remainder substantially consisting of magnesium and inevitable impurities,
Mg-Z n, Al-Mn, Mg-AQ-Z, n, A
The size of the second phase particles consisting of one or more intermetallic compounds such as Q-Mn-F e and Mg-8i is 30μ
It is a high-strength magnesium alloy for plastic working in which the metal structure is mostly fine equiaxed crystals with an average grain size of 200 μm or less, and each component element is dissolved in solid solution in the fabric. Alternatively, intermetallic compounds may be finely precipitated to impart the required mechanical properties. And the crystal grain, the second
Because the phase particles are fine in size and the structure is uniform, defects due to imbalance in mechanical properties are less likely to occur during plastic working, and it exhibits good plastic workability and can be discarded by cutting, etc. This has the advantage that the amount is small and the cost of the material is low.

また、本願の第2発明は、/N!:1.0〜10.0%
(重量%、以下同じ)、Zn:0.1〜2.0%、Mn
:0.05〜1.0%を含有し、残部が実質的にマグネ
シウム及び不可避的な不純物とからなるマグネシウム合
金を溶製し、その溶湯を25℃/sec以上の凝固速度
で連続鋳造する塑性加工用高強度マグネシウム合金の製
法であり、押出加工を行わないので工程が簡素化される
ので、コストの安い方法で安定的に本願の第1の発明の
合金を製造することができる。
Moreover, the second invention of the present application is /N! :1.0~10.0%
(wt%, same below), Zn: 0.1-2.0%, Mn
: Plasticity in which a magnesium alloy containing 0.05 to 1.0% and the remainder consisting essentially of magnesium and unavoidable impurities is produced, and the molten metal is continuously cast at a solidification rate of 25°C/sec or more. This is a method for producing a high-strength magnesium alloy for processing, and since extrusion processing is not performed, the process is simplified, so the alloy of the first invention of the present application can be stably produced at a low cost.

また、本願の第3発明は、Al:1.0−10.0%(
重量%、以下同じ)、Zn:0.1〜2.0%、Mn:
0.05〜1.0%を含有し、残部が実質的にマグネシ
ウム及び不可避的な不純物とからなり、Mg−Z n、
AC−Mn、Mg−Al−Z n、Al−Mn−F e
、Mg−Si等の金属間化合物の1種もしくは2種以上
からなる第2相粒子の大きさが30μm以下であり、金
属組織の大部分は微細な等軸晶であってその平均粒径が
200μm以下であるマグネシウム合金を鋳造し、22
0〜450℃の熱間において加工率25%以上の塑性加
工を行うことを特徴とする塑性加工用高強度マグネシウ
ム合金の製法であり、本願第1の発明の合金を素材とし
て適切な条件により、鍛造あるいは鍛伸その他の方法で
塑性加工を行うことにより、素材の特性を生かして飛躍
的に機械的性質を改善することができるものである。
Further, the third invention of the present application provides Al: 1.0-10.0% (
weight% (same below), Zn: 0.1 to 2.0%, Mn:
0.05 to 1.0%, the remainder substantially consists of magnesium and unavoidable impurities, Mg-Z n,
AC-Mn, Mg-Al-Z n, Al-Mn-F e
The size of the second phase particles consisting of one or more types of intermetallic compounds such as Mg-Si is 30 μm or less, and most of the metal structure is fine equiaxed crystals with an average particle size of Casting a magnesium alloy with a thickness of 200 μm or less,
A method for producing a high-strength magnesium alloy for plastic working, which is characterized by carrying out plastic working at a working rate of 25% or more at a temperature of 0 to 450°C, using the alloy of the first invention of the present application as a material under appropriate conditions. By performing plastic working by forging, forging stretching, or other methods, the mechanical properties can be dramatically improved by taking advantage of the characteristics of the material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の合金の鍛造性を試験するための装置
の略図、第2図は鍛造性試験の結果を示すグラフ、第3
図は鍛伸による機械的性質の変化を示すグラフ、第4図
は鍛造による機械的性質の変化を示すグラフである。
Figure 1 is a schematic diagram of an apparatus for testing the forgeability of the alloy of the present invention, Figure 2 is a graph showing the results of the forgeability test, and Figure 3 is a graph showing the results of the forgeability test.
The figure is a graph showing changes in mechanical properties due to forging, and FIG. 4 is a graph showing changes in mechanical properties due to forging.

Claims (3)

【特許請求の範囲】[Claims] (1)Al:1.0〜10.0%(重量%、以下同じ)
、Zn:0.1〜2.0%、Mn:0.05〜1.0%
を含有し、残部が実質的にマグネシウム及び不可避的な
不純物とからなるマグネシウム合金であって、 Mg−Zn、Al−Mn、Mg−Al−Zn、Al−M
n−Fe、Mg−Si等の金属間化合物の1種もしくは
2種以上からなる第2相粒子の大きさが30μm以下で
あり、 金属組織の大部分は微細な等軸晶であってその平均粒径
が200μm以下である ことを特徴とする塑性加工用高強度マグネシウム合金。
(1) Al: 1.0 to 10.0% (weight%, same below)
, Zn: 0.1-2.0%, Mn: 0.05-1.0%
A magnesium alloy containing Mg-Zn, Al-Mn, Mg-Al-Zn, Al-M with the remainder consisting essentially of magnesium and unavoidable impurities.
The size of the second phase particles consisting of one or more types of intermetallic compounds such as n-Fe and Mg-Si is 30 μm or less, and most of the metal structure is fine equiaxed crystals, and the average A high-strength magnesium alloy for plastic working, characterized in that the grain size is 200 μm or less.
(2)Al:1.0〜10.0%、Zn:0.1〜2.
0%、Mn:0.05〜1.0%を含有し、残部が実質
的にマグネシウム及び不可避的な不純物とからなるマグ
ネシウム合金を溶製し、その溶湯を25℃/sec以上
の凝固速度で連続鋳造することを特徴とする塑性加工用
高強度マグネシウム合金の製法。
(2) Al: 1.0-10.0%, Zn: 0.1-2.
0%, Mn: 0.05 to 1.0%, and the remainder consists essentially of magnesium and unavoidable impurities. A method for producing high-strength magnesium alloys for plastic working, which is characterized by continuous casting.
(3)Al:1.0〜10.0%、Zn:0.1〜2.
0%、Mn:0.05〜1.0%を含有し、残部が実質
的にマグネシウム及び不可避的な不純物とからなり、M
g−Zn、Al−Mn、Mg−Al−Zn、Al−Mn
−Fe、Mg−Si等の金属間化合物の1種もしくは2
種以上からなる第2相粒子の大きさが30μm以下であ
り、金属組織の大部分は微細な等軸晶であってその平均
粒径が200μm以下であるマグネシウム合金鋳塊を、
220〜450℃の熱間において加工率25%以上の塑
性加工を行うことを特徴とする塑性加工用高強度マグネ
シウム合金の製法。
(3) Al: 1.0-10.0%, Zn: 0.1-2.
0%, Mn: 0.05 to 1.0%, the remainder substantially consists of magnesium and unavoidable impurities, Mn: 0.05 to 1.0%;
g-Zn, Al-Mn, Mg-Al-Zn, Al-Mn
-One or two intermetallic compounds such as Fe, Mg-Si, etc.
A magnesium alloy ingot in which the size of the second phase particles consisting of seeds or more is 30 μm or less, the majority of the metal structure is fine equiaxed crystals, and the average grain size is 200 μm or less,
A method for producing a high-strength magnesium alloy for plastic working, characterized by carrying out plastic working at a processing rate of 25% or more at a temperature of 220 to 450°C.
JP11863587A 1987-05-15 1987-05-15 High-strength magnesium alloy for plastic working and its production Pending JPS63282232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11863587A JPS63282232A (en) 1987-05-15 1987-05-15 High-strength magnesium alloy for plastic working and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11863587A JPS63282232A (en) 1987-05-15 1987-05-15 High-strength magnesium alloy for plastic working and its production

Publications (1)

Publication Number Publication Date
JPS63282232A true JPS63282232A (en) 1988-11-18

Family

ID=14741415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11863587A Pending JPS63282232A (en) 1987-05-15 1987-05-15 High-strength magnesium alloy for plastic working and its production

Country Status (1)

Country Link
JP (1) JPS63282232A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305380A (en) * 1992-04-28 1993-11-19 Mazda Motor Corp Manufacture of magnesium alloy member
EP0665299A1 (en) * 1993-12-17 1995-08-02 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
US5693158A (en) * 1993-02-12 1997-12-02 Mazda Motor Corporation Magnesium light alloy product and method of producing the same
KR20030039829A (en) * 2001-11-15 2003-05-22 박영철 Light alloy which magnesium is used as main raw naterials and casting products by using the light alloy
WO2003074748A1 (en) * 2002-03-04 2003-09-12 Sumitomo (Sei) Steel Wire Corp. Manesium base alloy tube and method for manufacture thereof
WO2003095691A1 (en) * 2002-05-10 2003-11-20 Toyo Kohan Co., Ltd. Malleable thin magnesium sheet excellent in workability and method for production thereof
JP2004027300A (en) * 2002-06-26 2004-01-29 Daido Steel Co Ltd Method of producing magnesium alloy bar wire rod
JP2004124152A (en) * 2002-10-01 2004-04-22 Sumitomo Denko Steel Wire Kk Rolled wire rod of magnesium based alloy, and its production method
EP1645651A1 (en) * 2003-05-30 2006-04-12 Sumitomo (Sei) Steel Wire Corp. Method for producing magnesium base alloy formed article
JP2007222947A (en) * 2007-05-29 2007-09-06 Hitachi Metals Ltd Forged thin enclosure made of magnesium alloy and its production method
JP2009007606A (en) * 2007-06-27 2009-01-15 Mitsubishi Alum Co Ltd Magnesium alloy sheet material having excellent corrosion resistance and surface treatability, and method for producing the same
US8308878B2 (en) 2001-06-05 2012-11-13 Sumitomo Electric Industries, Ltd. Magnesium-based alloy wire and method of its manufacture
US20140308157A1 (en) * 2010-12-28 2014-10-16 Sumitomo Electric Industries, Ltd. Magnesium alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283446A (en) * 1985-09-30 1987-04-16 アライド・コ−ポレ−シヨン High strength corrosion resistant magnesium base metal alloysolidified quickly, its production and metal article compressed from said alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283446A (en) * 1985-09-30 1987-04-16 アライド・コ−ポレ−シヨン High strength corrosion resistant magnesium base metal alloysolidified quickly, its production and metal article compressed from said alloy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305380A (en) * 1992-04-28 1993-11-19 Mazda Motor Corp Manufacture of magnesium alloy member
US5693158A (en) * 1993-02-12 1997-12-02 Mazda Motor Corporation Magnesium light alloy product and method of producing the same
EP0665299A1 (en) * 1993-12-17 1995-08-02 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
US6143097A (en) * 1993-12-17 2000-11-07 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
US8308878B2 (en) 2001-06-05 2012-11-13 Sumitomo Electric Industries, Ltd. Magnesium-based alloy wire and method of its manufacture
KR20030039829A (en) * 2001-11-15 2003-05-22 박영철 Light alloy which magnesium is used as main raw naterials and casting products by using the light alloy
WO2003074748A1 (en) * 2002-03-04 2003-09-12 Sumitomo (Sei) Steel Wire Corp. Manesium base alloy tube and method for manufacture thereof
EP1491645A1 (en) * 2002-03-04 2004-12-29 Sumitomo (Sei) Steel Wire Corp. Manesium base alloy tube and method for manufacture thereof
EP1491645A4 (en) * 2002-03-04 2005-04-13 Sumitomo Sei Steel Wire Corp Manesium base alloy tube and method for manufacture thereof
WO2003095691A1 (en) * 2002-05-10 2003-11-20 Toyo Kohan Co., Ltd. Malleable thin magnesium sheet excellent in workability and method for production thereof
JP2004027300A (en) * 2002-06-26 2004-01-29 Daido Steel Co Ltd Method of producing magnesium alloy bar wire rod
JP2004124152A (en) * 2002-10-01 2004-04-22 Sumitomo Denko Steel Wire Kk Rolled wire rod of magnesium based alloy, and its production method
EP1645651A4 (en) * 2003-05-30 2007-05-09 Sumitomo Sei Steel Wire Corp Method for producing magnesium base alloy formed article
EP1645651A1 (en) * 2003-05-30 2006-04-12 Sumitomo (Sei) Steel Wire Corp. Method for producing magnesium base alloy formed article
JP2007222947A (en) * 2007-05-29 2007-09-06 Hitachi Metals Ltd Forged thin enclosure made of magnesium alloy and its production method
JP4666659B2 (en) * 2007-05-29 2011-04-06 日立金属株式会社 Magnesium alloy forged thin casing and method for manufacturing the same
JP2009007606A (en) * 2007-06-27 2009-01-15 Mitsubishi Alum Co Ltd Magnesium alloy sheet material having excellent corrosion resistance and surface treatability, and method for producing the same
US20140308157A1 (en) * 2010-12-28 2014-10-16 Sumitomo Electric Industries, Ltd. Magnesium alloy material

Similar Documents

Publication Publication Date Title
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5872443B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
KR101148421B1 (en) Aluminum alloy forgings and process for production thereof
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
EP3124633A1 (en) Forged aluminum alloy material and method for producing same
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
JP3861720B2 (en) Forming method of magnesium alloy
JP6990527B2 (en) Aluminum alloy material
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
KR101423412B1 (en) Process for production of forged aluminum alloy member
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
NO143166B (en) PROCEDURE FOR MANUFACTURING DISPERSION-STRENGTHED ALUMINUM ALLOY PRODUCTS
JP2000119786A (en) Aluminum alloy forging material for high speed motion part
JPS63282232A (en) High-strength magnesium alloy for plastic working and its production
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
WO2018088351A1 (en) Aluminum alloy extruded material
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP7469072B2 (en) Aluminum alloy forgings and their manufacturing method