JP3861720B2 - Forming method of magnesium alloy - Google Patents

Forming method of magnesium alloy Download PDF

Info

Publication number
JP3861720B2
JP3861720B2 JP2002067184A JP2002067184A JP3861720B2 JP 3861720 B2 JP3861720 B2 JP 3861720B2 JP 2002067184 A JP2002067184 A JP 2002067184A JP 2002067184 A JP2002067184 A JP 2002067184A JP 3861720 B2 JP3861720 B2 JP 3861720B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
forging
crystal grain
grain size
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002067184A
Other languages
Japanese (ja)
Other versions
JP2003268513A5 (en
JP2003268513A (en
Inventor
健司 東
勤二 平井
Original Assignee
Tkj株式会社
健司 東
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tkj株式会社, 健司 東 filed Critical Tkj株式会社
Priority to JP2002067184A priority Critical patent/JP3861720B2/en
Priority to EP03002095A priority patent/EP1347074B1/en
Priority to DE60304920T priority patent/DE60304920T8/en
Priority to KR10-2003-0015392A priority patent/KR20030074385A/en
Priority to US10/385,722 priority patent/US20030173005A1/en
Priority to TW092105379A priority patent/TWI263681B/en
Priority to CNB031200613A priority patent/CN1283822C/en
Publication of JP2003268513A publication Critical patent/JP2003268513A/en
Publication of JP2003268513A5 publication Critical patent/JP2003268513A5/ja
Application granted granted Critical
Publication of JP3861720B2 publication Critical patent/JP3861720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Description

【0001】
【発明の属する技術分野】
本発明は、マグネシウム合金を鋳造し、該鋳造品を鍛造することにより所望の形状とするマグネシウム合金の成形方法に関する。
【0002】
【従来の技術】
マグネシウム(Mg)は比重1.8で、軽量金属の代表とされるアルミニウム(Al)の比重2.7に比べても更に小さいため、マグネシウム合金は非常に軽量である。しかも、マグネシウム合金はアルミニウム合金に比べて比剛性が高く、熱伝導性にも優れるため、電気・電子機器の筐体、部品の構成材料として広く適用されている。
【0003】
しかし、マグネシウム合金は難加工性であるため、所望の形状に成形することが容易ではないという欠点がある。即ち、マグネシウム合金は凝固潜熱が小さく、凝固速度が速いため、鋳造が困難で、得られる鋳造品には巣や湯じわのような欠陥を生じやすいという欠点を持っている。このため、特に外観が重視される製品においては、歩留まりが低く、また、欠陥をパテ処理しなければならないために、コストが高くなるといった問題がある。
また、マグネシウム合金は、最密六方晶形であることから、延性が低く、板材や棒材をプレスや鍛造で加工する際には300〜500℃という高い温度で行わなければならず、加工速度が遅い、工程数が多くなる、金型寿命が短い等の問題がある。
【0004】
このようなマグネシウム合金の難加工性の問題を解決するために、特開平7−224344号公報には、アルミニウム含有量6.2〜7.6wt%の組成を持つAZ系マグネシウム合金を連続鋳造してビレットを得る工程で、微細化剤の添加及び/又は冷却速度の制御によりビレットの平均結晶粒径を200μm以下とし、これを鍛造して大型の部品を製造する方法が提案されている。この公報には、最終製品形状に加工した後、溶体化処理とT6熱処理を組み合わせることにより、平均結晶粒径を50μm以下にして耐食性を高めることも記載されている。
【0005】
一方、特開2001−294966号公報には、ダイカスト又はチクソモールディング成形機により、マグネシウム合金を板状に成形し、その板材を常温で圧延してひずみを与えた後、350〜400℃に加熱して結晶を再結晶化し、結晶粒径を0.1〜30μmに微細化することにより、延性を向上させ、延性の向上した板材をプレス加工又は鍛造で成形する方法が提案されている。また、特開2001−170734号公報及び同170736号公報には、マグネシウム合金の板材を鍛造成形し、荒鍛造と仕上げ鍛造の複数の工程により、成形品主要部の肉厚の7倍もしくは10倍以下の高さのボスを成形する方法が示されている。
【0006】
しかし、マグネシウム合金により複雑で精密な形状の部品を成形するには、特開平7−224344号公報に記載されるようなビレットから鍛造する方法では、形状、肉厚の点で限界があり、一方、特開2001−294966号公報、同170734号公報及び同170736号公報に記載されるようなマグネシウム合金の板材から成形する方法では、薄肉部品の製造は可能であるが、この板材のプレス加工や鍛造によって複雑で精密な形状の成形品を得ることは困難である。
【0007】
近年、マグネシウム合金についても、アルミニウム合金と同様に超塑性発現のメカニズムの解明が進み、結晶粒径を微細化することにより、高いひずみ速度で加工できる可能性が示されている(例えば、「マグネシウム技術便覧」第119〜125頁)。
【0008】
一般に、合金を複雑かつ精密な形状に成形するには、ダイカストのような射出速度、即ち充填速度の速い鋳造法を適用することが好ましい。しかし、先に述べたように、マグネシウム合金は凝固しやすいために、ダイカストのような鋳造法では湯じわを生じやすく、また、形状によっては金型の隅々まで充填することが難しいため、成形品の大きさ、肉厚に制約がある。更に、射出速度を速くすると、溶湯に空気やガスを巻き込みやすくなり、巣を生じて、物性の信頼性に問題を生じる。
【0009】
一方、板材をプレス加工する場合には、板材の幅までの大きさの製品を成形することができるが、マグネシウム合金は延性が低く難加工性であるため、複雑な形状、例えば、ボスを鋳造と同じように形成することは困難である。
【0010】
合金組成の面から見ると、マグネシウム合金の鋳造性と展伸性は裏腹な関係にあり、鋳造材としては、アルミニウム含有量が多く、溶融温度が低いために鋳造しやすいAZ91、AM50、AM60材等が選択使用され、また、プレス・鍛造材としては、アルミニウム含有量が少なく、延性が高いAZ31材が使われている。耐食性の面からは、アルミニウム含有量の多い方が耐食性に優れる。従って、AZ91材に比べるとAZ31材の方が耐食性は劣る。そして、このことがAZ31材の用途を狭める理由の一つになっている。
【0011】
【発明が解決しようとする課題】
本発明は上記従来の実状に鑑みてなされたものであって、鋳造が可能で、しかも鍛造性に優れるマグネシウム合金組成において、鋳造と鍛造とを組み合わせてマグネシウム合金を成形することにより、複雑で精密な形状を持ち、かつ物性の信頼性が高く、耐食性をも十分に満足する製品を歩留り良く製造することができるマグネシウム合金の成形方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1のマグネシウム合金の成形方法は、アルミニウム含有量が2.5〜6質量%のマグネシウム合金を鋳造して結晶粒径が30μm以下の鋳造品を得、該鋳造品をその組成での固溶温度と固相線の範囲の温度で溶体化処理した後、鍛造して結晶粒径10μm以下の鍛造品とし、この鍛造品を所望の形状に更に鍛造するマグネシウム合金の成形方法であって、Z値が10〜1013のひずみ速度と温度の条件で鍛造して結晶粒径10μm以下の結晶微細化鍛造品を得るものであり、該鋳造をダイカスト法又はチクソモールディング法で行うことを特徴とする。
【0013】
鋳造により結晶粒径30μm以下とした鋳造品を溶体化処理すると、結晶粒は粗大化するが、鋳造時に形成された粗大で、もろい粒界の第2相粒子が消滅することで伸びが大きくなり、塑性加工性が向上する。このようにして溶体化処理により塑性加工性を高めた鋳造品を鍛造による動的再結晶で結晶粒径10μm以下に微細化することにより、鍛造成形性を更に高めることができる。従って、請求項1の方法では、鋳造により結晶粒径を30μm以下とした鋳造品を溶体化処理し、その後鍛造により結晶粒径を10μm以下とし、更に鍛造を行って所望の形状とする。
【0014】
この方法において、マグネシウム合金の好適なアルミニウム含有量は2.5〜6質量%である。鋳造は、ダイカスト法又はチクソモールディング法により行う。また、溶体化処理は380〜440℃で1〜24時間行うことが好ましく、溶体化処理後の結晶粒微細化のための鍛造は、Z値が10〜1013のひずみ速度及び温度の条件で行う。その後の成形のための鍛造は、Z値が1013以下のひずみ速度及び温度の条件で行うことが好ましい。
【0015】
請求項のマグネシウム合金の成形方法は、アルミニウム含有量が2〜6質量%のマグネシウム合金を鋳造して結晶粒径が10μm以下の鋳造品を得、該鋳造品をその組成での固溶温度と固相線の範囲の温度で溶体化処理した後、所望の形状に鍛造するマグネシウム合金の成形方法であって、Z値が1013未満のひずみ速度と温度の条件で鍛造するものであり、該鋳造をダイカスト法により行うことを特徴とする。
【0016】
鋳造により結晶粒径10μm以下とした鋳造品を溶体化処理すると、結晶粒は粗大化するが、鋳造時に形成された粗大で、もろい粒界の第2相粒子が消滅することで伸びが大きくなり、塑性加工性が向上する。このようにして溶体化処理により塑性加工性を高めた鋳造品を鍛造することにより、所望の形状に成形することができる。従って、請求項の方法では、鋳造により結晶粒径を10μm以下とした鋳造品を溶体化処理し、その後鍛造により所望の形状とする。
【0017】
この方法において、マグネシウム合金の好適なアルミニウム含有量は2〜6質量%である。鋳造は、ダイカスト法により行う。また、溶体化処理は380〜440℃で1〜24時間行うことが好ましく、その後の成形のための鍛造は、Z値が1013未満のひずみ速度及び温度の条件で行う。
【0018】
なお、Z値とは、温度とひずみ速度の関係を表す温度補償ひずみ速度で、流動応力に及ぼす温度とひずみ速度の効果を表す関係式として一般的に用いられるZener−Hollomonパラメータであり、下記式(I)で定義される。
Z=ε’exp(Q/RT) ‥(I)
ここで
ε’:ひずみ速度(sec−1
Q :格子拡散活性化エネルギー
R :ガス定数
T :絶対温度
であり、Qの値としては、マグネシウム合金の値が求められていないため一般に純マグネシウムの135kjoule/molの値が用いられる。
【0019】
【発明の実施の形態】
以下に本発明のマグネシウム合金の成形方法の実施の形態を詳細に説明する。
【0020】
まず、請求項1のマグネシウム合金の成形方法の実施の形態を説明する。
【0021】
請求項1の方法では、まず、アルミニウム含有量2〜10質量%のマグネシウム合金を鋳造して結晶粒径が30μm以下の鋳造品を得る。
【0022】
このマグネシウム合金のアルミニウムが2.5質量%未満では耐食性に劣るものとなり、また、溶融温度が高くなって、鋳造に不適当である。マグネシウム合金のアルミニウム含有量が6質量%を超えると次工程の溶体化処理により塑性加工性を十分に高めることができず、鍛造性に優れた溶体化処理品を得ることができない。従って、マグネシウム合金のアルミニウム含有量は、2.5〜6質量%である。
【0023】
このようなマグネシウム合金の鋳造法には特に制限はないが、結晶粒径30μm以下の鋳造品を得るために、冷却・凝固速度が比較的速く、結晶粒を微細化することができるダイカスト法又はチクソモールディング法を採用する。
【0024】
即ち、重力鋳造では、一般に肉厚で、溶融したマグネシウム合金の凝固が遅いために冷却・凝固の間に結晶が成長して結晶粒径が200μmと粗大になるが、ダイカスト法やチクソモールディング法のように、金型に溶融又は半溶融状態の溶湯を射出する鋳造法では、冷却・凝固速度が速いために結晶粒が微細化して、結晶粒径30μm以下に鋳造することができる。
【0025】
鋳造品の結晶粒径は小さい方が好ましいが、30μm以下であれば良く、採用する鋳造法及び合金組成に応じて、一般的には結晶粒径15〜30μmに鋳造が行われる。
【0026】
鋳造により得られた結晶粒径30μm以下の鋳造品は、次いで溶体化処理を行う。
【0027】
溶体化処理温度は、その組成での固溶温度と固相線の範囲の温度であれば良く、最適温度は380〜430℃である。溶体化処理温度が固溶温度未満或いは380℃未満では、アルミニウムとマグネシウムの巨大な化合物が析出するので、塑性加工性を阻害し、その組成の固相線を超える温度或いは430℃を超える温度では、液相を生じて塑性加工性を阻害する。溶体化処理時間は1〜24時間が適当であり、温度が低い場合には長く、温度が高い場合には短くすることが好ましい。溶体化処理により、母相のα相の結晶粒界に析出したβ相が母相に溶解し、母相の結晶粒が粗大化するが、塑性加工における粒界すべりを阻害するβ相が少なくなることにより、加工性が向上する効果が得られる。
【0028】
溶体化処理後は、鍛造を行って、結晶粒径10μm以下の鍛造品を得(以下、この結晶粒微細化のための鍛造を「結晶粒微細化鍛造」と称す場合がある。)、この鍛造品を更に所望の形状に鍛造して製品を得る(以下、この所望の形状に成形するための鍛造を「成形鍛造」と称す場合がある。)。
【0029】
結晶粒微細化鍛造は、動的再結晶化により鋳造品の結晶粒を微細化させるためのものであり、この結晶粒微細化鍛造も成形鍛造も、マグネシウム合金の組成に応じて、鍛造加工が可能な条件範囲で行う必要がある。
【0030】
結晶粒微細化鍛造の条件は、マグネシウム合金組成によっても異なるが、Z値が10〜1013の範囲、好ましくは1010〜1013の範囲となるひずみ速度及び温度条件で行う。
【0031】
また、成形鍛造の条件も、マグネシウム合金組成によっても異なるが、Z値が1013以下、好ましくは10〜1013、より好ましくは10〜1012の範囲となるひずみ速度及び温度条件で行うことが好ましい。
【0032】
結晶粒微細化鍛造及び成形鍛造のいずれにおいても、鍛造条件が上記好適なZ値の範囲外では、クラック、割れ等の欠陥が生じ、鍛造不可能となる場合がある。
【0033】
通常の場合、結晶粒微細化鍛造はひずみ速度10−3〜10−1sec−1、温度200〜500℃の範囲で上記Z値の好適範囲となるように、合金組成に応じて条件設定がなされ、成形鍛造は、ひずみ速度10−3〜10−2sec−1、温度200〜400℃の範囲で上記Z値の好適範囲となるように、合金組成に応じて条件設定がなされる。
【0034】
結晶粒微細化鍛造により結晶粒径を10μm以下とすることにより、鍛造による塑性加工性が改善され、成形鍛造が可能となる。この結晶粒径は10μm以下であれば良く、一般的には結晶粒径1〜10μm程度に結晶粒微細化鍛造が行われる。
【0035】
次に、請求項のマグネシウム合金の成形方法の実施の形態を説明する。
【0036】
請求項の方法では、まず、アルミニウム含有量2〜6質量%のマグネシウム合金を鋳造して結晶粒径が10μm以下の鋳造品を得る。
【0037】
このマグネシウム合金のアルミニウムが2質量%未満では耐食性に劣るものとなる。マグネシウム合金のアルミニウム含有量が6質量%を超えると次工程の溶体化処理により塑性加工性を十分に高めることができず、鍛造性に優れた溶体化処理品を得ることができない。従って、マグネシウム合金のアルミニウム含有量は、2〜6質量%である。
【0038】
なお、用いるマグネシウム合金のアルミニウム以外の成分含有量については、前述の請求項1の方法における記述と同様である。
【0039】
このようなマグネシウム合金の鋳造法は、結晶粒径10μm以下の鋳造品を得るために、冷却・凝固速度が非常に速く、結晶粒を著しく微細化することができるダイカスト法を採用する。
【0040】
鋳造品の結晶粒径は小さい方が好ましいが、10μm以下であれば良く、採用する合金組成に応じて、一般的には結晶粒径5〜10μmに鋳造が行われる。
【0041】
鋳造により得られた結晶粒径10μm以下の鋳造品は、次いでその組成での固溶温度と固相線の範囲の温度で溶体化処理を行って加工性を高める。この溶体化処理条件は、前述の請求項1の方法における溶体化処理と同様な理由から、380〜430℃で1〜24時間とするのが好ましく、溶体化処理後は、所望の形状に鍛造して製品を得る。
【0042】
この鍛造も、請求項1の方法の鍛造と同様に、マグネシウム合金の組成に応じて、鍛造加工が可能な条件範囲で行う必要がある。
【0043】
鍛造の条件は、マグネシウム合金組成によっても異なるが、Z値が1013未満の範囲、好ましくは10〜1012の範囲となるひずみ速度及び温度条件で行う。Z値が1013以上では、クラック、割れ等の欠陥が生じ、鍛造不可能となる場合がある。
【0044】
通常の場合、この鍛造はひずみ速度10−3〜10−1sec−1、温度200〜500℃の範囲で上記Z値の好適範囲となるように、合金組成に応じて条件設定がなされる。
【0045】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0046】
なお、以下の実施例において、用いたMg合金インゴットは、市販のAZ91合金インゴットにマグネシウムと亜鉛を添加して成分調整を行うことにより製作し、これにより、AZ81からAZ21までの組成のMg合金インゴットを製作した。用いたAZ91合金インゴットと製作したインゴットの成分分析結果を表1に示す。
【0047】
【表1】

Figure 0003861720
【0048】
実施例1
(1) 鋳造及び溶体化処理
AZ91からAZ21までのインゴットを研削することにより、チクソモールディング用チップを作成し、鋳造に供した。日本製鋼所製チクソモールディング成形機JMG−450により、射出速度を空打ち条件で最高の4m/secに設定し、金型温度を250℃に設定して縦181mm×横255mm×高さ10mmの有底無蓋の箱型で、肉厚1.5mmの鋳造品を得た。なお、鋳造に際しては、インゴット毎に融点が異なるので、成形機のバレルとノズル温度を調整して、成形可能な条件を探りながら鋳造を行った。各合金の鋳造時のバレル先端の温度を、表2に示す。
【0049】
【表2】
Figure 0003861720
【0050】
その結果、AZ91からAZ31までは鋳造を行えたが、AZ21は融点が645℃であり、成形機のバレルの加熱限界内では溶融できず、鋳造できなかった。従って、AZ系合金のチクソモールディング成形機による鋳造限界は、アルミニウム含有量2.5%と考えられる。
【0051】
チクソモールディング鋳造で得られた鋳造品の結晶粒径を測定するため、各鋳造品の中央部からサンプルを取り、樹脂に埋め込んで研磨した後、サンプルの組成によりピクリン酸又は酢酸系のエッチング剤でエッチングし、500倍の電子顕微鏡写真を撮り、JIS G0522の「鋼のフェライト結晶粒度試験法」の切片法に従って測定し、1.74倍して結晶粒径を求めた。
【0052】
また、溶体化処理の効果を確認するために、各鋳造品を430℃で1時間熱処理した後、同様にして結晶粒径を測定した。
【0053】
これらの結果を表3及び図1に示した。
【0054】
【表3】
Figure 0003861720
【0055】
表3及び図1より明らかなように、溶体化処理前の結晶粒径は組成による差が小さいが、溶体化処理により、結晶粒径が粗大化する。これは、溶体化処理を行うと、粒界に存在するβ相が母相のα相に溶解して結晶粒を粗大化させるためである。この結晶粒径は、溶湯が急冷されて凝固する速度が速いほど小さくなると考えられ、次のような結果となる。即ち、AZ91からAZ31に向ってアルミニウムの含有量が減少し、融点が上昇する。このため、成形機の先端のバレル温度を高くするが、溶湯温度と金型温度との温度差による急冷効果のために、この温度差が小さいAZ91の結晶粒径28μmから、温度差の大きいAZ51の結晶粒径14μmまで結晶粒径は小さくなる傾向がある。しかし、AZ41,AZ31になると、逆に高温の溶湯が冷却遅延作用を奏するために、結晶粒径は18〜20μmと大きくなる。
【0056】
また、溶体化処理品の塑性加工性を調べるために、各鋳造品から引張り試験片を切り出し、420℃で1時間溶体化処理した後、300℃、ひずみ速度1.0×10−2sec−1で引張り試験を行い、結果を図2に示した。
【0057】
図2から明らかなように、アルミニウム含有量の多いAZ91からAZ71の伸びは15〜24%と低いが、AZ61からAZ31では伸びが40%以上になり、塑性加工性が格段に向上する。
【0058】
従って、鍛造に供する鋳造品のアルミニウム含有量の範囲は、鋳造性からは2.5質量%以上、塑性加工性から6質量%以下が好ましい。
【0059】
(2) 鍛造
上記(1)において、チクソモールディング法で鋳造したAZ61からAZ31の鋳造品を420℃で1時間溶体化処理した後、20mm×20mmのサンプルを切り出して電気炉で均一に加熱し、表4に示す所定の鍛造温度に保たれた金型に置き、ひずみ速度が3.3×10−2sec−1の一定条件で鍛造を行った。鍛造後のサンプルからテストピースを切り出し、上記(1)におけると同様の方法で結晶粒径の測定を行い、結果を表4に示した。なお、上記ひずみ速度を前述の(I)式に代入して求めたZ値は表1に示す通りであった。ここで計算に適用したQの値は、135Kjoule/molである。表4には、各サンプルの鍛造前(溶体化処理後)の結晶粒径を併記した。
【0060】
【表4】
Figure 0003861720
【0061】
表4より次のことが明らかである。
【0062】
即ち、同一の鍛造温度では、アルミニウム含有量の多い合金のほうが、鍛造により結晶が微細化し易い現象が見られた。一方、アルミニウム含有量の多い合金は、温度が低いと鍛造加工中に割れを生じ、実験のひずみ速度では、AZ61では300℃以上で鍛造可能であるのに対し、AZ31では200℃でも鍛造可能であり、結晶粒微細化の効果を得ることができた。
【0063】
この結果から、結晶粒径を、超塑性鍛造が可能とされる10μm以下となるように結晶粒微細化を行うことができる鍛造の条件は、AZ61からAZ31の合金では、Z値が10〜1013の範囲であり、好ましくは、1010〜1013の範囲であると言える。
【0064】
上記鍛造により、結晶粒を微細化したサンプルと微細化が十分でないものを選び、20mm×20mm×1.5mm厚さの板状サンプルを切り出し、このサンプルを鍛造金型の下型の20mm×20mmのキャビティーに挿入し、表5に示す条件で真ひずみ−1.1まで、直径3mm、高さ10mmの円筒形の凹部を有する上型で鍛造してボスの形状に成形し、鍛造加工時の鍛造性の良否を表5に示した。
【0065】
【表5】
Figure 0003861720
【0066】
表5より次のことが明らかである。
【0067】
粒界にβ相が析出しやすく、粒界すべりが阻害されやすいアルミニウム含有量が多い組成ほど高い加工温度、即ち、大きなZ値にしなければボスを形成できなかった。一方、結晶粒径が10μmを超えていても、合金によっては、高い加工温度をとることでボスを形成できた。
【0068】
しかし、工業的には、金型温度を400℃以上にすると、金型の耐久性が悪く、実用的ではない。耐熱性材料又は表面を処理することで金型の高温耐久性を改善することも可能であるが、金型コストが高くなり好ましくない。
【0069】
この結果から、所望の形状に成形するための鍛造の条件は、AZ61からAZ31の合金ではZ値が1013以下の範囲であり、好ましくは10〜1013の範囲であることがわかる。
【0070】
実施例2
(1) 鋳造及び溶体化処理
実施例1のチクソモールディング法の代わりにダイカスト法で鋳造試験を行った。チクソモールディング成形時と同じ成形品形状の金型を使用し、合金は、チクソモールディング成形機に使用したものと同じロットのインゴットを、チップにすることなく、そのまま使用した。東芝機械製DC650tCLSコールドチャンバー・ダイカスト成形機を使用し、溶湯温度を700℃、高速時の射出速度を5.0m/secに設定し、金型温度250℃の条件で、順次鋳造した。鋳造品の寸法、形状は実施例1と同様である。
【0071】
ダイカスト法では、チクソモールディング法で成形できなかったAZ21材も鋳造することができた。これは、チクソモールディング成形機のように材料の溶融を成形機のバレル内で行わず、成形機とは別に設置した給湯装置で材料を溶融させたので、溶融温度を700℃まで上げることが可能となり、融点の高いAZ21でも溶融させることができたためである。
【0072】
各鋳造品について、実施例1と同様にして溶体化処理前後の結晶粒径を測定し、結果を表6及び図3に示した。なお、溶体化処理は430℃で1時間行った。
【0073】
【表6】
Figure 0003861720
【0074】
表6及び図3より明らかなように、ダイカスト鋳造品の結晶粒径は、チクソモールディング鋳造品の結晶粒径よりも小さく、結晶粒微細化の鍛造処理するまでもなく、溶体化処理前で、既に10μ未満であった。これは、成形機の充填速度が速いため、急冷効果があるためと推定される。
【0075】
(2) 鍛造
得られた鋳造品は、既に結晶粒が微細であるので、鋳造品の鍛造しやすさの目安を得るため、実施例1におけるチクソモールディング鋳造品の結晶粒微細化鍛造と同じ条件で鍛造を行い、割れを生じることなく鍛造できるか、試験を行った。溶体化処理前のサンプルについて、予備的に鍛造試験したが、粒界に析出したβ相が厚く、粒界すべりが起こりにくいためか、割れを生じやすかった。その傾向は、アルミニウムの含有量が多いほど、著しかった。そのため、溶体化処理後のサンプルについてのみ、試験を行った。その結果を表7に示す。この時のサンプルは、ダイカスト鋳造品から切り出した20mm×20mm×1.5mm厚さの板状で、このサンプルを一定のひずみ速度で成形した。鍛造の真ひずみは、−1.1である。
【0076】
【表7】
Figure 0003861720
【0077】
表7より次のことが明らかである。
【0078】
即ち、溶体化処理前のサンプルと同様に、アルミニウム含有量が多いと、鍛造性が悪い傾向にあり、ひずみ速度が3.3×10−2の条件においては、AZ91からAZ71では、加工温度を350℃に上げても、鍛造すると欠陥を生じた。但し、アルミニウム含有量が減るにつれて鍛造性が良くなり、AZ91では、いずれの温度でも鍛造品に割れを生じたが、AZ81では300℃以上(即ちZ値が6.7×1010未満)、AZ71では250℃以上(即ちZ値が1.0×1012未満)になると割れなくなったが、細かいクラックを生じた。
【0079】
更に、アルミニウム含有量が減ると、欠陥を生じることなく鍛造することができ、AZ61,AZ51及びAZ41では250℃以上(即ちZ値が1.0×1012未満)で、AZ31とAZ21では200℃以上(即ちZ値が1.0×1013未満)で鍛造したものには欠陥がなく、優れた鍛造成形性を示した。
【0080】
以上の結果から、結晶粒径が10μ以下に鋳造したダイカスト鋳造品の鍛造に適する組成は、アルミニウム含有量が2〜6質量%であり、適する鍛造条件は、Z値が1.0×1013未満であると言える。
【0081】
【発明の効果】
以上詳述した通り、本発明のマグネシウム合金の成形方法によれば、鋳造が可能で、しかも鍛造性に優れるマグネシウム合金組成において、鋳造と鍛造とを組み合わせてマグネシウム合金を成形することにより、複雑で精密な形状を持ち、かつ物性の信頼性が高く、耐食性をも十分に満足する製品を歩留り良く製造することが可能となる。
【図面の簡単な説明】
【図1】 実施例1におけるチクソモールディング鋳造品(溶体化処理後)の結晶粒径を示すグラフである。
【図2】 実施例1における溶体化処理品の300℃,ε’=1.0×10−2−1における引張り試験結果を示すグラフである。
【図3】 実施例2におけるダイカスト鋳造品(溶体化処理後)の結晶粒径を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for forming a magnesium alloy by casting a magnesium alloy and forging the cast product into a desired shape.
[0002]
[Prior art]
  Magnesium (Mg) has a specific gravity of 1.8 and is even smaller than the specific gravity of 2.7 of aluminum (Al), which is a typical light metal, so the magnesium alloy is very light. Moreover, the magnesium alloy has a higher specific rigidity than the aluminum alloy and is excellent in thermal conductivity. Therefore, the magnesium alloy is widely used as a constituent material for casings and parts of electric / electronic devices.
[0003]
  However, since a magnesium alloy is difficult to process, there is a drawback that it is not easy to form into a desired shape. That is, the magnesium alloy has a drawback that the solidification latent heat is small and the solidification rate is fast, so that casting is difficult, and the resulting cast product is liable to cause defects such as nests and water wrinkles. For this reason, there is a problem that a product whose appearance is emphasized has a low yield and has a high cost because defects must be putty-treated.
In addition, since the magnesium alloy is a close-packed hexagonal crystal, the ductility is low, and when a plate or bar is processed by pressing or forging, it must be performed at a high temperature of 300 to 500 ° C., and the processing speed is high. There are problems such as slowness, a large number of processes, and a short mold life.
[0004]
  In order to solve the problem of difficult workability of such a magnesium alloy, Japanese Patent Laid-Open No. 7-224344 discloses that an AZ-based magnesium alloy having a composition with an aluminum content of 6.2 to 7.6 wt% is continuously cast. In the process of obtaining a billet, a method has been proposed in which a billet has an average crystal grain size of 200 μm or less by adding a finer and / or controlling a cooling rate, and forging the billet to produce a large part. This publication also describes that after processing into a final product shape, a solution treatment and a T6 heat treatment are combined to reduce the average crystal grain size to 50 μm or less and improve the corrosion resistance.
[0005]
  On the other hand, in Japanese Patent Application Laid-Open No. 2001-294966, a magnesium alloy is formed into a plate shape by a die casting or thixomolding molding machine, the plate material is rolled at room temperature to give a strain, and then heated to 350 to 400 ° C. Thus, a method has been proposed in which the crystal is recrystallized and the crystal grain size is refined to 0.1 to 30 μm to improve the ductility, and a plate material having improved ductility is formed by press working or forging. Japanese Patent Application Laid-Open Nos. 2001-170734 and 1707376 disclose that a magnesium alloy plate material is forged, and the thickness of the main part of the molded product is 7 times or 10 times by a plurality of steps of rough forging and finish forging. A method for forming a boss of the following height is shown.
[0006]
  However, the method of forging from a billet as described in Japanese Patent Application Laid-Open No. 7-224344 has limitations in terms of shape and wall thickness in order to form a complex and precise part with a magnesium alloy. In the method of forming from a magnesium alloy plate as described in JP-A Nos. 2001-294966, 170734, and 170737, thin-walled parts can be manufactured. It is difficult to obtain a molded product having a complicated and precise shape by forging.
[0007]
  In recent years, with regard to magnesium alloys as well as aluminum alloys, the elucidation of the mechanism of superplasticity has progressed, and the possibility of processing at high strain rates has been shown by reducing the crystal grain size (for example, “magnesium”). Technical Handbook "pp. 119-125).
[0008]
  In general, in order to form an alloy into a complicated and precise shape, it is preferable to apply a casting method such as die casting, that is, a high filling speed. However, as mentioned earlier, magnesium alloys are easy to solidify, so die casting is likely to cause water wrinkles, and depending on the shape, it is difficult to fill every corner of the mold, There are restrictions on the size and thickness of the molded product. Further, when the injection speed is increased, air or gas is easily caught in the molten metal, and a nest is formed, causing a problem in reliability of physical properties.
[0009]
  On the other hand, when pressing the plate material, products up to the width of the plate material can be formed, but the magnesium alloy has a low ductility and is difficult to process, so a complicated shape such as a boss is cast. It is difficult to form in the same way.
[0010]
  From the viewpoint of the alloy composition, the castability and extensibility of magnesium alloy are contradictory, and the cast material is AZ91, AM50, AM60 which is easy to cast due to its high aluminum content and low melting temperature. AZ31 material with a low aluminum content and high ductility is used as the press / forging material. From the aspect of corrosion resistance, the higher the aluminum content, the better the corrosion resistance. Therefore, the AZ31 material is inferior in corrosion resistance compared to the AZ91 material. This is one of the reasons for narrowing the application of AZ31 material.
[0011]
[Problems to be solved by the invention]
  The present invention has been made in view of the above-described conventional situation, and in a magnesium alloy composition that can be cast and is excellent in forgeability, a magnesium alloy is formed by combining casting and forging, thereby forming a complicated and precise structure. An object of the present invention is to provide a method for forming a magnesium alloy that can produce a product having a good shape, high reliability in physical properties, and satisfactory corrosion resistance with a good yield.
[0012]
[Means for Solving the Problems]
  According to a first aspect of the present invention, a magnesium alloy is formed by casting a magnesium alloy having an aluminum content of 2.5 to 6% by mass to obtain a cast product having a crystal grain size of 30 μm or less. After forming a solution at a temperature in the range of a melting temperature and a solidus line, forging a forged product having a crystal grain size of 10 μm or less, and forming the forged product into a desired shape, a magnesium alloy molding method, Z value is 109-1013Forging under the conditions of the strain rate and temperature, a crystal refined forged product having a crystal grain size of 10 μm or less is obtained.The casting is performed by a die casting method or a thixo molding method.It is characterized by that.
[0013]
  When a cast product having a crystal grain size of 30 μm or less by casting is subjected to a solution treatment, the crystal grains become coarse, but the coarseness formed during casting causes the elongation to increase due to the disappearance of the second phase grains at the brittle grain boundaries. The plastic workability is improved. Thus, the forging formability can be further improved by refining the cast product having improved plastic workability by solution treatment to a crystal grain size of 10 μm or less by dynamic recrystallization by forging. Therefore, in the method of claim 1, a cast product having a crystal grain size of 30 μm or less by casting is subjected to a solution treatment, and thereafter the crystal grain size is set to 10 μm or less by forging, and further forging is performed to obtain a desired shape.
[0014]
  In this method, the preferred aluminum content of the magnesium alloy is 2.5-6% by mass. Casting is performed by the die casting method or thixo molding method.Yeah.The solution treatment is preferably performed at 380 to 440 ° C. for 1 to 24 hours. Forging for crystal grain refinement after the solution treatment has a Z value of 109-1013The strain rate and temperature are the same. Forging for subsequent molding, the Z value is 1013It is preferable to carry out under the following strain rate and temperature conditions.
[0015]
  Claim4The magnesium alloy is formed by casting a magnesium alloy having an aluminum content of 2 to 6% by mass to obtain a cast product having a crystal grain size of 10 μm or less. A method of forming a magnesium alloy that is forged into a desired shape after solution treatment at a temperature in the range of the wire, with a Z value of 1013Forging under conditions of strain rate and temperature belowThe casting is performed by a die casting methodIt is characterized by that.
[0016]
  When a cast product having a crystal grain size of 10 μm or less by casting is subjected to a solution treatment, the crystal grains become coarse, but the coarseness formed during casting causes the elongation to increase due to the disappearance of the second phase particles at the brittle grain boundaries. The plastic workability is improved. Thus, it can shape | mold into a desired shape by forging the casting which improved the plastic workability by the solution treatment. Therefore, the claims4In this method, a cast product having a crystal grain size of 10 μm or less by casting is subjected to a solution treatment, and then formed into a desired shape by forging.
[0017]
  In this method, the preferred aluminum content of the magnesium alloy is 2-6% by mass. Casting is performed by the die casting method.Yeah.Further, the solution treatment is preferably performed at 380 to 440 ° C. for 1 to 24 hours, and forging for subsequent molding has a Z value of 1013Under conditions of strain rate and temperature below.
[0018]
  The Z value is a temperature-compensated strain rate representing the relationship between temperature and strain rate, and is a Zener-Holomon parameter generally used as a relational expression representing the effect of temperature and strain rate on flow stress. Defined in (I).
      Z = ε′exp (Q / RT) (I)
  here
  ε ′: Strain rate (sec-1)
  Q: Lattice diffusion activation energy
  R: Gas constant
  T: Absolute temperature
As the value of Q, the value of 135 kjoule / mol of pure magnesium is generally used because the value of magnesium alloy is not required.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of a method for forming a magnesium alloy of the present invention will be described in detail below.
[0020]
  First, an embodiment of a method for forming a magnesium alloy according to claim 1 will be described.
[0021]
  In the method of claim 1, first, a magnesium alloy having an aluminum content of 2 to 10% by mass is cast to obtain a cast product having a crystal grain size of 30 μm or less.
[0022]
  If the aluminum content of this magnesium alloy is less than 2.5% by mass, the corrosion resistance will be poor, and the melting temperature will be high, making it unsuitable for casting. If the aluminum content of the magnesium alloy exceeds 6% by mass, the plastic workability cannot be sufficiently improved by the solution treatment in the next step, and a solution-treated product excellent in forgeability cannot be obtained. Therefore, the aluminum content of the magnesium alloy is 2.5 to 6% by mass.
[0023]
  There is no particular restriction on the casting method of such a magnesium alloy, but in order to obtain a cast product having a crystal grain size of 30 μm or less, a die casting method or a crystal casting method capable of refining crystal grains with a relatively fast cooling / solidification rate or Use thixo molding methodThe
[0024]
  That is, in gravity casting, generally, the molten magnesium alloy is slow to solidify, so that the crystal grows during cooling and solidification, and the crystal grain size becomes as large as 200 μm. As described above, in the casting method in which the molten or semi-molten molten metal is injected into the mold, the cooling and solidification rate is fast, so that the crystal grains can be refined and cast to a crystal grain size of 30 μm or less.
[0025]
  The crystal grain size of the cast product is preferably small, but it may be 30 μm or less, and casting is generally performed to a crystal grain size of 15 to 30 μm depending on the casting method and alloy composition to be employed.
[0026]
  The cast product having a crystal grain size of 30 μm or less obtained by casting is then subjected to a solution treatment.
[0027]
  Solution treatment temperature should just be the temperature of the range of the solid solution temperature and solidus line in the composition, and optimal temperature is 380-430 degreeC. When the solution treatment temperature is lower than the solid solution temperature or lower than 380 ° C., a huge compound of aluminum and magnesium is precipitated, so that plastic workability is hindered, and at a temperature exceeding the solidus of the composition or a temperature exceeding 430 ° C. A liquid phase is produced, and the plastic workability is hindered. The solution treatment time is suitably from 1 to 24 hours, and is preferably long when the temperature is low and short when the temperature is high. Due to the solution treatment, the β phase precipitated at the α phase grain boundaries of the matrix phase dissolves in the matrix phase and the matrix phase grains become coarse, but there are few β phases that hinder grain boundary sliding in plastic working. As a result, an effect of improving workability can be obtained.
[0028]
  After the solution treatment, forging is performed to obtain a forged product having a crystal grain size of 10 μm or less (hereinafter, forging for grain refinement may be referred to as “crystal grain refinement forging”). The forged product is further forged into a desired shape to obtain a product (hereinafter, forging for forming the desired shape into a desired shape may be referred to as “forming forging”).
[0029]
  Grain refinement forging is intended to refine the crystal grains of a cast product by dynamic recrystallization. Both grain refinement forging and forming forging can be performed according to the composition of the magnesium alloy. It should be done within the range of possible conditions.
[0030]
  The conditions for grain refinement forging differ depending on the magnesium alloy composition, but the Z value is 109-1013Range, preferably 1010-1013The strain rate and temperature conditions are in the range.
[0031]
  The forging conditions also differ depending on the magnesium alloy composition, but the Z value is 1013Or less, preferably 108-1013, More preferably 109-1012It is preferable to carry out under the strain rate and temperature conditions that fall within the above range.
[0032]
  In both the crystal grain refinement forging and the forming forging, when the forging conditions are outside the above-described preferable Z value range, defects such as cracks and cracks may occur and forging may become impossible.
[0033]
  Usually, grain refinement forging is strain rate 10-3-10-1sec-1The conditions are set according to the alloy composition so that the Z value is within the preferable range of 200 to 500 ° C., and the forming forging is performed at a strain rate of 10-3-10-2sec-1The conditions are set according to the alloy composition so that the Z value is within the preferable range in the temperature range of 200 to 400 ° C.
[0034]
  By making the crystal grain size 10 μm or less by crystal grain refinement forging, plastic workability by forging is improved, and forming forging becomes possible. The crystal grain size may be 10 μm or less, and crystal grain refinement forging is generally performed to a crystal grain size of about 1 to 10 μm.
[0035]
  Next, the claim4An embodiment of a method for forming a magnesium alloy will be described.
[0036]
  Claim4In this method, first, a magnesium alloy having an aluminum content of 2 to 6% by mass is cast to obtain a cast product having a crystal grain size of 10 μm or less.
[0037]
  If the aluminum content of the magnesium alloy is less than 2% by mass, the corrosion resistance is poor. If the aluminum content of the magnesium alloy exceeds 6 mass%, the plastic workability cannot be sufficiently increased by the solution treatment in the next step, and a solution-treated product excellent in forgeability cannot be obtained. Therefore, the aluminum content of the magnesium alloy is 2 to 6% by mass.
[0038]
  In addition, about content of components other than aluminum of the magnesium alloy to be used, it is the same as the description in the method of Claim 1 mentioned above.
[0039]
  In order to obtain a cast product having a crystal grain size of 10 μm or less, such a magnesium alloy casting method employs a die casting method in which the cooling and solidification rate is very fast and crystal grains can be remarkably refined.The
[0040]
  The crystal grain size of the cast product is preferably smaller, but it may be 10 μm or less, and casting is generally performed to a crystal grain size of 5 to 10 μm depending on the alloy composition to be employed.
[0041]
  A cast product having a crystal grain size of 10 μm or less obtained by casting is then subjected to a solution treatment at a temperature in the range of a solid solution temperature and a solidus line with the composition to improve workability. The solution treatment conditions are preferably set to 380 to 430 ° C. for 1 to 24 hours for the same reason as the solution treatment in the method of claim 1 described above. After the solution treatment, the solution is forged into a desired shape. And get the product.
[0042]
  Similarly to the forging in the method of claim 1, this forging needs to be performed within a condition range in which forging can be performed according to the composition of the magnesium alloy.
[0043]
  The forging conditions differ depending on the magnesium alloy composition, but the Z value is 1013A range of less than 10, preferably 106-1012The strain rate and temperature conditions are in the range. Z value is 1013As described above, defects such as cracks and cracks may occur, and forging may become impossible.
[0044]
  Normally, this forging is performed at a strain rate of 10-3-10-1sec-1The conditions are set according to the alloy composition so that the Z value is within the preferable range of 200 to 500 ° C.
[0045]
【Example】
  Hereinafter, the present invention will be described more specifically with reference to examples.
[0046]
  In the following examples, the Mg alloy ingot used was manufactured by adding magnesium and zinc to a commercially available AZ91 alloy ingot and adjusting the components, thereby producing an Mg alloy ingot having a composition from AZ81 to AZ21. Was made. Table 1 shows the component analysis results of the AZ91 alloy ingot used and the manufactured ingot.
[0047]
[Table 1]
Figure 0003861720
[0048]
  Example 1
(1) Casting and solution treatment
  Chips for thixomolding were prepared by grinding the ingots from AZ91 to AZ21 and subjected to casting. With Nippon Steel's thixomolding molding machine JMG-450, the injection speed is set to the maximum of 4 m / sec under blanking conditions, the mold temperature is set to 250 ° C., and the length is 181 mm × width 255 mm × height 10 mm A cast product having a thickness of 1.5 mm was obtained in a box shape with a bottomless lid. In casting, since the melting point differs for each ingot, casting was performed while adjusting the barrel and nozzle temperature of the molding machine and searching for molding conditions. Table 2 shows the temperature of the barrel tip during casting of each alloy.
[0049]
[Table 2]
Figure 0003861720
[0050]
  As a result, casting was possible from AZ91 to AZ31, but AZ21 had a melting point of 645 ° C. and could not be melted within the heating limit of the barrel of the molding machine and could not be cast. Therefore, it is considered that the casting limit of the AZ type alloy thixomolding molding machine is 2.5% aluminum content.
[0051]
  In order to measure the crystal grain size of cast products obtained by thixomolding casting, samples are taken from the center of each cast product, embedded in resin, polished, and then etched with picric acid or acetic acid based on the sample composition Etching was performed, an electron micrograph of 500 times was taken, measured according to the intercept method of “Ferrite grain size test method of steel” of JIS G0522, and 1.74 times to obtain the crystal grain size.
[0052]
  Further, in order to confirm the effect of the solution treatment, each cast product was heat-treated at 430 ° C. for 1 hour, and then the crystal grain size was measured in the same manner.
[0053]
  These results are shown in Table 3 and FIG.
[0054]
[Table 3]
Figure 0003861720
[0055]
  As is clear from Table 3 and FIG. 1, the crystal grain size before the solution treatment is small depending on the composition, but the crystal grain size is coarsened by the solution treatment. This is because, when the solution treatment is performed, the β phase existing at the grain boundary is dissolved in the α phase of the parent phase and the crystal grains are coarsened. This crystal grain size is considered to decrease as the molten metal is rapidly cooled and solidified, resulting in the following results. That is, the aluminum content decreases from AZ91 to AZ31, and the melting point increases. For this reason, the barrel temperature at the tip of the molding machine is increased, but because of the rapid cooling effect due to the temperature difference between the molten metal temperature and the mold temperature, AZ51 has a large temperature difference from the crystal grain size 28 μm of AZ91 where the temperature difference is small. The crystal grain size tends to be small up to 14 μm. However, in the case of AZ41 and AZ31, on the contrary, the high-temperature molten metal has a cooling delay action, so that the crystal grain size becomes as large as 18 to 20 μm.
[0056]
  Further, in order to investigate the plastic workability of the solution-treated product, a tensile test piece was cut out from each cast product, subjected to solution treatment at 420 ° C. for 1 hour, 300 ° C., and strain rate 1.0 × 10.-2sec-1A tensile test was conducted with the results shown in FIG.
[0057]
  As is clear from FIG. 2, the elongation of AZ91 to AZ71 having a large aluminum content is as low as 15 to 24%, but the elongation of AZ61 to AZ31 is 40% or more, and the plastic workability is remarkably improved.
[0058]
  Therefore, the range of the aluminum content of the cast product used for forging is preferably 2.5% by mass or more from the castability and 6% by mass or less from the plastic workability.
[0059]
(2) Forging
  In the above (1), a cast product of AZ61 to AZ31 cast by the thixomolding method was subjected to solution treatment at 420 ° C. for 1 hour, then a 20 mm × 20 mm sample was cut out and heated uniformly in an electric furnace, as shown in Table 4 Place in a mold kept at a predetermined forging temperature, strain rate is 3.3 × 10-2sec-1Forging was performed under certain conditions. A test piece was cut out from the sample after forging, the crystal grain size was measured by the same method as in (1) above, and the results are shown in Table 4. The Z value obtained by substituting the strain rate into the above formula (I) was as shown in Table 1. The value of Q applied to the calculation here is 135 Kjoule / mol. Table 4 shows the crystal grain size of each sample before forging (after solution treatment).
[0060]
[Table 4]
Figure 0003861720
[0061]
  From Table 4, the following is clear.
[0062]
  That is, at the same forging temperature, an alloy having a higher aluminum content was more likely to be refined by forging. On the other hand, an alloy having a high aluminum content cracks during forging when the temperature is low, and in the experimental strain rate, AZ61 can be forged at 300 ° C. or higher, whereas AZ31 can be forged at 200 ° C. In addition, the effect of crystal grain refinement could be obtained.
[0063]
  From this result, the forging conditions under which crystal grain refinement can be performed so that the crystal grain size is 10 μm or less that enables superplastic forging are as follows. For alloys AZ61 to AZ31, the Z value is 109-1013And preferably 1010-1013It can be said that this is the range.
[0064]
  By the forging, a sample with crystal grains refined and a sample that is not sufficiently refined are selected, a plate-like sample having a thickness of 20 mm × 20 mm × 1.5 mm is cut out, and this sample is cut into a lower mold of a forging die 20 mm × 20 mm. And forged into a boss shape by forging with an upper die having a cylindrical recess with a diameter of 3 mm and a height of 10 mm up to a true strain of -1.1 under the conditions shown in Table 5. Table 5 shows the forgeability.
[0065]
[Table 5]
Figure 0003861720
[0066]
  From Table 5, the following is clear.
[0067]
  A boss could not be formed unless the composition had a higher processing temperature, that is, a larger Z value, for a composition having a higher aluminum content in which the β phase was likely to precipitate at the grain boundaries and the grain boundary sliding was more likely to be inhibited. On the other hand, even if the crystal grain size exceeded 10 μm, a boss could be formed by taking a high processing temperature depending on the alloy.
[0068]
  However, industrially, when the mold temperature is set to 400 ° C. or higher, the mold has poor durability and is not practical. Although it is possible to improve the high temperature durability of the mold by treating the heat resistant material or the surface, it is not preferable because the mold cost is increased.
[0069]
  From this result, the forging conditions for forming into a desired shape are as follows. For alloys AZ61 to AZ31, the Z value is 1013In the following range, preferably 108-1013It turns out that it is the range of.
[0070]
  Example 2
(1) Casting and solution treatment
  A casting test was conducted by a die casting method instead of the thixo molding method of Example 1. A mold having the same molded product shape as that used in thixomolding molding was used, and the same lot of ingot as that used in the thixomolding molding machine was used as it was without making chips. Using a DC650t CLS cold chamber die casting machine manufactured by Toshiba Machine, the molten metal temperature was set to 700 ° C., the injection speed at high speed was set to 5.0 m / sec, and casting was performed sequentially under the conditions of a mold temperature of 250 ° C. The dimensions and shape of the cast product are the same as in Example 1.
[0071]
  In the die casting method, AZ21 material that could not be formed by the thixomolding method could be cast. This is because the material is not melted in the barrel of the molding machine unlike the thixomolding molding machine, but the material is melted by a hot water supply device installed separately from the molding machine, so the melting temperature can be raised to 700 ° C. This is because AZ21 having a high melting point could be melted.
[0072]
  For each cast product, the crystal grain size before and after the solution treatment was measured in the same manner as in Example 1, and the results are shown in Table 6 and FIG. The solution treatment was performed at 430 ° C. for 1 hour.
[0073]
[Table 6]
Figure 0003861720
[0074]
  As is apparent from Table 6 and FIG. 3, the crystal grain size of the die cast product is smaller than the crystal grain size of the thixomolding cast product, and it is not necessary to forge the crystal grain to be refined before the solution treatment. It was already less than 10μ. This is presumed to be due to the rapid cooling effect due to the high filling speed of the molding machine.
[0075]
(2) Forging
  Since the obtained casting is already fine in crystal grains, forging is performed under the same conditions as the grain refinement forging of the thixomolding casting in Example 1 in order to obtain an indication of the ease of forging of the casting. A test was conducted to determine whether forging can be performed without causing cracks. A pre-forging test was performed on the sample before the solution treatment, but the β phase precipitated at the grain boundary was thick and the grain boundary slip was less likely to occur, or cracking was likely to occur. The tendency was more remarkable as the aluminum content increased. Therefore, only the sample after solution treatment was tested. The results are shown in Table 7. The sample at this time was a plate shape of 20 mm × 20 mm × 1.5 mm thickness cut out from the die cast product, and this sample was molded at a constant strain rate. The forging true strain is -1.1.
[0076]
[Table 7]
Figure 0003861720
[0077]
  From Table 7, the following is clear.
[0078]
  That is, like the sample before solution treatment, if the aluminum content is large, the forgeability tends to be poor, and the strain rate is 3.3 × 10.-2Under these conditions, in AZ91 to AZ71, defects were generated when forging even when the processing temperature was increased to 350 ° C. However, as the aluminum content decreased, the forgeability improved. In AZ91, cracking occurred in the forged product at any temperature, but in AZ81, 300 ° C. or higher (that is, the Z value was 6.7 × 10 6).10AZ71, 250 ° C. or higher (that is, the Z value is 1.0 × 1012Less), the cracks disappeared, but fine cracks occurred.
[0079]
  Further, when the aluminum content is reduced, forging can be performed without causing defects. In AZ61, AZ51 and AZ41, 250 ° C. or higher (that is, the Z value is 1.0 × 10 6).12AZ31 and AZ21 at 200 ° C. or higher (that is, the Z value is 1.0 × 10 6).13Forged) was free of defects and showed excellent forgeability.
[0080]
  From the above results, the composition suitable for forging of a die cast product cast with a crystal grain size of 10 μm or less has an aluminum content of 2 to 6% by mass, and suitable forging conditions are such that the Z value is 1.0 × 10.13It can be said that it is less than.
[0081]
【The invention's effect】
  As described above in detail, according to the magnesium alloy molding method of the present invention, in a magnesium alloy composition that can be cast and has excellent forgeability, it is complicated by molding the magnesium alloy by combining casting and forging. A product having a precise shape, high physical property reliability, and sufficient corrosion resistance can be manufactured with high yield.
[Brief description of the drawings]
1 is a graph showing the crystal grain size of a thixomolding cast product (after solution treatment) in Example 1. FIG.
FIG. 2 shows a solution-treated product of Example 1 at 300 ° C. and ε ′ = 1.0 × 10.-2s-1It is a graph which shows the tension test result in.
3 is a graph showing the crystal grain size of a die cast product (after solution treatment) in Example 2. FIG.

Claims (5)

アルミニウム含有量が2.5〜6質量%のマグネシウム合金を鋳造して結晶粒径が30μm以下の鋳造品を得、該鋳造品をその組成での固溶温度と固相線の範囲の温度で溶体化処理した後、鍛造して結晶粒径10μm以下の鍛造品とし、この鍛造品を所望の形状に更に鍛造するマグネシウム合金の成形方法であって、
Z値が10〜1013のひずみ速度と温度の条件で鍛造して結晶粒径10μm以下の結晶微細化鍛造品を得るものであり、
該鋳造をダイカスト法又はチクソモールディング法で行うことを特徴とするマグネシウム合金の成形方法。
A magnesium alloy having an aluminum content of 2.5 to 6% by mass is cast to obtain a cast product having a crystal grain size of 30 μm or less. After the solution treatment, a forging product having a crystal grain size of 10 μm or less is forged, and this forging product is further formed into a desired shape by a magnesium alloy molding method,
Z-value is forged under conditions of strain rate and temperature of 10 9 to 10 13 to obtain a crystal refined forged product having a crystal grain size of 10 μm or less ,
A method for forming a magnesium alloy, wherein the casting is performed by a die casting method or a thixo molding method.
請求項1において、該溶体化処理を380〜440℃で1〜24時間行うことを特徴とするマグネシウム合金の成形方法。Oite to claim 1, a molding method of a magnesium alloy which is characterized in that 1 to 24 hours the solution body treatment at three hundred eighty to four hundred forty ° C.. 請求項1又は2において、結晶微細化鍛造品をZ値が1013以下のひずみ速度と温度の条件で所望の形状に鍛造することを特徴とするマグネシウム合金の成形方法。 3. The method for forming a magnesium alloy according to claim 1, wherein the crystal refined forged product is forged into a desired shape under conditions of a strain rate and a temperature having a Z value of 10 13 or less. アルミニウム含有量が2〜6質量%のマグネシウム合金を鋳造して結晶粒径が10μm以下の鋳造品を得、該鋳造品をその組成での固溶温度と固相線の範囲の温度で溶体化処理した後、所望の形状に鍛造するマグネシウム合金の成形方法であって、
Z値が1013未満のひずみ速度と温度の条件で鍛造するものであり、
該鋳造をダイカスト法により行うことを特徴とするマグネシウム合金の成形方法。
A magnesium alloy having an aluminum content of 2 to 6% by mass is cast to obtain a cast product having a crystal grain size of 10 μm or less. A magnesium alloy molding method forging into a desired shape after processing,
Z value is one that forged under conditions of strain rate and temperature below 10 13,
A method for forming a magnesium alloy, wherein the casting is performed by a die casting method.
請求項において、該溶体化処理を380〜440℃で1〜24時間行うことを特徴とするマグネシウム合金の成形方法。The method for forming a magnesium alloy according to claim 4, wherein the solution treatment is performed at 380 to 440 ° C for 1 to 24 hours.
JP2002067184A 2002-03-12 2002-03-12 Forming method of magnesium alloy Expired - Fee Related JP3861720B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002067184A JP3861720B2 (en) 2002-03-12 2002-03-12 Forming method of magnesium alloy
DE60304920T DE60304920T8 (en) 2002-03-12 2003-01-30 Process for the production of magnesium alloy products
EP03002095A EP1347074B1 (en) 2002-03-12 2003-01-30 Method of manufacturing magnesium alloy products
US10/385,722 US20030173005A1 (en) 2002-03-12 2003-03-12 Method of manufacturing magnesium alloy products
KR10-2003-0015392A KR20030074385A (en) 2002-03-12 2003-03-12 Method of forming magnesium alloy
TW092105379A TWI263681B (en) 2002-03-12 2003-03-12 Method of manufacturing magnesium alloy products
CNB031200613A CN1283822C (en) 2002-03-12 2003-03-12 Method for making magnesium alloy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067184A JP3861720B2 (en) 2002-03-12 2002-03-12 Forming method of magnesium alloy

Publications (3)

Publication Number Publication Date
JP2003268513A JP2003268513A (en) 2003-09-25
JP2003268513A5 JP2003268513A5 (en) 2005-09-02
JP3861720B2 true JP3861720B2 (en) 2006-12-20

Family

ID=27784993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067184A Expired - Fee Related JP3861720B2 (en) 2002-03-12 2002-03-12 Forming method of magnesium alloy

Country Status (7)

Country Link
US (1) US20030173005A1 (en)
EP (1) EP1347074B1 (en)
JP (1) JP3861720B2 (en)
KR (1) KR20030074385A (en)
CN (1) CN1283822C (en)
DE (1) DE60304920T8 (en)
TW (1) TWI263681B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127113B1 (en) * 2004-01-09 2012-03-26 켄지 히가시 Magnesium alloy for die cast and magnesium die cast products using the same
CA2723075C (en) * 2004-06-30 2015-10-06 Sumitomo Electric Industries, Ltd. Magnesium alloy cast material
JP5050199B2 (en) * 2006-03-30 2012-10-17 国立大学法人電気通信大学 Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
US20080000557A1 (en) * 2006-06-19 2008-01-03 Amit Ghosh Apparatus and method of producing a fine grained metal sheet for forming net-shape components
CN100424216C (en) * 2006-10-14 2008-10-08 重庆工学院 Solution treatment method for Mg-Al series cast magnesium alloy heat treatment reinforcement
JP2008229650A (en) * 2007-03-19 2008-10-02 Mitsui Mining & Smelting Co Ltd Plastically worked magnesium alloy member, and method for producing the same
AU2007202131A1 (en) * 2007-05-14 2008-12-04 Joka Buha Method of heat treating magnesium alloys
JP2009255149A (en) * 2008-04-18 2009-11-05 Mitsui Mining & Smelting Co Ltd Method for manufacturing non-ferrous metal formed body
CN101921940B (en) * 2009-06-16 2013-03-13 富准精密工业(深圳)有限公司 Magnesium alloy and preparation method thereof
WO2012091112A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Magnesium alloy material
JP5700005B2 (en) * 2012-09-05 2015-04-15 株式会社豊田中央研究所 Composite magnesium alloy member and manufacturing method thereof
CN103203602B (en) * 2013-04-15 2015-06-10 中国兵器工业第五二研究所 Production method of magnesium alloy hub
CN103447433B (en) * 2013-09-04 2015-09-09 中南大学 A kind of preparation method of large scale magnesium alloy forging cake
CN103447432B (en) * 2013-09-04 2015-09-09 中南大学 A kind of isothermal forging process of large scale magnesium alloy parts
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
WO2015127174A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
WO2015161171A1 (en) 2014-04-18 2015-10-22 Terves Inc. Galvanically-active in situ formed particles for controlled rate dissolving tools
GB201413327D0 (en) 2014-07-28 2014-09-10 Magnesium Elektron Ltd Corrodible downhole article
CN105951012B (en) * 2016-06-27 2017-10-03 长沙新材料产业研究院有限公司 A kind of alternating temperature forging reinforcement process of low alloying magnesium alloy
DE102016223089A1 (en) 2016-11-23 2018-05-24 Schaeffler Technologies AG & Co. KG Method for producing a rolling bearing component made of a nickel-titanium alloy
CN107245681B (en) * 2017-05-31 2018-08-28 江苏金基特钢有限公司 A kind of optimization heat treatment process of high corrosion resistance magnesium alloy
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681089A (en) * 1992-09-02 1994-03-22 Sumitomo Metal Ind Ltd Method for hot-working magnesium alloy
US5902424A (en) * 1992-09-30 1999-05-11 Mazda Motor Corporation Method of making an article of manufacture made of a magnesium alloy
JP2676466B2 (en) * 1992-09-30 1997-11-17 マツダ株式会社 Magnesium alloy member and manufacturing method thereof
JP3415987B2 (en) * 1996-04-04 2003-06-09 マツダ株式会社 Molding method of heat-resistant magnesium alloy molded member
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP4776751B2 (en) * 2000-04-14 2011-09-21 パナソニック株式会社 Magnesium alloy sheet manufacturing method

Also Published As

Publication number Publication date
KR20030074385A (en) 2003-09-19
EP1347074B1 (en) 2006-05-03
TWI263681B (en) 2006-10-11
US20030173005A1 (en) 2003-09-18
CN1283822C (en) 2006-11-08
DE60304920D1 (en) 2006-06-08
DE60304920T2 (en) 2007-01-04
CN1443862A (en) 2003-09-24
TW200304496A (en) 2003-10-01
JP2003268513A (en) 2003-09-25
DE60304920T8 (en) 2007-05-16
EP1347074A1 (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP3861720B2 (en) Forming method of magnesium alloy
JP6229130B2 (en) Cast aluminum alloy and casting using the same
CN105088037A (en) Mg-RE-Mn-series multi-element magnesium alloy and preparation method thereof
JP2004043907A (en) Aluminum alloy forging for reinforcement member and raw material for forging
JPH11104800A (en) Material for plastic working light metal alloy and manufacture of plastic working member
JP5356777B2 (en) Magnesium alloy forging method
JP2001288517A (en) Cu-BASED ALLOY, CASTING HAVING HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY USING THE SAME AND METHOD FOR PRODUCING CASTING
JP2009144215A (en) Heat resistant magnesium alloy material and its manufacturing method
JP2001020047A (en) Stock for aluminum alloy forging and its production
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JPS63282232A (en) High-strength magnesium alloy for plastic working and its production
CN113774262A (en) High-strength magnesium alloy wire and preparation method thereof
JP2007092125A (en) Aluminum alloy, aluminum alloy bar, method for manufacturing aluminum alloy ingot for forging, and forged and formed article
JP5076455B2 (en) Aluminum alloy die casting and manufacturing method thereof
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JPH11246925A (en) Aluminum alloy casting with high toughness, and its manufacture
US8016957B2 (en) Magnesium grain-refining using titanium
ZHAO et al. Microstructure evolution and mechanical properties of AZ80 alloy reheated from as-cast and deformed states
WO2000044944A2 (en) Processes for continuously producing fine grained metal compositions and for semi-solid forming of shaped articles
JP2004277762A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working
Wang et al. Microstructure evolution and mechanical properties of ZK60 magnesium alloy produced by SSTT and RAP route in semi-solid state

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees