JPH05305380A - Manufacture of magnesium alloy member - Google Patents

Manufacture of magnesium alloy member

Info

Publication number
JPH05305380A
JPH05305380A JP13625492A JP13625492A JPH05305380A JP H05305380 A JPH05305380 A JP H05305380A JP 13625492 A JP13625492 A JP 13625492A JP 13625492 A JP13625492 A JP 13625492A JP H05305380 A JPH05305380 A JP H05305380A
Authority
JP
Japan
Prior art keywords
forging
alloy
temperature
base stock
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13625492A
Other languages
Japanese (ja)
Other versions
JP3240182B2 (en
Inventor
Makoto Fujita
誠 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP13625492A priority Critical patent/JP3240182B2/en
Publication of JPH05305380A publication Critical patent/JPH05305380A/en
Application granted granted Critical
Publication of JP3240182B2 publication Critical patent/JP3240182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To carry out a warm forging at a low temperature and to use an oil bath as a heating means by improving the moldability of a Mg alloy base stock. CONSTITUTION:The Mg alloy base stock (forging material) is formed by extruding and after the base stock is immersed in an oil bath having a specific temperature, it is warm-forged. The moldability of the base stock is remarkably improving by rupturing the original rough forging organization of the base stock and the crystal grains are finely pulverized by the extrusion. By selecting a proper extruding ratio, for instance, 60% or more upsetting forging is available at the low temperature of 150 deg.C. Even when the oil bath is used as a heating means at the temperature, the Mg alloy base stock is not oxidized. The oil works as a lubricant when the base stock is warm forged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マグネシウム(以
下、Mgとする)合金製部材の製造方法に関し、特にM
g合金製部材を鍛造成形により得るための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnesium (hereinafter referred to as Mg) alloy member, and more particularly to M
It relates to a method for obtaining a g-alloy member by forging.

【0002】[0002]

【従来の技術】Mg合金は、実用化されている構造用金
属中もっとも軽量であり、比強度(耐力/比重)が大き
いという特性を有していることから、自動車、航空・宇
宙機器、その他の機械類の部品等に広く利用されてい
る。そして、Mg合金は、一般に冷間では塑性加工性が
悪いが、温度を上げると加工性が著しく向上するので、
鍛造成形によりこのような部品を製造する場合、温間鍛
造に依ることが多い。
2. Description of the Related Art Mg alloys are the lightest structural metals in practical use and have the characteristics of high specific strength (proof strength / specific gravity). Widely used for parts of machinery. And, although the Mg alloy generally has poor plastic workability in the cold, the workability is remarkably improved when the temperature is raised.
When manufacturing such parts by forging, warm forging is often used.

【0003】たとえば、汎用性の高い鍛造用Mg合金で
あるAZ80(ASTM規格、Al:7.8〜9.2
%、Zn:0.2〜0.8%、Mn:0.12〜0.3
5%、残部:Mg及び不純物)では、鍛造素材を電気又
はガス炉内で370℃〜420℃に加熱し、これを鍛造
成形する方法がとられている。加熱温度を従来このよう
に設定しているのは、この温度範囲以下であると十分な
成形性が得られず、逆に、この温度を超えると素材の表
面の酸化が激しくなるからである。
For example, AZ80 (ASTM standard, Al: 7.8 to 9.2) which is a highly versatile Mg alloy for forging.
%, Zn: 0.2 to 0.8%, Mn: 0.12 to 0.3
With 5% and the balance: Mg and impurities), a method of heating the forging material to 370 ° C. to 420 ° C. in an electric or gas furnace and forging it is adopted. The heating temperature is conventionally set in this way, because if the heating temperature is lower than this temperature range, sufficient moldability cannot be obtained, and conversely, if the heating temperature is higher than this range, the surface of the material is oxidized significantly.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、伝熱媒体がガスであるためMg合金素材の昇温に
時間がかかりすぎるという問題があり、また、かなり
の高温に長時間曝されるため、やはり素材表面の酸化が
避けられないこと、さらに、昇温の間に析出物が母相
中に固溶し、鍛造成形後の製品が耐食性に劣るT4組織
(溶体化組織)になってしまうという問題があった。
However, this method has a problem that it takes too much time to raise the temperature of the Mg alloy material because the heat transfer medium is gas, and it is exposed to a considerably high temperature for a long time. Therefore, oxidation of the surface of the material is unavoidable, moreover, the precipitates form a solid solution in the matrix during the temperature rise, and the product after forging has a T4 structure (solution structure) with poor corrosion resistance. There was a problem that it would end up.

【0005】上記の問題点については、たとえばMg
合金素材を加熱されたソルトバス等の液体中に浸漬する
ことにより昇温時間を短縮することが一応考えられる
が、Mg合金はソルトバス中ではきわめて酸化されやす
く、現在のところ上記温度範囲に加熱するための適当な
加熱媒体(液体)は見いだされていない。また、上記
の問題については、真空中で加熱ー成形することにより
酸化を防止することも試みられたが、生産性がきわめて
悪いという欠点がある。
Regarding the above problems, for example, Mg
It is conceivable that the temperature rise time can be shortened by immersing the alloy material in a liquid such as a heated salt bath, but Mg alloys are extremely susceptible to oxidation in the salt bath, and at present they are heated to the above temperature range. No suitable heating medium (liquid) has been found to do so. Regarding the above problems, it has been attempted to prevent oxidation by heating and molding in vacuum, but there is a drawback that productivity is extremely poor.

【0006】一方、Mg合金製部材が部品として様々な
分野に多量に使用されるようになった結果、切削又は研
削作業による切粉も多量に排出されるようになった。こ
れを再利用するための手段としては、たとえば、ホット
プレスを利用した焼結部品の製造(特開昭55ー389
63号公報参照)が挙げられるが、Mg合金切粉の場
合、ホットプレスのみでは十分に強度が上がらない。し
たがって、やむをえず焼却するか、土中に埋めて廃棄す
るか、あるいは集めて再溶融しており、資源及びエネル
ギーの浪費であるばかりでなく、危険でもあり、現在問
題視されつつある。
On the other hand, Mg alloy members have come to be used in large amounts as various parts in various fields, and as a result, a large amount of chips generated by cutting or grinding operations have been discharged. As a means for reusing this, for example, production of sintered parts using hot pressing (Japanese Patent Laid-Open No. 55-389).
No. 63), but in the case of Mg alloy chips, hot pressing alone does not sufficiently increase the strength. Therefore, it is unavoidably incinerated, buried in the soil and disposed of, or collected and remelted, which is not only a waste of resources and energy but also a danger, which is now being regarded as a problem.

【0007】[0007]

【課題を解決するための手段】本発明に関わるMg合金
製部材の製造方法は、このような従来の様々な問題点を
解決するためなされたもので、Mg合金素材を押し出し
成形し、次に所定温度の液体中に浸漬して加熱したの
ち、温間鍛造成形することを特徴とするものである。こ
の温間鍛造は、従来の温間鍛造温度370℃〜420℃
に比べ相当低い温度でも可能であり、たとえば150℃
程度が選ばれる。
The method of manufacturing a Mg alloy member according to the present invention is made to solve various problems in the prior art, and a Mg alloy material is extruded and then formed. It is characterized in that it is immersed in a liquid at a predetermined temperature, heated, and then warm forged. This warm forging has a conventional warm forging temperature of 370 ° C to 420 ° C.
It is possible to use much lower temperature than, for example, 150 ℃
The degree is chosen.

【0008】Mg合金素材を浸漬加熱するための液体
は、Mg合金を酸化することなく温間鍛造温度に加熱す
ることのできるものであれば何でもよいが、特にエンジ
ンオイル等の潤滑性を有するオイルが好ましい。また、
本発明に特に適するMg合金はいわゆるMg合金展伸材
と称するもので、強度を向上させるためAlを2〜11
%程度含有する。さらに、本発明に関わるMg合金製部
材の製造方法においては、Mg合金素材としてMg合金
切粉の圧縮成形体を使用することもできる。
The liquid for immersion heating of the Mg alloy material may be any liquid as long as it can be heated to the warm forging temperature without oxidizing the Mg alloy, but especially oil having lubricity such as engine oil. Is preferred. Also,
A Mg alloy particularly suitable for the present invention is a so-called Mg alloy wrought material.
Contains about%. Furthermore, in the method for manufacturing a Mg alloy member according to the present invention, a compression molded body of Mg alloy chips may be used as the Mg alloy material.

【0009】[0009]

【作用】さて、Mg合金の成形性は、のちほど実施例に
て具体的に示すように、結晶粒の大きさと密接な関係を
有することが分かった。そして、本発明に関わるMg合
金製部材の製造方法に従い、温間鍛造前に押し出し成形
し、Mg合金素材の当初の粗い鋳造組織を破壊し結晶粒
を微細化することにより、その鍛造成形性を顕著に向上
させることができる。
It has been found that the formability of the Mg alloy has a close relationship with the size of crystal grains, as will be shown later in the Examples. Then, according to the method for manufacturing a Mg alloy member according to the present invention, extrusion molding is performed before warm forging, and the initial rough casting structure of the Mg alloy material is destroyed to refine the crystal grains, thereby improving the forgeability. It can be significantly improved.

【0010】押し出し成形は、鋳造素材をだいたい20
0℃〜420℃の範囲内に加熱して行えばよく、その範
囲内では押し出し成形の効果の温度依存性はほとんどな
い。押し出し成形の温度を上記のように設定するのは、
200℃未満では押し出し成形が困難であり、420℃
を超えるとMg合金素材の表面の酸化が激しくなるとと
もに、再結晶により押し出し成形の効果が失われるから
である。また、押し出し成形の押し出し比は、のちほど
実施例において具体的に説明するが、鋳造素材の当初の
結晶粒の大きさ等を考慮し、温間鍛造温度において必要
な鍛造成形性が確保されるよう、適宜選択される。
In extrusion molding, the casting material is roughly 20
It suffices if heating is performed within the range of 0 ° C to 420 ° C, and within that range, the effect of extrusion molding has little temperature dependence. To set the extrusion temperature as above,
Extrusion molding is difficult at less than 200 ° C, 420 ° C
If it exceeds, the surface of the Mg alloy material will be strongly oxidized and the effect of extrusion will be lost due to recrystallization. Further, the extrusion ratio of the extrusion molding will be specifically described later in Examples, but in consideration of the initial crystal grain size of the casting material, etc., the necessary forgeability is ensured at the warm forging temperature. , Appropriately selected.

【0011】このような押し出し成形を温間鍛造前にお
こなうことにより、従来では到底考えられない、たとえ
ば150℃という低い温度での鍛造成形が可能となっ
た。そして、低い温度での鍛造成形が可能となったこと
により、本発明においては、従来例についての上記の
問題点を避けることができる。また、同じく低い温度で
の鍛造成形が可能となったことにより、上記の問題
点も解決された。すなわち、さきに述べたようにMg合
金はきわめて酸化されやすいため、これを従来例のごと
く370℃〜420℃の高温に加熱する液体媒体は、現
在のところ存在しないといってよいが、本発明において
はたとえば150℃程度の加熱でよいので、市販のエン
ジンオイル等を使用し、Mg合金表面に酸化を生じさせ
ることなく加熱することができる。
By carrying out such extrusion molding before warm forging, it becomes possible to perform forging at a temperature as low as 150 ° C., which has never been considered in the past. Since the forging can be performed at a low temperature, the above-mentioned problems of the conventional example can be avoided in the present invention. Further, since the forging molding can be performed at the same low temperature, the above problems have been solved. That is, as described above, since the Mg alloy is extremely easily oxidized, it can be said that there is no liquid medium for heating it to a high temperature of 370 ° C. to 420 ° C. as in the conventional example at present, but the present invention In this case, for example, heating at about 150 ° C. is sufficient, so that commercially available engine oil or the like can be used and heating can be performed without causing oxidation on the surface of the Mg alloy.

【0012】そして、エンジンオイル等の潤滑性液体を
加熱媒体として使用したときは、Mg合金素材の表面全
体に潤滑性液体が付着し、これが次の温間鍛造時の潤滑
材として機能することになる。むろん、潤滑性液体媒体
はオイルに限らず、ワックスやパラフィン等、Mgを腐
食せず、温間鍛造温度に加熱することができ、潤滑作用
があるものであれば何でもよく、あるいは2硫化モリブ
デンや黒鉛等の固体潤滑材を分散含有するものでもよ
い。
When a lubricating liquid such as engine oil is used as a heating medium, the lubricating liquid adheres to the entire surface of the Mg alloy material, which functions as a lubricant during the next warm forging. Become. Of course, the lubricating liquid medium is not limited to oil, and may be wax, paraffin or the like that does not corrode Mg and can be heated to the warm forging temperature and has any lubricating effect, or molybdenum disulfide or It may also contain a solid lubricant such as graphite dispersed therein.

【0013】さらに、本発明においては、低い温度での
鍛造成形が可能となったことにより、成形用金型の寿命
が延びるという副次的作用もある。
Further, the present invention has a secondary effect that the life of the molding die is extended because the forging molding can be performed at a low temperature.

【0014】ところで、本発明においては、Mg合金素
材としてMg合金切粉の圧縮成形体を使用することがで
きる。すなわち、Mg合金切粉をホットプレスにより圧
縮成形体とし、これを押し出し成形するのである。切粉
の圧縮成形体は、もともと鋳造材と比べて結晶粒径が小
さいのであるが、押し出し成形を経ることにより一層微
細化されて鍛造成形性が向上する。しかも、押し出し成
形には、圧縮成形体をさらに強固に固める作用があるの
で、強度の高い圧縮成形体を得ることができる。なお、
本発明に使用することのできるMg合金切粉としては、
部品の切削加工や研削加工により排出される切粉のみな
らず、スクラップあるいは使用済み廃棄物等をクラッシ
ャー等によりチップ状の細片としたものであってもよ
い。
By the way, in the present invention, a compression molded body of Mg alloy chips can be used as the Mg alloy material. That is, the Mg alloy chips are formed into a compression molded body by hot pressing, and this is extruded. Originally, the compression molding of chips has a smaller crystal grain size than that of the cast material, but it is further miniaturized by extrusion molding and the forgeability is improved. Moreover, since the extrusion molding has an action of further solidifying the compression molded body, a compression molded body having high strength can be obtained. In addition,
The Mg alloy chips that can be used in the present invention include:
Not only chips discharged by cutting or grinding of parts, but also scrap or used waste may be formed into chip-like pieces by a crusher or the like.

【0015】[0015]

【実施例】次に図1ないし図4を参照して、本発明をよ
り具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically with reference to FIGS.

【0016】まず、図3は、350℃でおこなった据え
込み性試験の結果であり、AZ80Mg合金鋳造材の平
均結晶粒径と、限界据え込み率の関係を示す図である。
ここで、限界据え込み率とは、図4に示すように上下ダ
イ1、2間で円柱状試験片3を軸方向に据え込み、試験
片側面に肉眼観察できる微小割れ4が生じたときの高さ
減少率をいい、この率が高いと素材の鍛造成形性が良い
ということになる。限界据え込み率は、試験片の当初の
高さをH、微小割れが生じたときの高さをH1とすれ
ば、100×(H−H1)/H(%)で表される。
First, FIG. 3 shows the results of an upsetting test conducted at 350 ° C. and is a diagram showing the relationship between the average grain size of an AZ80Mg alloy cast material and the critical upsetting rate.
Here, the limit upsetting ratio means that when the cylindrical test piece 3 is axially installed between the upper and lower dies 1 and 2 as shown in FIG. This is the rate of reduction in height. If this rate is high, it means that the material has good forgeability. The limit upsetting rate is expressed by 100 × (H−H1) / H (%), where H is the initial height of the test piece and H1 is the height when microcracks occur.

【0017】図3に示すように、Mg合金の平均結晶粒
径が小さいほど、限界据え込み率が高く成形性がよい。
そして、両者の間にはほぼリニアな関係が成立する。と
ころで、各種部品に適用される鍛造用素材には、通常少
なくとも限界据え込み率60%以上の成形性が必要とさ
れる。350℃において鍛造成形する場合、その条件を
満たすのは平均結晶粒径が約250μm以下のときであ
るが、鍛造用素材として通常使用される大型のMg合金
鋳造材は、平均結晶粒径が300μm以上であることが
多く、限界据え込み率60%以上という条件を満たして
いない。したがって、そのような素材に鍛造成形を施す
のであれば、350℃では割れが生ずる危険があり、成
形性を向上させるため350℃を超える温度に加熱し鍛
造成形する必要がある。逆に、小さい平均結晶粒径を有
する鍛造用素材は限界据え込み率が高く成形性がよいの
で、より低い温度であっても所定の鍛造成形をすること
ができることになる。
As shown in FIG. 3, the smaller the average crystal grain size of the Mg alloy, the higher the critical upsetting ratio and the better the formability.
Then, a substantially linear relationship is established between the two. By the way, a forging material applied to various parts is usually required to have a formability of at least a critical upsetting ratio of 60% or more. In the case of forging at 350 ° C., the condition is satisfied when the average crystal grain size is about 250 μm or less, but the large-sized Mg alloy cast material usually used as a forging material has an average crystal grain size of 300 μm. The above is often the case, and the condition of the critical upsetting rate of 60% or more is not satisfied. Therefore, if such a material is subjected to forging, there is a risk of cracking at 350 ° C, and it is necessary to heat to a temperature of higher than 350 ° C for forging to improve the formability. On the contrary, since the forging material having a small average crystal grain size has a high limit upsetting rate and good moldability, it is possible to perform a predetermined forging even at a lower temperature.

【0018】本発明においては、鍛造成形の前に鋳造材
に対し押し出し成形を施し、結晶粒を微細化することに
より限界据え込み率、すなわち成形性を向上させ、より
低い温度であっても所定の鍛造成形ができるようにす
る。そこで、本実施例では、Mg合金に対する押し出し
成形の効果を確認するため、次のような試験をおこなっ
た(図1参照)。すなわち、(1)平均結晶粒径の異な
るAZ80Mg合金金型鋳造材(300mmφ)を用意
し、(2)350℃において種々の押し出し比で押し出
し成形し、試験片に成形した。次に、(3)試験片を1
50℃に加熱したオイルバス中に浸漬した。使用したオ
イルはエンジンオイル(商品名、マツダゴールデンアロ
ー)であり、オイルバスの加熱は投げ込みヒーターによ
りおこなった。最後に、(4)試験片をオイルバスから
引き上げ、直ちに150℃において据え込み性試験をお
こなった。
In the present invention, the cast material is extruded prior to forging to improve the critical upsetting rate, that is, the formability, by refining the crystal grains, so that even at a lower temperature, Allows forging and molding. Therefore, in this example, the following test was performed in order to confirm the effect of extrusion forming on the Mg alloy (see FIG. 1). That is, (1) AZ80Mg alloy die casting materials having different average crystal grain sizes (300 mmφ) were prepared, and (2) extrusion molding was performed at 350 ° C. at various extrusion ratios to form test pieces. Next, (3) test piece 1
It was immersed in an oil bath heated to 50 ° C. The oil used was engine oil (trade name, Mazda Golden Arrow), and the oil bath was heated by a throw-in heater. Finally, (4) the test piece was pulled up from the oil bath and immediately subjected to an upsetting test at 150 ° C.

【0019】図2は、その試験結果を示し、横軸に鋳造
材の当初の平均結晶粒径、縦軸に押し出し比をとり、1
50℃で60%の限界据え込み率を達成する点をプロッ
トし、直線で結んでいる。また、直線のハッチングした
側が、150℃で60%以上の限界据え込み率を示す領
域である。
FIG. 2 shows the test results, where the horizontal axis represents the initial average grain size of the cast material and the vertical axis represents the extrusion ratio.
The points at which the critical upsetting rate of 60% is achieved at 50 ° C are plotted and connected by a straight line. Further, the hatched side of the straight line is a region showing a critical upsetting ratio of 60% or more at 150 ° C.

【0020】このように、平均結晶粒径の大きい鋳造材
であっても、まえもって押し出し成形を施すことによ
り、150℃というきわめて低い温度において必要な成
形性を与えることができた。たとえば、当初の平均結晶
粒径が300μmの鋳造材を使用する場合、押し出し成
形を施さないときは350℃においても限界据え込み率
は60%に満たない(図3参照)が、押し出し比を約3
以上にとることにより、押し出し後の素材の限界据え込
み率を、150℃において60%以上とすることができ
る。
As described above, even a cast material having a large average crystal grain size could be provided with necessary moldability at an extremely low temperature of 150 ° C. by subjecting it to extrusion molding in advance. For example, when a cast material with an initial average crystal grain size of 300 μm is used, the limit upsetting ratio is less than 60% even at 350 ° C. without extrusion molding (see FIG. 3), but the extrusion ratio is about Three
By taking the above, the limit upsetting rate of the material after extrusion can be 60% or more at 150 ° C.

【0021】図2に示されるように、鋳造材の当初の平
均結晶粒径が大きいほど、押し出し比を大きくとらなく
てはならない。逆に、平均結晶粒径が小さいときは、押
し出し比を小さくすることができるが、いずれにして
も、元の鋳造材の平均結晶粒径によって必要な押し出し
比が決ることになる。しかし、平均結晶粒径が120μ
m以下のAZ80Mg合金鋳造材では、押し出し成形な
しでも、150℃において限界据え込み率60%以上の
成形性を有する。
As shown in FIG. 2, the larger the initial average crystal grain size of the cast material, the larger the extrusion ratio must be. On the contrary, when the average crystal grain size is small, the extrusion ratio can be reduced, but in any case, the required extrusion ratio is determined by the average crystal grain size of the original casting material. However, the average grain size is 120μ
The AZ80Mg alloy cast material of m or less has a formability with a critical upsetting ratio of 60% or more at 150 ° C even without extrusion molding.

【0022】なお、図2は150℃における据え込み性
試験の結果を示すものであり、これより高い温度で試験
をおこなうときは、図中の直線は押し出し比の低い側に
ずれ、低い温度でおこなうときは、逆に押し出し比の高
い側にずれることはいうまでもない。したがって、たと
えばMg合金鋳造材の当初の平均結晶粒径が同じとした
とき、より高い温間鍛造温度を選択するのであれば、押
し出し比を小さくすることができ、より低い温間鍛造温
度を選択するのであれば、押し出し比を大きくしなくて
はならないことになる。
FIG. 2 shows the results of the upsetting test at 150 ° C. When the test is carried out at a temperature higher than this, the straight line in the figure shifts to the lower extrusion ratio side, and at the lower temperature. Needless to say, when performing, it shifts to the side with a higher extrusion ratio. Therefore, for example, when the initial average crystal grain size of the Mg alloy cast material is the same, if a higher warm forging temperature is selected, the extrusion ratio can be reduced and a lower warm forging temperature can be selected. If so, the extrusion ratio must be increased.

【0023】本発明によれば、押し出し成形により成形
性が向上するため、鍛造温度設定の自由度は従来に比べ
相当大きくなる。たとえば、鍛造温度の上限は、液体媒
体中での加熱による酸化が少なく、しかも組織変化(従
来例の問題点)が起こらない範囲内という観点から、
下限は、押し出し成形により所定の成形性が得られる範
囲内という観点から決められ、実際の鍛造温度はそのな
かで適宜選択される。
According to the present invention, since the moldability is improved by the extrusion molding, the degree of freedom in setting the forging temperature becomes considerably larger than that in the conventional case. For example, from the viewpoint that the upper limit of the forging temperature is within a range in which the oxidation due to heating in a liquid medium is small and the structure change (problem of the conventional example) does not occur,
The lower limit is determined from the viewpoint that a predetermined moldability can be obtained by extrusion molding, and the actual forging temperature is appropriately selected from that range.

【0024】ところで、上記実施例に示したのは、AZ
80Mg合金鋳造材に対するものであるが、他のMg合
金材、またMg合金切粉の圧縮成形体に対しても、鍛造
成形の前に押し出し成形をおこなうことにより、同様の
効果を得ることができる。ただし、切粉の圧縮成形体の
場合は、押し出し成形は圧縮成形体をさらに強固に固め
る作用も兼ねるので、押し出し比4以上とするのが好ま
しい。
By the way, what is shown in the above embodiment is AZ
Although it is for 80Mg alloy cast material, the same effect can be obtained for other Mg alloy materials and also for compression molded bodies of Mg alloy chips by performing extrusion molding before forging. .. However, in the case of a compression molding of chips, the extrusion ratio also has the function of further solidifying the compression molding, so that the extrusion ratio is preferably 4 or more.

【0025】[0025]

【発明の効果】以上述べた通り、本発明においては、温
間鍛造成形の前に押し出し成形をおこなうことにより、
Mg合金素材の成形性を大きく向上させることができる
ので、従来に比べ相当低い温度で温間鍛造成形をおこな
うことができる。したがって、加熱中に合金素材が組織
変化を起こすことがなく、また、温度が低いので素材の
表面がほとんど酸化されない。しかも、加熱媒体として
液体を使用できるので、鍛造成形温度に昇温する時間を
大幅に短縮することができる。そして、加熱媒体として
エンジンオイル等の潤滑性オイルを使用するときは、酸
化防止になるだけでなく、オイルが温間鍛造時の潤滑材
として機能することになる。さらに、鍛造温度を低くす
ることができるので、金型の寿命が延びるという効果も
ある。
As described above, in the present invention, by performing extrusion molding before warm forging molding,
Since the formability of the Mg alloy material can be greatly improved, warm forging can be performed at a temperature considerably lower than the conventional temperature. Therefore, the alloy material does not change its structure during heating, and since the temperature is low, the surface of the material is hardly oxidized. Moreover, since a liquid can be used as the heating medium, the time required to raise the temperature to the forging temperature can be greatly shortened. When a lubricating oil such as an engine oil is used as the heating medium, not only does it prevent oxidation, but the oil functions as a lubricant during warm forging. Further, since the forging temperature can be lowered, there is an effect that the life of the die is extended.

【0026】また、本発明は切粉の圧縮成形体に対して
も適用することができるので、従来有効な処理手段のな
かったMg合金切粉、スクラップあるいは使用済み廃棄
物等を、簡単な手段で再生利用することができるという
効果もある。
Further, since the present invention can be applied to a compression molding of chips, Mg alloy chips, scraps, used wastes, etc., which have not had effective treatment means in the past, can be simply treated. It also has the effect that it can be recycled.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の工程を説明するためのフロー図であ
る。
FIG. 1 is a flow chart for explaining a process of an example.

【図2】150℃で60%以上の限界据え込み率を達成
する押し出し比と、結晶粒径の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the crystal grain size and the extrusion ratio that achieves a critical upsetting ratio of 60% or more at 150 ° C.

【図3】350℃における限界据え込み率と平均結晶粒
径の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a critical upsetting rate at 350 ° C. and an average crystal grain size.

【図4】据え込み性試験を説明する図である。FIG. 4 is a diagram illustrating an upsetting test.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム合金素材を押し出し成形
し、次に所定温度の液体中に浸漬して加熱したのち、温
間鍛造成形することを特徴とするマグネシウム合金製部
材の製造方法。
1. A method for producing a magnesium alloy member, which comprises extruding a magnesium alloy material, immersing it in a liquid at a predetermined temperature, heating it, and then warm forging it.
【請求項2】 オイルバスに浸漬して加熱することを特
徴とする請求項1に記載のマグネシウム合金製部材の製
造方法。
2. The method for producing a magnesium alloy member according to claim 1, wherein the member is immersed in an oil bath and heated.
【請求項3】 マグネシウム合金がアルミニウムを含有
することを特徴とする請求項1又は2に記載のマグネシ
ウム合金製部材の製造方法。
3. The method for producing a magnesium alloy member according to claim 1, wherein the magnesium alloy contains aluminum.
【請求項4】 マグネシウム合金素材がマグネシウム合
金切粉の圧縮成形体であることを特徴とする請求項1な
いし3のいずれかに記載のマグネシウム合金製部材の製
造方法。
4. The method for manufacturing a magnesium alloy member according to claim 1, wherein the magnesium alloy material is a compression molded body of magnesium alloy chips.
JP13625492A 1992-04-28 1992-04-28 Manufacturing method of magnesium alloy member Expired - Fee Related JP3240182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13625492A JP3240182B2 (en) 1992-04-28 1992-04-28 Manufacturing method of magnesium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13625492A JP3240182B2 (en) 1992-04-28 1992-04-28 Manufacturing method of magnesium alloy member

Publications (2)

Publication Number Publication Date
JPH05305380A true JPH05305380A (en) 1993-11-19
JP3240182B2 JP3240182B2 (en) 2001-12-17

Family

ID=15170888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13625492A Expired - Fee Related JP3240182B2 (en) 1992-04-28 1992-04-28 Manufacturing method of magnesium alloy member

Country Status (1)

Country Link
JP (1) JP3240182B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298452C (en) * 2005-07-25 2007-02-07 西安理工大学 Continuously extruding method of magnesium alloy silk material
JP2008195984A (en) * 2007-02-09 2008-08-28 Japan Steel Works Ltd:The Method for producing high strength metallic material
US7914902B2 (en) * 2007-11-06 2011-03-29 Jiing Tung Tec. Metal Co., Ltd. Thermal module
JP2011200906A (en) * 2010-03-25 2011-10-13 Kagoshima Prefecture Method and device for partial heating and heading small diameter bar
JP2013215773A (en) * 2012-04-09 2013-10-24 Nippon Parkerizing Co Ltd Evaluation method for lubricating film used for plastic working, test piece evaluated with the same, and evaluation device for lubricating film used for plastic working
CN104759847A (en) * 2015-03-31 2015-07-08 常州大学 Thermal extruding forming method and device for chain wheel
CN108796406A (en) * 2018-04-28 2018-11-13 哈尔滨工业大学(威海) A kind of method that upsetting squeeze prepares high-strength magnesium or magnesium alloy
KR20190066380A (en) * 2017-12-05 2019-06-13 주식회사 포스코 Method and apparatus for processing magnesium alloy material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910850A (en) * 1972-05-31 1974-01-30
JPS5213551A (en) * 1975-07-23 1977-02-01 Komatsu Mfg Co Ltd Plastic material press molding machine
JPS60173898A (en) * 1984-02-20 1985-09-07 株式会社東芝 Circuit board
JPS63282232A (en) * 1987-05-15 1988-11-18 Showa Denko Kk High-strength magnesium alloy for plastic working and its production
JPH01279701A (en) * 1988-04-30 1989-11-10 Mazda Motor Corp Production of forged member
JPH0250902A (en) * 1988-05-12 1990-02-20 Sumitomo Electric Ind Ltd Method for forming aluminum alloy for product having large diameter
JPH02101125A (en) * 1988-10-07 1990-04-12 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy excellent in tensile strength and fatigue strength
JPH0293036U (en) * 1989-01-11 1990-07-24
JPH02108536U (en) * 1989-02-10 1990-08-29
JPH0397824A (en) * 1989-08-24 1991-04-23 Pechiney Rech Group Interet Economique Method for manufacture of magnesium alloy and alloy obtained by said method
JPH03294036A (en) * 1990-04-11 1991-12-25 Kobe Steel Ltd Manufacture of high strength magnesium alloy material
JPH05104188A (en) * 1991-10-17 1993-04-27 Toyota Motor Corp Manufacture of fibrous reinforced metal composite-made valve

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910850A (en) * 1972-05-31 1974-01-30
JPS5213551A (en) * 1975-07-23 1977-02-01 Komatsu Mfg Co Ltd Plastic material press molding machine
JPS60173898A (en) * 1984-02-20 1985-09-07 株式会社東芝 Circuit board
JPS63282232A (en) * 1987-05-15 1988-11-18 Showa Denko Kk High-strength magnesium alloy for plastic working and its production
JPH01279701A (en) * 1988-04-30 1989-11-10 Mazda Motor Corp Production of forged member
JPH0250902A (en) * 1988-05-12 1990-02-20 Sumitomo Electric Ind Ltd Method for forming aluminum alloy for product having large diameter
JPH02101125A (en) * 1988-10-07 1990-04-12 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy excellent in tensile strength and fatigue strength
JPH0293036U (en) * 1989-01-11 1990-07-24
JPH02108536U (en) * 1989-02-10 1990-08-29
JPH0397824A (en) * 1989-08-24 1991-04-23 Pechiney Rech Group Interet Economique Method for manufacture of magnesium alloy and alloy obtained by said method
JPH03294036A (en) * 1990-04-11 1991-12-25 Kobe Steel Ltd Manufacture of high strength magnesium alloy material
JPH05104188A (en) * 1991-10-17 1993-04-27 Toyota Motor Corp Manufacture of fibrous reinforced metal composite-made valve

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298452C (en) * 2005-07-25 2007-02-07 西安理工大学 Continuously extruding method of magnesium alloy silk material
JP2008195984A (en) * 2007-02-09 2008-08-28 Japan Steel Works Ltd:The Method for producing high strength metallic material
JP4693007B2 (en) * 2007-02-09 2011-06-01 株式会社日本製鋼所 Manufacturing method of high strength metal material
US7914902B2 (en) * 2007-11-06 2011-03-29 Jiing Tung Tec. Metal Co., Ltd. Thermal module
JP2011200906A (en) * 2010-03-25 2011-10-13 Kagoshima Prefecture Method and device for partial heating and heading small diameter bar
JP2013215773A (en) * 2012-04-09 2013-10-24 Nippon Parkerizing Co Ltd Evaluation method for lubricating film used for plastic working, test piece evaluated with the same, and evaluation device for lubricating film used for plastic working
CN104759847A (en) * 2015-03-31 2015-07-08 常州大学 Thermal extruding forming method and device for chain wheel
KR20190066380A (en) * 2017-12-05 2019-06-13 주식회사 포스코 Method and apparatus for processing magnesium alloy material
CN108796406A (en) * 2018-04-28 2018-11-13 哈尔滨工业大学(威海) A kind of method that upsetting squeeze prepares high-strength magnesium or magnesium alloy

Also Published As

Publication number Publication date
JP3240182B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
EP0090253B1 (en) Fine grained metal composition
CN1969051A (en) Middle alloy for copper alloy casting and its casting method
JP2007002318A (en) Method for producing superplastic magnesium alloy from grain boundary precipitation type magnesium alloy scrap
JPH05305380A (en) Manufacture of magnesium alloy member
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
US4555272A (en) Beta copper base alloy adapted to be formed as a semi-solid metal slurry and a process for making same
EP0180144B1 (en) Dispersion strengthened aluminum alloys
CN110983129A (en) Integrated process regulation and control method for improving automobile aluminum alloy plate flanging performance
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP4666659B2 (en) Magnesium alloy forged thin casing and method for manufacturing the same
CN114150237B (en) High-toughness structural part precision forming aluminum alloy material suitable for new energy automobile and preparation method thereof
JPH08176768A (en) Wear resistant aluminum member and production thereof
JP3982780B2 (en) Method for manufacturing forged thin-walled casing made of magnesium alloy
CA2371318C (en) Aimgsi casting alloy
JPH0796692B2 (en) Alloys with improved resistance to fatigue crack growth.
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPS6014828B2 (en) Manufacturing method for rolled semi-finished products
JP2003136198A (en) Method of manufacturing half-melted molding billet of aluminum alloy for transportation machine
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP4332671B2 (en) Highly corrosion-resistant magnesium alloy from cutting waste and manufacturing method thereof
JPH1177214A (en) Magnesium alloy forged thin-walled parts, and its manufacture
US6004409A (en) Production of high quality machinable tolling plate using brazing sheet scrap
EP0139168A1 (en) Fine grained metal composition
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP2003138357A (en) Method of producing precast-formed billet of aluminum alloy for transportation apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees