JPS63282221A - Manufacture of composite sintered material - Google Patents

Manufacture of composite sintered material

Info

Publication number
JPS63282221A
JPS63282221A JP11682087A JP11682087A JPS63282221A JP S63282221 A JPS63282221 A JP S63282221A JP 11682087 A JP11682087 A JP 11682087A JP 11682087 A JP11682087 A JP 11682087A JP S63282221 A JPS63282221 A JP S63282221A
Authority
JP
Japan
Prior art keywords
graphite
powder
pressure
wear resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11682087A
Other languages
Japanese (ja)
Inventor
Yasuo Kamitsuma
上妻 康夫
Kyo Matsuzaka
松坂 矯
Atsushi Kikuchi
淳 菊池
Yoshihiro Kobayashi
良弘 小林
Isao Ishi
伊師 功
Hiroyuki Endo
弘之 遠藤
Tamio Takada
民夫 高田
Hideo Yomo
英雄 四方
Takao Abe
阿部 孝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Hitachi Powdered Metals Co Ltd
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Powdered Metals Co Ltd, Hitachi Koki Co Ltd filed Critical Hitachi Ltd
Priority to JP11682087A priority Critical patent/JPS63282221A/en
Publication of JPS63282221A publication Critical patent/JPS63282221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a Cu-base composite material excellent in wear resistance even in lubricant free state, by mixing a graphite powder of a specific grain size whose surface is plated with Cu with a metallic powder mixture composed principally of Cu powder and by subjecting the resulting powder mixture to compacting, to sintering, and further to recompacting. CONSTITUTION:A uniform powder mixture consisting of, by weight, 3-20% of graphite powder which is coated with Cu by electroplating or electroless plating and in which aspect ratio and grain size are regulated to 4-8 and 50-400mum, respectively, and respective powders of Sn, Pb, Zn, Bi and Fe and the balance Cu powder is compacted at 4-7ton/cm<2> pressure into the prescribed shape. The resulting green compact is sintered at 700-850 deg.C, and the sintered compact is recompacted under 4-7ton/cm<2> pressure again. By this method, the Cu-base composite material in which graphite acts as solid lubricant and, as a result, which has superior wear resistance even in lubricant free state and is suitable for bearing, etc., can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無潤滑用ポンプ、無潤滑用各種軸受などの潤滑
油を導入することが困難で、かつ、耐摩耗性を必要とさ
れる摩擦機構部材として使用できる耐摩耗性に優れたC
u基複合材料、および、その製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to friction-free applications where it is difficult to introduce lubricating oil and which require wear resistance, such as non-lubricated pumps and various types of non-lubricated bearings. C with excellent wear resistance that can be used as a mechanical component
The present invention relates to a u-based composite material and a method for producing the same.

〔従来の技術〕[Conventional technology]

無潤滑で動作する機構において、たとえば、潤滑油が導
入ができない各種軸受材として自己潤滑材料がある。こ
れら材料としては、例えば、特開昭51−45603号
、特開昭56−13451号、特開昭56−16973
9号公報などがあり、固体潤滑剤である黒鉛や二硫化モ
リブテンを含んだ耐摩耗材である。
In mechanisms that operate without lubrication, for example, there are self-lubricating materials as various bearing materials into which lubricating oil cannot be introduced. Examples of these materials include JP-A-51-45603, JP-A-56-13451, and JP-A-56-16973.
No. 9, etc., and is a wear-resistant material containing graphite and molybdenum disulfide, which are solid lubricants.

しかし、固体潤滑剤である黒鉛粉粒子のアスペクト比と
摩耗特性の関係による最適耐摩耗焼結材料の製造法につ
いては、まだ、検討並びに考慮がされていなかった。
However, the manufacturing method of an optimal wear-resistant sintered material based on the relationship between the aspect ratio of graphite powder particles, which is a solid lubricant, and wear characteristics has not been studied or considered yet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

また、上記従来技術では無潤滑で動作させると過大な摩
擦熱の発生により固体潤滑剤である二硫化モリブテンが
変質し摩耗特性が不安定となる問題があった。
Further, in the conventional technology described above, when operated without lubrication, the molybdenum disulfide, which is a solid lubricant, changes in quality due to generation of excessive frictional heat, resulting in unstable wear characteristics.

本発明の目的は無潤滑下でも十分安定である黒鉛を固体
潤滑剤として含む耐摩耗性の優れた焼結材料の製造方法
を提供することにある。
An object of the present invention is to provide a method for producing a sintered material with excellent wear resistance that contains graphite as a solid lubricant and is sufficiently stable even in the absence of lubrication.

〔問題点を解決するための手段〕[Means for solving problems]

発明者らは、耐摩耗特性に優れた焼結材料を研究した結
果、耐摩耗性効果を賦与する成分として固体潤滑性のあ
る黒鉛を用いその炭素粒子外面に焼結時のぬれ性を良好
にするため電気及び無電解CuめっきしてCuマトリッ
クス中に分散させ、さらに低融点で耐摩耗性を賦与する
鉛及び焼結体の全般的な機械的強度向上に寄与する錫、
亜鉛。
As a result of research into sintered materials with excellent wear resistance, the inventors used graphite, which has solid lubricating properties, as a component that imparts wear resistance to the outer surface of the carbon particles to ensure good wettability during sintering. Electrolytic and electroless Cu plating is applied to disperse Cu in the Cu matrix, and lead has a low melting point and provides wear resistance, and tin contributes to improving the overall mechanical strength of the sintered body.
zinc.

ビスマス、鉄を添加した複合材料とすることにより、前
記目的の耐摩耗性を満足する材料を得た。
By making a composite material containing bismuth and iron, a material that satisfies the above objective wear resistance was obtained.

また、その複合材料を得る方法として、重量比で3〜2
0重量%の粒子の大きさ50〜400μmのCuメッキ
した黒鉛粉末とSu、pb。
In addition, as a method for obtaining the composite material, a weight ratio of 3 to 2
0% by weight of Cu-plated graphite powder with a particle size of 50 to 400 μm, Su, and pb.

Zn、Bi、Feを適宜混合した組成及び残部Cuを均
一に混合したのち、4〜7ton/c!lfの圧力で成
形体を形成し、次いで、圧粉成形体を700〜850℃
の温度で焼結し、その後、4〜6ton/ aJの圧力
で再成形すること、及び添加する黒鉛粒子のアスペクト
比を4〜8の範囲に制御することによって耐摩耗性の優
れた焼結複合材料の製造法を開発することができた。
After uniformly mixing a composition in which Zn, Bi, and Fe are appropriately mixed and the remainder Cu, 4 to 7 ton/c! A compact is formed at a pressure of lf, and then the compact is heated to 700 to 850°C.
A sintered composite with excellent wear resistance is obtained by sintering at a temperature of We were able to develop a manufacturing method for the material.

〔作用〕[Effect]

本発明の複合材料の組成及び製造方法について前述の通
り限定した理由を説明する。
The reason for limiting the composition and manufacturing method of the composite material of the present invention as described above will be explained.

炭素は焼結の際、熱分解することなく、固体潤滑剤して
作用し、摩擦係数並びに凝着を低める効果をもつが3%
より少ない範囲では摩擦係数の低下並びに凝着に対する
効果が発揮できず酎がじり及び耐摩耗性が低下する。ま
た、20%を超えると、第4図に示す通り曲げ強度の低
下が著しく構造用材として適さない。このため、炭素量
を3〜20%の範囲にする必要がある。また、特に摩耗
係数が低く、かつ1曲げ強度が高い複合材料とするため
には、炭素の量を3〜6%にすることが望ましい。
During sintering, carbon acts as a solid lubricant without thermally decomposing, and has the effect of lowering the coefficient of friction and adhesion.
If the range is smaller, the effect of lowering the friction coefficient and preventing adhesion cannot be exhibited, resulting in a decrease in smearing and abrasion resistance. Moreover, if it exceeds 20%, the bending strength decreases significantly as shown in FIG. 4, making it unsuitable as a structural material. Therefore, it is necessary to keep the carbon content in the range of 3 to 20%. Furthermore, in order to obtain a composite material that has a particularly low coefficient of wear and high single bending strength, it is desirable that the amount of carbon be 3 to 6%.

また、この炭素成分は、黒鉛粉末、または、炭素繊維の
形で混合することができ、黒鉛粉の粒径は50〜400
μが混合しやすく、かつ、黒鉛の固体潤滑剤としての作
用が最も効果的に発揮される。
Further, this carbon component can be mixed in the form of graphite powder or carbon fiber, and the particle size of graphite powder is 50 to 400.
μ is easily mixed, and the action of graphite as a solid lubricant is most effectively exhibited.

炭素成分は焼結性とマトリックス成分(Cu)との結合
力(ぬれ性)を良くするため、黒鉛粉末。
The carbon component is graphite powder to improve sinterability and bonding strength (wettability) with the matrix component (Cu).

または、炭素繊維に電気めっき及び無電解めっき法によ
り、炭素成分表面にCuめつきによりCuを被覆するこ
とが必要である。
Alternatively, it is necessary to coat the carbon fiber surface with Cu by electroplating or electroless plating.

まず、−例として、S n −P b −Cの銅基焼結
材料の各粉末成分の作用についてみると、錫成分は焼結
体の全体的な機械強度向上に作用するが、第5図から明
らかなように、5%以下では効果がなく、15%以上で
は脆化を促進し強度が低下するため、上記のように、5
〜15%範囲が望ましく、特に、8〜10%が最も良好
な範囲を示す。
First, as an example, looking at the effects of each powder component of the Sn-Pb-C copper-based sintered material, the tin component acts to improve the overall mechanical strength of the sintered body, but as shown in Figure 5. As is clear from the above, if it is less than 5%, there is no effect, and if it is more than 15%, it promotes embrittlement and the strength decreases.
A range of 15% to 15% is desirable, and a range of 8 to 10% is particularly favorable.

鉛成分は低融点金属のため無潤滑中で鉛の皮覆をつくり
凝着を防止する成分であり、特に高負荷条件の場合、著
しく効果を発揮する。鉛量は2〜10%が適量であって
2%以下では馴み性、すなわち、塑性流動性を良くする
効果がなく、また、1o%以上では複合体の強度を低下
させるためである。また、3〜5%範囲では、組成分と
の相乗効果により最も摩擦係数、耐かじり性及び耐摩耗
性が最も良い結果を示す。
Since the lead component is a low melting point metal, it forms a lead skin without lubrication and prevents adhesion, and is particularly effective under high load conditions. A suitable amount of lead is 2 to 10%; less than 2% has no effect of improving conformability, that is, plastic fluidity, and more than 10% reduces the strength of the composite. Moreover, in the range of 3 to 5%, the best results in friction coefficient, galling resistance, and wear resistance are obtained due to the synergistic effect with the components.

次に前述の通り、Sn、Pb、CおよびCuからなるC
u基複合材料の製造方法において、圧粉圧力及び焼結温
度にそれぞれ数値限定を加えた技・術的理由は次の通り
である。
Next, as mentioned above, C consisting of Sn, Pb, C and Cu
The technical/technical reasons for adding numerical limitations to the compaction pressure and sintering temperature in the manufacturing method of the u-based composite material are as follows.

前述組成範囲を満足する各粉末量を均一に混合したのち
、4〜7ton/a!の圧力で圧粉成形としたのは次の
焼結→再圧成形の製造工程と関連した相乗効果によるも
のであるが、成形圧のみで言うと4ton/cj以下の
成形圧では、その後の製造工程において、成形体に割れ
が発生したり、成形体形状が維持されないためである。
After uniformly mixing the amount of each powder that satisfies the above composition range, 4 to 7 tons/a! The reason why powder compacting was performed at a pressure of This is because cracks occur in the molded product during the process, and the shape of the molded product is not maintained.

また、7ton/a#1以上ではそれ以上としても成形
体の密度及び強度的改善効果が大きく望めないためであ
る。
In addition, if it is 7 ton/a #1 or more, even if it is higher than that, the effect of improving the density and strength of the molded product cannot be expected to be large.

次に、焼結温度を700〜850℃としたのは、再圧成
形に関連するものであるが、700℃以下ではその工程
で再圧成形しても密度及び強度が低いためである。また
、850℃以上としても密度及び強度的に顕著な改善効
果が見られないためである。
Next, the reason why the sintering temperature is set to 700 to 850°C is related to recompression molding, and this is because density and strength are low at temperatures below 700°C even if recompression molding is performed in that process. Further, even if the temperature is 850° C. or higher, no significant improvement effect in terms of density and strength is observed.

焼結後の再圧成形圧力を4〜6 ton/ aiとした
の±4 ton/’cj以下では同様に密度及び強度が
低いた゛めであり、また、6ton/a#としても大き
な改善が望めないためである。また、各工程における黒
鉛粉及びCu被覆黒鉛の変化、すなわち、成形圧力方向
に対して黒鉛粒子のアスペクト比(圧力に対して黒鉛の
つぶれた最大重と厚みの比率)をみると、第2図に示す
通りで、−回目の成形時の圧力と黒鉛粒子のアスペクト
比の関係は4〜8程度である。なお、黒鉛粒径は50〜
400μmのちのである。第13図は再圧時の圧力と黒
鉛粒子のアスペクト比を示したもので、第一回目よりは
太きな変化はないが5〜6の割合であり、Cu被覆した
方が処理しないものよりもアスペクト比は1/3になる
傾向を示す、これは、Cu被覆しない黒鉛粉は成形時に
各成分粉末粒子に入り込み、圧力応力をまともに受けて
変形するためで、アスペクト比が大きくなる。しかし、
Cu被覆黒鉛は被覆したCu被膜が成形時の圧力に対し
て黒鉛を強固に守り、他の粉末成分粒子とも強固に結合
できるためにアスペクト比が小さくなる。
If the re-compression pressure after sintering is set to 4 to 6 ton/ai, the density and strength will be similarly low if it is less than ±4 ton/'cj, and even if it is 6 ton/a#, no significant improvement can be expected. It's for a reason. In addition, if we look at the changes in graphite powder and Cu-coated graphite in each process, that is, the aspect ratio of graphite particles in the direction of molding pressure (the ratio of the maximum crushed weight of graphite to the thickness with respect to pressure), Figure 2 shows that As shown, the relationship between the pressure during the -th molding and the aspect ratio of the graphite particles is about 4 to 8. In addition, the graphite particle size is 50~
After 400 μm. Figure 13 shows the pressure during recompression and the aspect ratio of graphite particles. Although there is no drastic change from the first time, the ratio is between 5 and 6, and the Cu coating is better than the untreated one. Also, the aspect ratio tends to be 1/3. This is because graphite powder not coated with Cu gets into each component powder particle during molding and deforms by directly receiving pressure stress, resulting in a large aspect ratio. but,
In the case of Cu-coated graphite, the aspect ratio becomes small because the Cu coating firmly protects the graphite against the pressure during molding and can also be firmly bonded to other powder component particles.

次に、5n−Zu−C,5u−Pb−Zu−CeP b
 −B i −C−F e −Cの銅基焼結材料の各粉
末成分の作用についてみると、亜鉛成分は、錫と同様、
焼結合金となり、黄銅から青銅と合金して銅−亜鉛−錫
合金を形成して地の強度が上昇し、    ゛黒鉛との
相乗効果により耐摩耗性が向上する。その量は1〜10
重量%が良い。
Next, 5n-Zu-C, 5u-Pb-Zu-CeP b
Looking at the effects of each powder component of the copper-based sintered material -B i -C-F e -C, the zinc component, like tin,
It becomes a sintered alloy, and brass is alloyed with bronze to form a copper-zinc-tin alloy, increasing the strength of the base and improving wear resistance due to the synergistic effect with graphite. The amount is 1 to 10
Good weight percentage.

次に、ビスマス成分は鉛成分と同様、低融点金属のため
無潤滑中で鉛とビスマスの皮覆をつくり凝着を防止する
。その量は1〜3重量%が良い。
Next, like the lead component, the bismuth component is a low melting point metal, so it forms a skin of lead and bismuth in the absence of lubrication to prevent adhesion. The amount is preferably 1 to 3% by weight.

次に、鉄は焼結合金中に固溶せずに分散し、地の硬さ及
び強度を上昇させる。その量は0.5〜2重景重量良い
Next, iron is dispersed in the sintered alloy without forming a solid solution, increasing the hardness and strength of the base. The amount should be 0.5 to 2 times the weight.

各成分の作用を述べたが、次に各組成のCu基複合材料
の製造方法において、圧粉圧力及び焼結温度にそれぞれ
数値限定を加えた技術的理由は次の通りである。
Having described the effects of each component, the technical reasons for adding numerical limitations to the compaction pressure and sintering temperature in the manufacturing method of the Cu-based composite material of each composition are as follows.

まず、圧粉成形圧力について述べると、各組成分の焼結
体とも前述した5u−PbCの銅基焼結材料に述べた条
件と、はぼ、同等の条件で良く4〜7ton/a&の圧
力範囲が良い。また、焼結温度も700〜850℃で十
分であり、焼結後の再圧成形圧カニ4〜6ton/dで
良い。この場合の黒鉛粉のアスペクト比もほぼ同等比率
を示す。
First, regarding the powder compaction pressure, the sintered compacts of each composition can be used at a pressure of 4 to 7 ton/a under the same conditions as described above for the 5u-PbC copper-based sintered material. Good range. Further, a sintering temperature of 700 to 850°C is sufficient, and a repressing pressure of 4 to 6 ton/d after sintering is sufficient. The aspect ratio of the graphite powder in this case also shows approximately the same ratio.

次に、黒鉛粉の大きさと摩耗特性には相関関係があり、
たとえば、黒鉛粉の大きさが50μ以下であると摩擦係
数が高く摩耗量も多くなり黒鉛の潤滑効果が発揮されな
い。また、400μ以上になると混合粉の偏析がお、き
やすく、均一分散がむずかしく耐摩耗性が劣る。このた
め、最適黒鉛粒子の大きさは50〜400μが適する。
Next, there is a correlation between the size of graphite powder and its wear characteristics.
For example, if the size of the graphite powder is 50 μm or less, the coefficient of friction will be high, the amount of wear will be large, and the lubricating effect of graphite will not be exhibited. Furthermore, if the particle size exceeds 400μ, the mixed powder tends to segregate, making uniform dispersion difficult and resulting in poor wear resistance. Therefore, the optimum graphite particle size is 50 to 400 microns.

【実施例〕【Example〕

〈実施例1〉 本実施例に供した素材の化学組成を表1に示す。 <Example 1> Table 1 shows the chemical composition of the materials used in this example.

表1中、試料Na 1〜Nα8は本発明で規定する要件
を満足するものであり、嵐9〜17はSu、Pb。
In Table 1, samples Na 1 to Nα8 satisfy the requirements defined by the present invention, and Arashi 9 to 17 contain Su and Pb.

Cのいずれかが本発明で規定する範囲を外れた比較材で
ある。表1(次頁)の気1〜17に示す化学組成をもつ
素材粉末を、V型混合機で30分間混合したのち、5 
ton/ alの圧力で成形し、760℃で焼結した後
、5 ton/a#で再圧成形したものである。第1図
は試料の耐かじり摩耗限界面圧を求めたものである。J
I!擦条件は相手材として共晶鋳鉄(Fe12)を用い
、雰囲気を大気中とし摩擦面圧を適宜変化させて行った
ものである。この結果から知られるように、発明材の耐
かじり摩耗限界面圧は他のものに比べて高く、Su及び
C(黒鉛)が発明組成範囲より少ないと、かじり限界面
圧が低いことがわかる。
Any of C is a comparative material outside the range defined by the present invention. After mixing the raw material powders having the chemical compositions shown in Table 1 (next page) in a V-type mixer for 30 minutes,
It was molded at a pressure of 5 tons/al, sintered at 760°C, and then re-press molded at a pressure of 5 tons/al. Figure 1 shows the galling wear resistance limit surface pressure of the sample. J
I! The rubbing conditions were as follows: eutectic cast iron (Fe12) was used as the mating material, the atmosphere was air, and the friction surface pressure was changed as appropriate. As is known from this result, the galling wear resistance limit surface pressure of the invention material is higher than that of other materials, and it can be seen that when Su and C (graphite) are less than the invention composition range, the galling limit surface pressure is low.

〈実施例2〉 表  1 第2図は、Su:9%、Pb:4%、CuおよびCとの
複合材において、ctを変化させた場合の摩擦係数を求
めたものである。これらの組成材の製造法は実施例の発
明材と同じである。また、摩耗試験条件も同じである。
<Example 2> Table 1 Figure 2 shows the friction coefficients obtained when ct was varied in a composite material of Su: 9%, Pb: 4%, Cu and C. The manufacturing methods for these composition materials are the same as those for the invention materials of Examples. Moreover, the wear test conditions are also the same.

Su、Pb、Cu及びC複合材において、c−tと摩擦
係数の間には、C−f+t3%〜15%において摩擦係
数は一定値を示しているのに対し、3%以下では摩擦係
数が大きく、また20%以上でも同様に摩擦係数が高く
なり不安定であることがわかる。
In Su, Pb, Cu, and C composite materials, between c-t and friction coefficient, the friction coefficient shows a constant value at C-f+t 3% to 15%, but below 3%, the friction coefficient shows a constant value. It can be seen that even if the friction coefficient is large, or 20% or more, the friction coefficient becomes similarly high and unstable.

第3図は、同じ(Su、C,Cu及びPb複合材におい
て、pb量を変化させた場合の摩擦係数との関係を示し
たものである。pb量と摩擦係数の関係はPbt:3〜
5%の範囲において摩擦係数が最も低く、かつ、はぼ一
定値を示して安定しているが、それ以外では摩擦係数は
高くなることがわかる。
Figure 3 shows the relationship between the coefficient of friction when the amount of pb is changed in the same (Su, C, Cu and Pb composite material).The relationship between the amount of pb and the friction coefficient is Pbt: 3~
It can be seen that the friction coefficient is the lowest in the range of 5% and is stable, showing an approximately constant value, but the friction coefficient increases in other areas.

〈実施例3〉 第4図は、第2図に示した試料と同じ試験片におけるC
量と曲げ強さの関係を示したものである。
<Example 3> Figure 4 shows C in the same test piece as the sample shown in Figure 2.
This shows the relationship between the amount and bending strength.

これから明らかなように、C:tが多くなるに従って強
度は低下しており、C量20%以上になると急激に低く
なる。従って、強度的に見るとC量は20%以下、好ま
しくは10%以下が良いことがわかる。
As is clear from this, the strength decreases as the C:t increases, and decreases rapidly when the C content exceeds 20%. Therefore, in terms of strength, it can be seen that the C content is preferably 20% or less, preferably 10% or less.

第5図は、Pb:4%、C:5%、Cuに添加したSu
量におけるSumと曲げ強度との関係を示したものであ
る。曲げ強度はSu量が多くなるに従って低下するが、
15%以上になると低下率が大きくなり好ましい状態で
ないことがわかる。
Figure 5 shows Su added to Pb: 4%, C: 5%, and Cu.
This figure shows the relationship between the amount of Sum and the bending strength. The bending strength decreases as the amount of Su increases, but
It can be seen that when it exceeds 15%, the rate of decrease becomes large and this is not a desirable state.

以上の結果より、Su、Pb、C及びCuから複合材に
おいて、Su、Pb及びCの含有最大限は、Su:15
%、Pb:10%、C:20%が良いことがわかる。
From the above results, in a composite material made of Su, Pb, C and Cu, the maximum content of Su, Pb and C is Su:15
%, Pb: 10%, and C: 20%.

〈実施例4〉 第6図ないし第8図は、配合比としてSu:9%、Pb
:4%、C:10%及び残Cu組成材について、その製
造方法と特性について示したものである。第6図は以下
の製造工程において、成形(5ton/cd)−+焼結
(760℃)→再圧成形(5ton/ al )におい
て、成形工程を2〜1゜ton/ cjに変化させ、強
度及び密度の関係を調べたものである。この結果より成
形圧力3ton/aJ未満では、その製造工程において
、成形体形状を維持できない、また、7ton/a#以
上としても強度及び密度とも向上することが認められな
い。
<Example 4> Figures 6 to 8 show the compounding ratio of Su: 9% and Pb.
4%, C: 10%, and residual Cu composition materials, and the manufacturing method and characteristics thereof are shown. Figure 6 shows the following manufacturing process: forming (5 ton/cd) - + sintering (760°C) → repressing (5 ton/al), changing the forming process from 2 to 1° ton/cj, and increasing the strength. This study investigated the relationship between density and density. From this result, if the molding pressure is less than 3 ton/aJ, the shape of the molded product cannot be maintained in the manufacturing process, and if the molding pressure is 7 ton/a# or more, neither strength nor density is improved.

第7図は、成形(5ton/a#)→焼結→再圧成形(
5ton/ cxl )の製造工程において、焼結温度
を600〜950℃に変化させた場合の強度と密度の関
係を示したものである。焼結温度700℃以下では強度
及び密度とも低い値を示しているが、750℃〜850
℃になると強度及び密度とも高い値を示す、しかし、8
50℃以上になっても強度が上界しないことがわかる。
Figure 7 shows the process of forming (5 ton/a#) → sintering → repressing (
5 ton/cxl) shows the relationship between strength and density when the sintering temperature is changed from 600 to 950°C. Both strength and density are low at sintering temperatures of 700°C or lower, but at 750°C to 850°C
℃, both strength and density are high, but 8
It can be seen that the strength does not reach an upper limit even when the temperature exceeds 50°C.

第8図は成形(5ton/ cal )→焼結(760
℃)→再圧成形の製造工程で、再圧成形圧力を2 to
n/d〜10ton/adに変化させた場合の強度と密
度の関係を示す、再圧成形圧力が4ton/csJ以下
では強度及び密度とも低い、また、6ton/a#以上
の再圧成形圧力では強度及び密度ともにほぼ一定値を示
すことがわかる。
Figure 8 shows molding (5 tons/cal) → sintering (760
℃) → In the recompression molding manufacturing process, the recompression molding pressure is increased by 2 to
Showing the relationship between strength and density when changing from n/d to 10 ton/ad, both strength and density are low when the recompression pressure is 4 ton/csJ or less, and when the recompression pressure is 6 ton/a# or higher. It can be seen that both the strength and density show approximately constant values.

〈実施例5〉 第9図、第10図は配合比としてSu:9%。<Example 5> Figures 9 and 10 show the compounding ratio of Su: 9%.

Pb:4%、C:5%及び残Cu組成材について、実施
例1の発明製造法により作製した場合のCの粒径と強度
及び密度の関係を示す。
The relationship between the particle size of C, strength, and density when produced by the invention manufacturing method of Example 1 is shown for Pb: 4%, C: 5%, and residual Cu composition material.

第9図のCの粒径と摩擦係数の関係についてみると、C
の粒径が50μ以下では摩擦係数は高い値を示している
が、50〜400μmまでは、はぼ、一定の摩擦係数を
示し、低い値を示している。
Looking at the relationship between the particle size of C and the coefficient of friction in Figure 9, we find that C
When the particle size is 50 μm or less, the friction coefficient shows a high value, but from 50 to 400 μm, the friction coefficient remains constant and low.

しかし、それ以上の粒径が大きくなると高い値を示し良
くないことがわかる。
However, it can be seen that when the particle size becomes larger than that, a high value is obtained, which is not good.

第10図のcm径と強度及び密度の関係についてみると
、C粒径が50μm未満及び400μ以上になると、曲
げ強さは著しく低下することがわかる0以上の結果より
C粒径の最大限の大きさは400μまでが限度であり、
摩擦係数の関係から最小限の大きさは50μが望ましい
Looking at the relationship between the cm diameter and strength and density in Figure 10, it can be seen that when the C grain size becomes less than 50μm and more than 400μm, the bending strength decreases significantly.The results above 0 indicate that the maximum C grain size The size is limited to 400μ,
In view of the coefficient of friction, the minimum size is preferably 50μ.

第11図の乾式における焼付き試験結果についてみると
、乾式において、各組合せを比較するとJIS規格の焼
結含油軸受材三種類より耐焼付き性が良好で約五倍もば
れていることがわかる。
Looking at the results of the dry type seizure test shown in Figure 11, when comparing each combination in the dry type, it can be seen that the seizure resistance is better than the three types of sintered oil-impregnated bearing materials of the JIS standard, and is about five times better.

第12図及び第13図は成型圧力と黒鉛粒径50〜40
0μmのアスペクト比を示したもので、Cu被覆した黒
鉛は成型圧力で4〜7ton/aJ、再成型圧力で4〜
6ton/adで行うとCu被覆した黒鉛のアスペクト
比は5〜7を示し、Cu被覆しない黒鉛よりもアスペク
ト比が小さいことがわかる。
Figures 12 and 13 show molding pressure and graphite particle size of 50 to 40.
It shows an aspect ratio of 0 μm, and the Cu-coated graphite has a molding pressure of 4 to 7 tons/aJ and a remolding pressure of 4 to 7 tons/aJ.
When carried out at 6 ton/ad, the aspect ratio of graphite coated with Cu is 5 to 7, which indicates that the aspect ratio is smaller than that of graphite not coated with Cu.

第14図は第12図及び第13図で作製された黒鉛含C
u基焼結複合材料を用いて摩擦摩耗試験を行った結果を
示す、この結果より成型圧カニ4〜7 ton/ aJ
 、薄酸型圧カニ 4〜6 ton/cwtで得られた
銅被覆した黒鉛と被覆しない黒鉛入り焼結複合材料の摩
擦係数及び摩耗量は銅被覆した黒鉛、すなわち、アプセ
ット比の小さい焼結複合材の方が優れていることがわか
る。
Figure 14 shows graphite-containing C produced in Figures 12 and 13.
The results show the results of a friction and wear test using a U-based sintered composite material. From these results, the molding pressure was 4 to 7 ton/aJ.
, the friction coefficient and wear amount of the copper-coated graphite and uncoated graphite-containing sintered composite materials obtained at 4 to 6 ton/cwt using a thin acid type pressure crab are as follows. It turns out that the material is better.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の材料では得られなかった無潤滑
状態でも優れた耐摩耗性をもち、かつ、油潤滑でも優れ
た耐摩耗性のCu基複合材料を開発し、また、そのCu
基複合材料を工業的に安定して得ることができる。
According to the present invention, a Cu-based composite material has been developed that has excellent wear resistance even under no lubrication conditions, which was not possible with conventional materials, and has excellent wear resistance even under oil lubrication.
The base composite material can be stably obtained industrially.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、Su、Pb、Zn、Bi、Feと被覆黒鉛粉を含み
、残部が実質的にCuよりなる黒鉛含Cu基複合焼結材
料において、 焼結体中の黒鉛のアスペクト比が4〜8の範囲になるこ
とを特徴とする耐摩耗性に優れた複合焼結材料の製造方
法。 2、前記組成分中の黒鉛量は3〜20重量%であり、そ
の粒径が50〜400μmであることを特徴とする特許
請求の範囲第1項記載の複合焼結材料の製造方法。 3、前記組成分中の黒鉛が電気めっきあるいは無電解め
っき法によるCu被覆黒鉛であることを特徴とする特許
請求の範囲第1項記載の複合焼結材料の製造方法。 4、特許請求の範囲第1項記載の各粉末組合せの混合粉
末を均一に混合したのち4〜7ton/cm^2の圧力
で圧粉成形体を形成し、次いで成形体を700〜850
℃の温度で焼結したのち、4〜6ton/cm^2の圧
力で再圧成形することを特徴とする複合焼結材料の製造
方法。
[Claims] 1. In a graphite-containing Cu-based composite sintered material containing Su, Pb, Zn, Bi, Fe and coated graphite powder, with the remainder being substantially Cu, the aspect of graphite in the sintered body A method for producing a composite sintered material with excellent wear resistance, characterized in that the ratio is in the range of 4 to 8. 2. The method for producing a composite sintered material according to claim 1, wherein the amount of graphite in the composition is 3 to 20% by weight, and the particle size is 50 to 400 μm. 3. The method for producing a composite sintered material according to claim 1, wherein the graphite in the composition is Cu-coated graphite formed by electroplating or electroless plating. 4. After uniformly mixing the mixed powders of each powder combination described in claim 1, a compacted body is formed at a pressure of 4 to 7 tons/cm^2, and then the compact is formed at a pressure of 700 to 850 tons/cm^2.
A method for producing a composite sintered material, which comprises sintering at a temperature of 0.degree. C. and then repressing at a pressure of 4 to 6 tons/cm^2.
JP11682087A 1987-05-15 1987-05-15 Manufacture of composite sintered material Pending JPS63282221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11682087A JPS63282221A (en) 1987-05-15 1987-05-15 Manufacture of composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11682087A JPS63282221A (en) 1987-05-15 1987-05-15 Manufacture of composite sintered material

Publications (1)

Publication Number Publication Date
JPS63282221A true JPS63282221A (en) 1988-11-18

Family

ID=14696439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11682087A Pending JPS63282221A (en) 1987-05-15 1987-05-15 Manufacture of composite sintered material

Country Status (1)

Country Link
JP (1) JPS63282221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328060A (en) * 2002-05-02 2003-11-19 Mitsubishi Materials Corp Sintered alloy and manufacturing method therefor
EP1391620A3 (en) * 2002-08-23 2005-12-07 Senju Metal Industry Co., Ltd. Multi-layer sliding part and a method for its manufacture
US7255933B2 (en) 2002-08-23 2007-08-14 Senju Metal Industry Co., Ltd. Multi-layer sliding part and a method for its manufacture
CN101885060A (en) * 2010-06-22 2010-11-17 上海中希合金有限公司 High-performance copper-diamond electrical contact material and preparation process thereof
CN104451224A (en) * 2014-11-06 2015-03-25 北矿新材科技有限公司 Preparation method of self-lubricating composite material
JP2019078613A (en) * 2017-10-24 2019-05-23 国立大学法人福井大学 Evaluation method of three-dimensional molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328060A (en) * 2002-05-02 2003-11-19 Mitsubishi Materials Corp Sintered alloy and manufacturing method therefor
EP1391620A3 (en) * 2002-08-23 2005-12-07 Senju Metal Industry Co., Ltd. Multi-layer sliding part and a method for its manufacture
US7195825B2 (en) 2002-08-23 2007-03-27 Senju Metal Industry Co., Ltd. Multi-layer sliding part and a method for its manufacture
US7255933B2 (en) 2002-08-23 2007-08-14 Senju Metal Industry Co., Ltd. Multi-layer sliding part and a method for its manufacture
CN101885060A (en) * 2010-06-22 2010-11-17 上海中希合金有限公司 High-performance copper-diamond electrical contact material and preparation process thereof
CN104451224A (en) * 2014-11-06 2015-03-25 北矿新材科技有限公司 Preparation method of self-lubricating composite material
JP2019078613A (en) * 2017-10-24 2019-05-23 国立大学法人福井大学 Evaluation method of three-dimensional molding

Similar Documents

Publication Publication Date Title
JP4675563B2 (en) Bearing and manufacturing method thereof
KR100206502B1 (en) High strength self-lubricating composite material
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
US20070231182A1 (en) Low cost bronze powder for high performance bearings
US4941919A (en) Copper-based sliding material and method for producing the same
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
WO2008062987A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JPH02107731A (en) Wear-resistant copper-series sintered oiless bearing material
JPS63282221A (en) Manufacture of composite sintered material
JPH01275735A (en) Sintered alloy material and its manufacture
JP3778860B2 (en) Aluminum alloy and plain bearing
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JPH07166278A (en) Coppery sliding material and production thereof
US4274874A (en) Copper-tin type sintered alloy for oil-impregnated bearing excellent in bearing performance as bearing used in low-load and high-velocity region
US3427244A (en) Solid lubricant composites
JPH079046B2 (en) Copper-based sintered body
JPH01136944A (en) Sintered metallic material
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
JPS6082646A (en) Sintered alloy and its manufacture
JPH0499836A (en) Sintered copper series sliding material
JPS6140027B2 (en)
JPH116021A (en) Coppery sintered friction material and its production
JP2617334B2 (en) Sintered alloy material and method for producing the same
JPS6253580B2 (en)