JPH07166278A - Coppery sliding material and production thereof - Google Patents

Coppery sliding material and production thereof

Info

Publication number
JPH07166278A
JPH07166278A JP5342857A JP34285793A JPH07166278A JP H07166278 A JPH07166278 A JP H07166278A JP 5342857 A JP5342857 A JP 5342857A JP 34285793 A JP34285793 A JP 34285793A JP H07166278 A JPH07166278 A JP H07166278A
Authority
JP
Japan
Prior art keywords
powder
copper
weight
sliding
sliding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5342857A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Hara
義之 原
Toyomi Fujimori
豊美 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP5342857A priority Critical patent/JPH07166278A/en
Publication of JPH07166278A publication Critical patent/JPH07166278A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent

Abstract

PURPOSE:To produce a coppery sliding material having excellent sliding characteristic; and wear resistance in all sliding speed regions and always stably usable under wet conditions. CONSTITUTION:In a wet sliding material prepared by joining a copper alloy powder as raw material to a base plate by a powder metallurgical sintering method, the sintered copper alloy has a composition containing, by weight, 4-12% Sn or 4-12% Sn and 0.1-10% Pb and 0.5-5% Mo or 0.5-15% Fe-Mo as essential components and having the balance Cu with inevitable impurities. It is preferable to contain, as optional components, 1-5% Ni or/and 1-6% Zn. This sliding material can be produced by weighing coppery alloy raw material powders of required composition, mixing them uniformly, compacting the resulting powder mixture, and then subjecting to powder metallugical sintering in a semi-liquid phase state at a temp. in the (alpha+L) temp. range of a Cu-Sn binary system phase equilibrium diagram.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械材料の摺動材、詳
しくは例えば油圧部品および油圧プレスのガイドギブラ
イナー等の湿式摺動部材として優れた摩擦特性を発揮す
る銅系焼結合金系の摺動材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding material of a machine material, more specifically, a copper-based sintered alloy system which exhibits excellent friction characteristics as a wet sliding member such as a hydraulic component and a guide giver of a hydraulic press. Of sliding materials.

【0002】[0002]

【従来の技術】従来、相対する摺動面間に潤滑油やグリ
ース等の液状物質が介在する状態で使用される湿式およ
び半湿式摺動材料は、軸受け、ガイドプレート、油圧部
材などとして多用されている。このうち、油圧部材は装
置の高性能化が進むとともに高摺速および高圧化の条件
が厳しさを増しており、それに耐える摺動材の開発が要
請されている。潤滑油中において低速領域で使用される
摺動材に対しては、油切れ現象による摩擦係数の上昇が
なく、機械効率の良好な材料設計が重要な開発上の着眼
点となっている。また、プレスのガイドギブライナーに
ついては、プレスの高速化、高精度化に伴い、例えば油
圧式の金属板打ち抜き装置のように油圧の負荷状態が大
幅に且つ複雑に変動する作動曲線にも対応可能な摺動材
が必要になってきている。
2. Description of the Related Art Conventionally, wet and semi-wet sliding materials used with a liquid substance such as lubricating oil or grease interposed between opposing sliding surfaces are widely used as bearings, guide plates, hydraulic members and the like. ing. Among these, the hydraulic member is becoming higher in performance, and the conditions for high sliding speed and high pressure are becoming more severe, and development of a sliding material that can withstand the demand has been demanded. For sliding materials used in low speed areas in lubricating oil, the material design with good mechanical efficiency without increasing the friction coefficient due to oil shortage phenomenon is an important development point. With regard to the guide gibber liner of the press, it is possible to cope with operating curves that drastically and complicatedly change the load condition of hydraulic pressure, such as the hydraulic type metal plate punching device, due to the increase in speed and precision of the press. Sliding materials are needed.

【0003】一般に、湿式摺動材として要求される主要
な性能は、低摩擦係数(高摺動特性)、耐摩耗性および
高い機械的強度である。ところが、従来の金属系摺動材
でこれら性能条件を全て満足するものは開発されていな
い。すなわち、従来の金属系摺動材は主に鋳造法あるい
は粉末冶金法による銅系(青銅系、鉛青銅系、高力黄銅
系など)の材料で作製されている。鋳造材料は、用途に
応じて青銅系と高力黄銅系の材料が使い分けられている
が、前者の青銅系摺動材は摺動特性は良好であるが機械
的強度が低く、逆に高力黄銅系摺動材は機械的強度には
優れているものの摺動特性に劣る欠点がある。
Generally, the main performances required for a wet sliding material are low friction coefficient (high sliding characteristics), wear resistance and high mechanical strength. However, no conventional metallic sliding material has been developed that satisfies all of these performance conditions. That is, the conventional metal-based sliding material is mainly made of a copper-based (bronze-based, lead bronze-based, high-strength brass-based, etc.) material by a casting method or a powder metallurgy method. As the casting material, bronze-based and high-strength brass-based materials are used according to the application.The former bronze-based sliding material has good sliding characteristics but low mechanical strength, and conversely high strength. Although the brass-based sliding material is excellent in mechanical strength, it has a drawback that it is inferior in sliding characteristics.

【0004】一方、粉末冶金による金属系摺動材として
は、鉛青銅(LBC系;Cu-Sn-Pb)、青銅(BC系;Cu-
Sn)、その他ケルメット系のものが実用化されている。
しかし、これら摺動材は一般に成形工程で圧力を加えず
に焼結する方法で製造されるため、焼結後の組織密度が
低く、機械的強度が十分でない。
On the other hand, as a metal-based sliding material by powder metallurgy, lead bronze (LBC type; Cu-Sn-Pb), bronze (BC type; Cu-)
Sn) and other Kelmet materials have been put to practical use.
However, since these sliding materials are generally manufactured by a method of sintering without applying pressure in the molding step, the structure density after sintering is low and the mechanical strength is not sufficient.

【0005】粉末冶金法による金属系材料の摺動特性
は、Pb添加量を増加させると改善されることが知られ
ているが、Pbの増量は機械的強度の減退を招き、同時
に耐エロージョン(高圧油による耐侵食)特性を悪化さ
せる関係で添加量には限界があり、適切な改善手段とは
ならない。このほか、Mo2 3 、MoS2 、黒鉛等の
固体潤滑材物質を配合することも知られているが、この
方法は前記のPb増量以上に機械的強度や耐エロージョ
ン特性の低下を招き、高負荷摺動材としては使用に耐え
ない。
It is known that the sliding characteristics of metal-based materials obtained by powder metallurgy are improved by increasing the amount of Pb added. However, increasing the amount of Pb causes a decrease in mechanical strength and, at the same time, erosion resistance ( There is a limit to the amount that can be added because it deteriorates the corrosion resistance of high-pressure oil. In addition, it is also known to blend a solid lubricant material such as Mo 2 O 3 , MoS 2 and graphite, but this method causes deterioration of mechanical strength and erosion resistance beyond the above-mentioned Pb increase, It cannot be used as a high load sliding material.

【0006】[0006]

【発明が解決しようとする課題】このように、従来技術
による湿式摺動材には、高速領域から低速領域の摺動範
囲において要求性能を満足するものは現在のところ開発
されていない。本発明者らは、かかる実情に鑑み粉末冶
金による銅系焼結合金の摺動性能を改善するための添加
物質について研究を重ねた結果、鉛青銅(LBC系;Cu
-Sn-Pb) 、青銅(BC系;Cu-Sn)等を母材とする銅合金
に高融点のMoまたはFe−Mo(フェロモリブデン)
を添加した合金組成は、高度の機械的強度を維持しなが
ら優れた摺動特性、耐摩耗性および耐エロージョン性を
発揮することを確認した。
As described above, no wet sliding material according to the prior art has so far been developed that satisfies the required performance in the sliding range from the high speed region to the low speed region. In view of such circumstances, the present inventors have conducted research on additive substances for improving sliding performance of a copper-based sintered alloy by powder metallurgy, and as a result, lead bronze (LBC-based; Cu
-Sn-Pb), bronze (BC-based; Cu-Sn), etc., as a base material in a copper alloy with high melting point Mo or Fe-Mo (ferromolybdenum)
It was confirmed that the alloy composition with addition of the alloy exhibits excellent sliding characteristics, wear resistance and erosion resistance while maintaining high mechanical strength.

【0007】本発明は前記の知見に基づいて開発された
もので、その目的は、あらゆる摺速領域において優れた
摺動特性と耐摩耗性を発揮し、常に安定して湿式(半湿
式を含む)条件下で使用することができる粉末冶金焼結
体からなる銅系摺動材とその製造方法を提供することに
ある。
The present invention was developed on the basis of the above-mentioned findings, and its purpose is to exhibit excellent sliding characteristics and wear resistance in all sliding speed regions and to always stably and wet (including semi-wet). ) To provide a copper-based sliding material made of a powder metallurgical sintered body that can be used under the conditions, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による銅系摺動材は、基板上に銅系合金原料
粉末を粉末冶金焼結法により接合してなる湿式摺動材に
おいて、必須成分としてそれぞれ表1に示す焼結銅合金
の組成を備えることを構成上の特徴とするものである。
The copper-based sliding material according to the present invention for achieving the above object is a wet-type sliding material obtained by bonding a copper-based alloy raw material powder onto a substrate by a powder metallurgy sintering method. In the above, the constitutional feature is that the composition of the sintered copper alloy shown in Table 1 is provided as an essential component.

【0009】[0009]

【表1】 [Table 1]

【0010】本発明の銅系摺動材は、鉄材からなる芯金
基板上に銅系合金原料粉末を粉末冶金焼結法により拡散
接合して摺動部を形成するもので、基板部分は全体の強
度を確保し、摺動部は必要最低限の厚み(摩耗代)とし
て摺動性能を発揮する。
The copper-based sliding material of the present invention forms a sliding portion by diffusion-bonding copper-based alloy raw material powder by a powder metallurgy sintering method onto a cored bar substrate made of an iron material. The strength of the sliding part is ensured, and the sliding part exhibits the sliding performance with the minimum necessary thickness (abrasion allowance).

【0011】焼結銅合金を構成する必須成分のうち、S
nは焼結時にCuに拡散して焼結を促進して青銅母材を
形成する成分で、4〜12重量%の範囲で含有する。こ
の含有量が4重量%未満であると焼結性が不十分となっ
て組織の機械的強度が低下するうえ、基板との拡散接合
が円滑に進行しなくなる。また、12重量%を越えると
偏析が生じて組織が脆弱化し、摺動特性も悪化する。
Of the essential constituents of the sintered copper alloy, S
n is a component that diffuses into Cu during sintering and promotes sintering to form a bronze base material, and is contained in the range of 4 to 12% by weight. When the content is less than 4% by weight, the sinterability becomes insufficient, the mechanical strength of the structure is lowered, and diffusion bonding with the substrate does not proceed smoothly. On the other hand, if it exceeds 12% by weight, segregation occurs to weaken the structure and deteriorate sliding properties.

【0012】鉛青銅を母材とする場合(表1の組成2、
4)に添加するPbの含有量は0.1〜10重量%の範
囲とする。0.1重量%未満であると、Cu−Sn合金
化の促進および潤滑性の改善に効果が認められず、10
重量%を越えると焼結時に溶融して湯引けの巣を発生さ
せ、強度低下の原因となる。
When lead bronze is used as the base material (composition 2 in Table 1,
The content of Pb added to 4) is in the range of 0.1 to 10% by weight. If it is less than 0.1% by weight, the effect of promoting Cu—Sn alloying and improving the lubricity is not recognized, and 10
If it exceeds 5% by weight, it melts at the time of sintering to generate voids in the molten metal, which causes a decrease in strength.

【0013】本発明の焼結銅合金は、上記の青銅系また
は鉛青銅系母材に加えて特定量のMoまたはFe−Mo
(フェロモリブデン)成分を含有する。これらは本発明
の目的を達成するための重要な組成成分となるもので、
焼結合金に優れた潤滑機能と油に対する親和性を与えて
湿式摺動材に要求される低摩擦係数と高耐摩耗性を付与
するための要件となる。Moは表1の組成1、2におい
て0.5〜5重量%の範囲で含有する。この含有量が
0.5重量%未満では潤滑性付与の機能が発揮できず、
5重量%を越えると母材成分(Cu-Sn) との融点の相違か
ら濡れ性が低下して組織強度を低下させる。
The sintered copper alloy of the present invention has a specific amount of Mo or Fe-Mo in addition to the above-mentioned bronze-based or lead bronze-based base material.
(Feromolybdenum) component is contained. These are important composition components for achieving the object of the present invention,
This is a requirement for giving a sintered alloy an excellent lubricating function and an affinity for oil to provide a low friction coefficient and high wear resistance required for a wet sliding material. Mo is contained in the compositions 1 and 2 of Table 1 in the range of 0.5 to 5% by weight. If this content is less than 0.5% by weight, the function of imparting lubricity cannot be exhibited,
If it exceeds 5% by weight, the wettability is lowered due to the difference in melting point between the base material component (Cu-Sn) and the structure strength is lowered.

【0014】Fe−Moは0.5〜15重量%の範囲で
含有させる。0.5重量%未満では潤滑性能が十分に付
与されず、15重量%を越えると摺動する相手材を摩耗
させる結果を与える。特に超低速領域において潤滑油の
油切れ現象に対して正常な摺動特性を付与するために
は、Fe−Moの含有量範囲を3〜5重量%とすること
が好適である。なお、Fe−Mo成分としては、フェロ
モリブデン合金であればどのような組成でも適用可能で
あるが、本発明の目的にはMo含有率が55〜70重量
%のフェロモリブデン合金を適用することが好ましい。
Fe-Mo is contained in the range of 0.5 to 15% by weight. If it is less than 0.5% by weight, the lubricating performance is not sufficiently imparted, and if it exceeds 15% by weight, the sliding counterpart material is abraded. In particular, in order to impart normal sliding characteristics to the oil shortage phenomenon of the lubricating oil in the ultra-low speed region, it is preferable that the content range of Fe-Mo is 3 to 5% by weight. As the Fe-Mo component, any composition can be applied as long as it is a ferro-molybdenum alloy, but for the purpose of the present invention, a ferro-molybdenum alloy having a Mo content of 55 to 70 wt% can be applied. preferable.

【0015】上記の必須合金成分のほか、任意に含有さ
せる成分としてNiおよびZnがある。Niは機械的強
度や耐摩耗性を付与する機能があるが、1重量%未満で
は効果が発現せず、5重量%を上廻ると母材の融点が上
昇して、その融点以下の温度による芯金基板との拡散接
合が不可能となる。また、ZnはSnの安価な代替材料
となるもので、6重量%までの範囲で含有させることが
できる。しかし、この含有量が6重量%を越えるとZn
の蒸発揮散量が多くなって巣の発生が増大し、強度と耐
エロージョン性が低下する。
In addition to the above essential alloy components, there are Ni and Zn as optional components. Ni has a function of imparting mechanical strength and wear resistance, but if it is less than 1% by weight, the effect is not exhibited, and if it exceeds 5% by weight, the melting point of the base material rises, and the temperature is lower than the melting point. Diffusion bonding with the core metal substrate becomes impossible. Zn is an inexpensive alternative material to Sn and can be contained in a range of up to 6% by weight. However, if this content exceeds 6% by weight, Zn
The amount of transpiration is increased, the number of nests is increased, and the strength and erosion resistance are reduced.

【0016】上記の焼結合金組成を有する銅系摺動材を
得るための本発明の製造方法は、必要成分の銅系合金原
料粉末を秤量して均一に混合し、ついで圧粉成形したの
ちCu−Snの二元系相平衡状態図「α−L」の温度範
囲内で半液相状態により粉末冶金焼結を施すことを構成
的特徴とする。
In the production method of the present invention for obtaining the copper-based sliding material having the above-mentioned sintered alloy composition, the copper-based alloy raw material powders of the necessary components are weighed and uniformly mixed, and then powder compacted. The constitutional feature is that powder metallurgical sintering is performed in a semi-liquid phase state within the temperature range of the binary phase equilibrium diagram “α-L” of Cu—Sn.

【0017】原料となる銅系合金原料粉末には、Cu粉
として粒径3〜20μm の電解粉、アトマイズ粉、還元
粉、スタンプ粉などが、Sn粉、Pb粉およびZn粉と
しては粒度20メッシュ以下のスタンプ粉、アトマイズ
粉、ボールミル粉などが、またNi粉としては2〜10
μm のカーボニル粉、電解粉などが好ましく用いられ
る。このほか、予め必須成分を含有するCu−Sn合金
粉末、Cu−Sn−Pb合金粉末のような合金系のアト
マイズ粉を用いることも有効である。Mo粉およびFe
−Mo粉は粒度250メッシュ以下のものが用いられる
が、Fe−Mo粉は鉄鋼原料(JIS G2307) のチップを微
粉砕した粒径70μm 以下(平均粒径30μm)のフェロ
モリブデン粉末を使用することが望ましい。
The copper-based alloy raw material powder used as a raw material is, as Cu powder, electrolytic powder having a particle size of 3 to 20 μm, atomized powder, reducing powder, stamp powder and the like, and Sn powder, Pb powder and Zn powder having a particle size of 20 mesh. The following stamp powders, atomized powders, ball mill powders, etc.
Carbonyl powder, electrolytic powder and the like having a particle size of μm are preferably used. In addition, it is also effective to use an alloy-based atomized powder such as Cu-Sn alloy powder or Cu-Sn-Pb alloy powder that contains essential components in advance. Mo powder and Fe
-Mo powder with a particle size of 250 mesh or less is used, but for Fe-Mo powder, use ferro-molybdenum powder with a particle size of 70 μm or less (average particle size 30 μm) obtained by finely crushing chips of steel raw material (JIS G2307). Is desirable.

【0018】これら銅系合金原料粉末は、焼結後の組成
が表1に示す含有量範囲になるように秤量し、機械的混
合手段により均一に混合したのち、圧粉成形する。圧粉
成形は、混合粉末を金型に充填して0.5〜5ton/cm2
の圧力を加えて成形する方法、あるいは混合粉末を焼結
治具に充填して焼結する方法でおこなわれる。
These copper alloy raw material powders are weighed so that the composition after sintering falls within the content range shown in Table 1, uniformly mixed by mechanical mixing means, and then compacted. For powder compaction, the mixed powder is filled in a mold and 0.5 to 5 ton / cm 2
It is carried out by a method of molding by applying pressure or a method of filling mixed powder in a sintering jig and sintering.

【0019】ついで、圧粉成形体を基板(芯金材)の片
面に重ね、分解アンモニアガス(H2,N2)や石油系変成
ガス(N2,2,CO)などの還元性雰囲気下で10kg/c
m2までの圧力を付加しながら粉末冶金焼結をおこなって
接合する。この際の焼結処理は、Cu−Snの二元系相
平衡状態図における「α+L」の温度範囲内でおこなう
ことが重要で、このようにして半液相状態で焼結処理す
ることにより組織の機械的強度が向上するとともに、耐
エロージョン性が改善されて油圧部材のような高圧の苛
酷条件下の使用に対する耐久性が著しく増大する。得ら
れた摺動材は、所定の加工を施して製品とする。
Next, the powder compact is placed on one side of the substrate (core material), and a reducing atmosphere such as decomposed ammonia gas (H 2 , N 2 ) or petroleum-based shift gas (N 2, H 2, CO) is used. Below 10kg / c
While applying pressure up to m 2, powder metallurgy sintering is performed and joining is performed. It is important that the sintering treatment at this time is performed within the temperature range of “α + L” in the binary phase equilibrium diagram of Cu—Sn. The mechanical strength is improved, and the erosion resistance is improved, so that the durability against use under high pressure and severe conditions such as a hydraulic member is remarkably increased. The obtained sliding material is subjected to predetermined processing to obtain a product.

【0020】[0020]

【作用】本発明に係る銅系摺動材は、青銅または鉛青銅
を母材とする特定の銅合金系に限定範囲量のMoまたは
Fe−Mo成分が均質分散した組成に特徴づけられる。
これらMoまたはFe−Mo成分は、潤滑性を高めると
同時に油との親和性を改善する作用を営み、かつ従来潤
滑材として使用されているMoの酸化物や硫化物のよう
に組織強度を損ねることはない。したがって、潤滑油の
油皮膜が生成しにくい超低速領域から高圧の高速領域に
至るあらゆる苛酷な湿式摺動条件において優れた摺動性
能と耐摩耗性能が発揮される。更に、低速領域において
油切れ現象が発生した場合にも、潤滑作用が機能して摩
擦係数が増大することがなくなる。
The copper-based sliding material according to the present invention is characterized by a composition in which a limited amount of Mo or Fe-Mo component is homogeneously dispersed in a specific copper alloy system containing bronze or lead bronze as a base material.
These Mo or Fe-Mo components serve to improve lubricity and at the same time improve affinity with oil, and impair the tissue strength like oxides and sulfides of Mo used conventionally as lubricants. There is no such thing. Therefore, excellent sliding performance and wear resistance performance are exhibited under all severe wet sliding conditions from an ultra-low speed region where it is difficult to form an oil film of lubricating oil to a high-pressure high-speed region. Further, even when an oil shortage phenomenon occurs in the low speed region, the lubricating action does not function and the friction coefficient does not increase.

【0021】また、本発明による銅系摺動材の製造方法
に従えば、焼結処理をCu−Snの平衡状態「α+L」
内の半液相でおこなうことにより、機械的強度が向上
し、耐エロージョン性に優れた焼結組織を得ることが可
能となる。
Further, according to the method for producing a copper-based sliding material according to the present invention, the sintering treatment is performed in the Cu—Sn equilibrium state “α + L”.
By carrying out in the semi-liquid phase inside, the mechanical strength is improved, and it becomes possible to obtain a sintered structure excellent in erosion resistance.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0023】実施例1〜18 必須成分となるCu粉末に電解銅粉(平均粒径15μm)、
Sn粉にスタンプ粉(粒度200#以下) 、Pb粉にスタン
プ粉 (粒度200#以下) 、Fe−Mo粉にフェロモリブデ
ンのスタンプ粉(Mo含有率70重量%、粒度350#以下)
、Mo粉に微粉末(粒度240#以下) を用い、任意成分
となるZn粉にはスタンプ粉 (粒度200#以下) 、Ni粉
には電解粉 (平均粒径15μm)を用いた。これら銅系合金
原料粉末を表2に示す秤量成分の比率でV型混合機
〔(株)徳寿製、容量10〕に投入し、30分間乾式混合
して均質な混合粉末を得た。
Examples 1 to 18 Cu powder which is an essential component is electrolytic copper powder (average particle size 15 μm),
Stamp powder of Sn powder (particle size of 200 # or less), Pb powder of stamp powder (particle size of 200 # or less), Fe-Mo powder of ferromolybdenum stamp powder (Mo content 70% by weight, particle size of 350 # or less)
A fine powder (particle size: 240 # or less) was used as the Mo powder, a stamp powder (particle size: 200 # or less) was used as the Zn powder, and an electrolytic powder (average particle size: 15 μm) was used as the Ni powder. These copper-based alloy raw material powders were put into a V-type mixer [manufactured by Tokuju Co., Ltd., capacity 10] in the proportions of the weighing components shown in Table 2 and dry-mixed for 30 minutes to obtain a homogeneous mixed powder.

【0024】各混合粉末をリング状金型(外径120mm 、
内径80mm) に充填し、2トン/cm2の圧力を加えて厚さ
1.5mmの円板状に圧粉成形した。ついで、圧粉成形体
を銅メッキを施した鉄基板(厚さ5mm)の片面に重ねて
セットし、3kg/cm2の圧力を付与しながら分解アンモニ
ア雰囲気下にCu−Snの二元系相平衡状態「α+L」
範囲内で焼結温度(表2)を変えて焼結処理した。得ら
れた焼結銅合金の組成を表3に示した。
A ring-shaped mold (outer diameter 120 mm,
It was filled in an inner diameter of 80 mm), and a pressure of 2 ton / cm 2 was applied to the mixture, which was pressed into a disk shape having a thickness of 1.5 mm. Then, the powder compact was set on one side of a copper-plated iron substrate (thickness: 5 mm) and set, while applying a pressure of 3 kg / cm 2 under a decomposed ammonia atmosphere and a Cu-Sn binary system phase. Equilibrium state "α + L"
The sintering temperature (Table 2) was changed within the range to perform the sintering treatment. The composition of the obtained sintered copper alloy is shown in Table 3.

【0025】上記の素材を旋盤加工および研磨加工して
湿式摺動材を作製し、摩擦特性試験およびエロージョン
試験をおこなった。その結果を表4および表5に示し
た。なお、各特性は以下の測定方法によった。
A wet sliding material was produced by lathing and polishing the above materials, and a friction characteristic test and an erosion test were performed. The results are shown in Tables 4 and 5. In addition, each characteristic was based on the following measuring methods.

【0026】摩擦特性 下記の摺動試験条件により摺動特性と摺動材および相手
材の摩耗状態(摩耗厚;μm )を測定した。 試験機:JIS定速型摩擦試験機(JIS D4311) 摺動板:摩擦面積9.14cm2 、有効半径97mmを1枚 相手材:FCD45を1枚 試験条件:摺動面;1面、面圧;40kg/cm2、摺速;
0.03m/sec(超低速時)、0.3m/sec 、0.6m/se
c の3段階、潤滑油;油圧作動油(出光ダフニLW#46
)、油温;60℃、油量;0.6l/min.摺動距離;2
500m(0.03m/sec 時) 、25000m(0.3m/secおよび
0.6m/sec時)
Friction characteristics The sliding characteristics and the wear state (wear thickness; μm) of the sliding material and the mating material were measured under the following sliding test conditions. Testing machine: JIS constant velocity type friction testing machine (JIS D4311) Sliding plate: Friction area 9.14 cm 2 , effective radius 97 mm 1 piece Opposing material: FCD 45 1 piece Test condition: Sliding surface; 1 surface, surface pressure 40 kg / cm 2 , sliding speed;
0.03m / sec (at super low speed), 0.3m / sec, 0.6m / se
3 stages of c, lubricating oil; hydraulic fluid (Idemitsu Daphni LW # 46
), Oil temperature; 60 ° C, oil amount; 0.6 l / min. Sliding distance; 2
500m (at 0.03m / sec), 25000m (at 0.3m / sec and
(At 0.6 m / sec)

【0027】エロージョン試験 主に油圧部品(ピストンポンプ等)に使用される際に
は、高圧、低圧の切り換えが瞬時におこなわれるため、
油の流れがジェット噴流となって材料を侵食(エロージ
ョン)する。このため、評価方法として、超音波発振機
の発振ホーン先端に試料を付け、水中で発振させて試料
片にエロージョン減耗を生じさせ、その減耗厚さを測定
した。試験条件は下記によった。 試料片:外径18mm、厚さ10mm(ライニング厚み1.0m
m) 試験機:超音波試験機〔日本精機製作所製、VS60
0〕 試験条件:発振周波数;20kHz 、振幅;±37μ、試
験流体;水道水、水温;50℃±5℃、テスト時間:2
時間(1時間毎に重量減を測定し、2時間分を累計)
Erosion test When used mainly for hydraulic parts (piston pumps, etc.), switching between high pressure and low pressure is performed instantaneously.
The oil flow becomes a jet jet and erodes the material. Therefore, as an evaluation method, a sample was attached to the tip of an oscillation horn of an ultrasonic oscillator, oscillated in water to cause erosion wear on a sample piece, and the wear thickness was measured. The test conditions were as follows. Sample piece: outer diameter 18 mm, thickness 10 mm (lining thickness 1.0 m
m) Testing machine: Ultrasonic testing machine [Nippon Seiki Seisakusho, VS60
0] Test condition: oscillation frequency; 20 kHz, amplitude; ± 37 μ, test fluid; tap water, water temperature; 50 ° C. ± 5 ° C., test time: 2
Time (weight loss is measured every 1 hour, totaling 2 hours)

【0028】実施例19 銅系合金粉末として、Cu−Sn合金粉末(アトマイズ
粉)、Cu粉(電解銅粉)、Sn粉(スタンプ粉、200#
以下) 、Pb粉(スタンプ粉、200#以下) 、Ni粉(カ
ーボニル粉)、Fe−Mo粉(Mo含有率70重量%のフ
ェロモリブデンスタンプ粉、350#以下) を用い、表2に
示す秤量成分の比率に配合した。その後の工程は全て実
施例1と同一条件により湿式摺動材を作製した。得られ
た摺動材の焼結銅合金組成を表3に、また実施例1と同
様にして摩擦特性およびエロージョン特性を測定した結
果を表4および表5に併載した。
Example 19 As a copper alloy powder, Cu-Sn alloy powder (atomized powder), Cu powder (electrolytic copper powder), Sn powder (stamp powder, 200 #)
The following), Pb powder (stamp powder, 200 # or less), Ni powder (carbonyl powder), Fe-Mo powder (ferro-molybdenum stamp powder with Mo content of 70% by weight, 350 # or less). Incorporated in proportions of ingredients. A wet sliding material was manufactured under the same conditions as in Example 1 in all subsequent steps. The sintered copper alloy composition of the obtained sliding material is shown in Table 3, and the results of measuring frictional characteristics and erosion characteristics in the same manner as in Example 1 are shown in Tables 4 and 5.

【0029】実施例20 銅系合金粉末として、Cu−Sn−Pb合金粉末(アト
マイズ粉)、Ni粉(カーボニル粉)、Fe−Mo粉
(Mo含有率70重量%のフェロモリブデンスタンプ粉、
350#以下) を用い、表2に示す秤量成分の比率に配合し
た。その後の工程は全て実施例1と同一条件により湿式
摺動材を作製した。得られた摺動材の焼結銅合金組成を
表3に、また実施例1と同様にして摩擦特性およびエロ
ージョン特性を測定した結果を表4および表5に併載し
た。
Example 20 As a copper alloy powder, Cu-Sn-Pb alloy powder (atomized powder), Ni powder (carbonyl powder), Fe-Mo powder (ferro-molybdenum stamp powder having a Mo content of 70% by weight),
(350 # or less) was blended in the ratio of the weighing components shown in Table 2. A wet sliding material was manufactured under the same conditions as in Example 1 in all subsequent steps. The sintered copper alloy composition of the obtained sliding material is shown in Table 3, and the results of measuring frictional characteristics and erosion characteristics in the same manner as in Example 1 are shown in Tables 4 and 5.

【0030】実施例21 実施例1の必須成分組成のうち、Fe−Mo粉をMo含
有率が55重量%のフェロモリブデンに代えて、表2に
示す秤量成分の比率に配合した。その後の工程は全て実
施例1と同一条件により湿式摺動材を作製した。得られ
た摺動材の焼結銅合金組成を表3に、また実施例1と同
様にして摩擦特性およびエロージョン特性を測定した結
果を、表4および表5に併載した。
Example 21 Among the essential component compositions of Example 1, Fe-Mo powder was replaced with ferromolybdenum having a Mo content of 55% by weight, and blended in the proportions of the weighing components shown in Table 2. A wet sliding material was manufactured under the same conditions as in Example 1 in all subsequent steps. The sintered copper alloy composition of the obtained sliding material is shown in Table 3, and the results of measuring frictional characteristics and erosion characteristics in the same manner as in Example 1 are shown in Tables 4 and 5.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】表2〜表5から、本発明の要件を満たす実
施例の摺動材は摺速の変動に係わりなく優れた低摩擦係
数と耐摩耗性能を示し、耐エロージョン性も良好である
ことが認められる。また、実施例の摺動材はいずれも材
質組織が強固で、実用上十分な機械的強度を有するもの
であった。
From Tables 2 to 5, the sliding materials of the examples satisfying the requirements of the present invention have excellent low friction coefficient and wear resistance performance regardless of fluctuations in sliding speed, and have good erosion resistance. Is recognized. Further, the sliding materials of the examples all had a strong material structure and had practically sufficient mechanical strength.

【0036】比較例1〜12 実施例1と同種の銅系合金原料粉末を原料とし、表6に
示す秤量比率で配合した。この混合原料を用い、実施例
1と同一のプロセスにより本願発明の要件を外れる焼結
銅合金組成の摺動材を作製した。この場合の各焼結銅合
金組成は表7のとおりであった。得られた摺動材につ
き、実施例1と同様に摩擦特性およびエロージョン特性
を測定し、その結果を表8および表9に示した。
Comparative Examples 1 to 12 The same type of copper alloy raw material powder as in Example 1 was used as a raw material and blended in the weighing ratios shown in Table 6. Using this mixed raw material, a sliding material having a sintered copper alloy composition that does not meet the requirements of the present invention was produced by the same process as in Example 1. Table 7 shows the composition of each sintered copper alloy in this case. The friction characteristics and the erosion characteristics of the obtained sliding material were measured in the same manner as in Example 1, and the results are shown in Tables 8 and 9.

【0037】比較例13〜15 表7に示す組成をもつ市販の青銅系連続鋳造合金につ
き、実施例1と同様にして摩擦特性およびエロージョン
特性を測定した結果を表8、表9に併載した。
Comparative Examples 13 to 15 The commercially available bronze-based continuous casting alloys having the compositions shown in Table 7 were measured for friction properties and erosion properties in the same manner as in Example 1, and the results are shown in Tables 8 and 9 together.

【0038】比較例16 表7に示す組成をもつ市販の鉛青銅(LBC−3)鋳造
品につき、実施例1とと同様にして摩擦特性およびエロ
ージョン特性を測定した。その結果を表8および表9に
併載した。
Comparative Example 16 With respect to a commercially available lead bronze (LBC-3) cast product having the composition shown in Table 7, friction properties and erosion properties were measured in the same manner as in Example 1. The results are also shown in Tables 8 and 9.

【0039】比較例17 市販の鉛青銅(LBC−3)にFe−Mo粉(フェロモ
リブデンスタンプ粉)を5重量%添加して表7に示す組
成の銅合金鋳造品を作製した。しかし、Fe−Mo成分
が母材と結合せず、合金組織とはならなかった。この材
料につき、実施例1と同様にして摩擦特性およびエロー
ジョン特性を測定し、その結果を表8および表9に併載
した。
Comparative Example 17 Fe-Mo powder (ferro-molybdenum stamp powder) was added in an amount of 5% by weight to commercially available lead bronze (LBC-3) to prepare a copper alloy cast product having the composition shown in Table 7. However, the Fe-Mo component did not bond with the base material and did not form an alloy structure. Friction characteristics and erosion characteristics of this material were measured in the same manner as in Example 1, and the results are also shown in Tables 8 and 9.

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【表8】 [Table 8]

【0043】[0043]

【表9】 [Table 9]

【0044】表6〜表9から、比較例による摺動材は実
施例品に比べて摩擦係数、耐摩耗性および耐エロージョ
ン性のいずれかが劣ることが判明する。なお、比較例
7、8の材料はFe−Mo成分が多すぎるため相手材の
摩耗が著しく、試験の継続ができなかった。比較例11
の摺動材はPb成分が多い関係で、焼結時にPb溶け出
しによる組織巣が発生した。また、比較例12では基板
と摺動材が剥離したため試験不能であった。
From Tables 6 to 9, it is clear that the sliding materials according to the comparative examples are inferior in friction coefficient, wear resistance and erosion resistance to the products of the examples. Since the materials of Comparative Examples 7 and 8 contained too much Fe-Mo component, the mating material was significantly worn and the test could not be continued. Comparative Example 11
Since the sliding material of No. 2 has a large amount of Pb component, a tissue nest was generated due to Pb melting during sintering. Further, in Comparative Example 12, the test was impossible because the substrate and the sliding material were separated.

【0045】[0045]

【発明の効果】以上のとおり、本発明によれば高速から
超低速領域において湿式摺動材に要求される低摩擦係
数、耐摩耗性および機械的強度を満足する高性能の銅系
摺動材を提供することができる。したがって、油圧部材
やガイドギブライナーのような用途に適用して、常に安
定した耐久性が保証される。
As described above, according to the present invention, a high-performance copper-based sliding material satisfying the low friction coefficient, wear resistance and mechanical strength required for a wet sliding material in a high speed to ultra low speed range. Can be provided. Therefore, it can be applied to applications such as hydraulic members and guide givers to always ensure stable durability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16H 53/02 B // C10N 10:02 10:08 10:12 30:06 40:02 50:08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F16H 53/02 B // C10N 10:02 10:08 10:12 30:06 40:02 50: 08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に銅系合金原料粉末を粉末冶金焼
結法により接合してなる湿式摺動材において、焼結銅合
金の組成が、Sn4〜12重量%およびMo0.5〜5
重量%を必須成分として含有し、残部がCuおよび不可
避不純物からなることを特徴とする銅系摺動材。
1. A wet sliding material obtained by bonding a copper-based alloy raw material powder onto a substrate by a powder metallurgical sintering method, wherein the composition of the sintered copper alloy is 4 to 12 wt% Sn and 0.5 to 5 Mo.
A copper-based sliding material, characterized by containing wt% as an essential component, and the balance being Cu and inevitable impurities.
【請求項2】 基板上に銅系合金原料粉末を粉末冶金焼
結法により接合してなる湿式摺動材において、焼結銅合
金の組成が、Sn4〜12重量%、Pb0.1〜10重
量%およびMo0.5〜5重量%を必須成分として含有
し、残部がCuおよび不可避不純物からなることを特徴
とする銅系摺動材。
2. A wet sliding material obtained by joining a copper alloy raw material powder onto a substrate by a powder metallurgy sintering method, wherein the composition of the sintered copper alloy is Sn 4 to 12% by weight and Pb 0.1 to 10% by weight. % And Mo 0.5 to 5% by weight as essential components, and the balance being Cu and inevitable impurities, a copper-based sliding material.
【請求項3】 基板上に銅系合金原料粉末を粉末冶金焼
結法により接合してなる湿式摺動材において、焼結銅合
金の組成が、Sn4〜12重量%およびFe−Mo0.
5〜15重量%を必須成分として含有し、残部がCuお
よび不可避不純物からなることを特徴とする銅系摺動
材。
3. A wet sliding material obtained by bonding a copper-based alloy raw material powder onto a substrate by a powder metallurgy sintering method, wherein the composition of the sintered copper alloy is Sn4 to 12 wt% and Fe-Mo0.
A copper-based sliding material, containing 5 to 15% by weight as an essential component, and the balance being Cu and inevitable impurities.
【請求項4】 基板上に銅系合金原料粉末を粉末冶金焼
結法により接合してなる湿式摺動材において、焼結銅合
金の組成が、Sn4〜12重量%、Pb0.1〜10重
量%およびFe−Mo0.5〜15重量%を必須成分と
して含有し、残部がCuおよび不可避不純物からなるこ
とを特徴とする銅系摺動材。
4. A wet sliding material obtained by joining a copper alloy raw material powder onto a substrate by a powder metallurgy sintering method, wherein the composition of the sintered copper alloy is Sn 4 to 12% by weight and Pb 0.1 to 10% by weight. % And Fe-Mo 0.5 to 15% by weight as essential components, and the balance consisting of Cu and unavoidable impurities.
【請求項5】 焼結銅合金の組成として、Ni1〜5重
量%または/およびZn1〜6重量%を含有する請求項
1、2、3又は4記載の銅系摺動材。
5. The copper-based sliding material according to claim 1, which contains 1 to 5% by weight of Ni and / or 1 to 6% by weight of Zn as a composition of the sintered copper alloy.
【請求項6】 Fe−Moが、Mo含有率55〜70重
量%のフェロモリブデン合金である請求項3又は4記載
の銅系摺動材。
6. The copper-based sliding material according to claim 3, wherein Fe-Mo is a ferromolybdenum alloy having a Mo content of 55 to 70% by weight.
【請求項7】 必要成分の銅系合金原料粉末を秤量して
均一に混合し、ついで圧粉成形したのちCu−Snの二
元系相平衡状態図「α+L」の温度範囲内で半液相状態
により粉末冶金焼結を施すことを特徴とする銅系摺動材
の製造方法。
7. A semi-liquid phase within a temperature range of a binary phase equilibrium diagram “α + L” of Cu—Sn after weighing and uniformly mixing copper-based alloy raw material powders of necessary components A method for producing a copper-based sliding material, which comprises subjecting powder metallurgy sintering to a state.
JP5342857A 1993-12-15 1993-12-15 Coppery sliding material and production thereof Pending JPH07166278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342857A JPH07166278A (en) 1993-12-15 1993-12-15 Coppery sliding material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342857A JPH07166278A (en) 1993-12-15 1993-12-15 Coppery sliding material and production thereof

Publications (1)

Publication Number Publication Date
JPH07166278A true JPH07166278A (en) 1995-06-27

Family

ID=18357034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342857A Pending JPH07166278A (en) 1993-12-15 1993-12-15 Coppery sliding material and production thereof

Country Status (1)

Country Link
JP (1) JPH07166278A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293368A (en) * 1998-04-07 1999-10-26 Daido Metal Co Ltd Copper sliding alloy
GB2359563A (en) * 2000-02-08 2001-08-29 Daido Metal Co Copper sliding alloy
EP1270753A1 (en) * 2000-03-27 2003-01-02 Komatsu Ltd. Sintered material and composite sintered contact component
GB2386610A (en) * 2002-03-18 2003-09-24 Daido Metal Co A sliding bearing material
US6844085B2 (en) 2001-07-12 2005-01-18 Komatsu Ltd Copper based sintered contact material and double-layered sintered contact member
JP2005030513A (en) * 2003-07-08 2005-02-03 Senju Metal Ind Co Ltd Multi-layer sliding member and manufacturing method therefor
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
JP2010514935A (en) * 2006-12-29 2010-05-06 ホガナス アクチボラゲット Powder, parts manufacturing method and parts
JP2014188546A (en) * 2013-03-27 2014-10-06 Kurimoto Ltd Crank press and gib liner used for the same
WO2018185944A1 (en) * 2017-04-07 2018-10-11 新日鐵住金株式会社 Sintered friction material
WO2019115524A1 (en) * 2017-12-14 2019-06-20 Metallo Belgium Improvement in copper/tin/lead production
RU2772863C2 (en) * 2017-12-14 2022-05-26 Металло Белджиум Improvement of production of copper/tin/lead

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293368A (en) * 1998-04-07 1999-10-26 Daido Metal Co Ltd Copper sliding alloy
GB2359563A (en) * 2000-02-08 2001-08-29 Daido Metal Co Copper sliding alloy
GB2359563B (en) * 2000-02-08 2002-05-22 Daido Metal Co Alloy sliding material
US6652675B2 (en) 2000-02-08 2003-11-25 Daido Metal Company Ltd. Copper alloy sliding material
EP1270753A1 (en) * 2000-03-27 2003-01-02 Komatsu Ltd. Sintered material and composite sintered contact component
US7261951B2 (en) 2001-07-12 2007-08-28 Komatsu Ltd Copper based sintered contact material and double-layered sintered contact member
US6844085B2 (en) 2001-07-12 2005-01-18 Komatsu Ltd Copper based sintered contact material and double-layered sintered contact member
US7056598B2 (en) 2001-07-12 2006-06-06 Komatsu, Ltd. Copper based sintered contact material and double-layered sintered contact member
US7087318B2 (en) 2001-07-12 2006-08-08 Komatsu Ltd. Copper based sintered contact material and double-layered sintered contact member
GB2386610A (en) * 2002-03-18 2003-09-24 Daido Metal Co A sliding bearing material
US7648773B2 (en) 2003-05-26 2010-01-19 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
JP2005030513A (en) * 2003-07-08 2005-02-03 Senju Metal Ind Co Ltd Multi-layer sliding member and manufacturing method therefor
JP2010514935A (en) * 2006-12-29 2010-05-06 ホガナス アクチボラゲット Powder, parts manufacturing method and parts
JP2014188546A (en) * 2013-03-27 2014-10-06 Kurimoto Ltd Crank press and gib liner used for the same
JPWO2018185944A1 (en) * 2017-04-07 2019-12-12 日本製鉄株式会社 Sintered friction material
WO2018185944A1 (en) * 2017-04-07 2018-10-11 新日鐵住金株式会社 Sintered friction material
CN110650812A (en) * 2017-04-07 2020-01-03 日本制铁株式会社 Sintered friction material
CN110650812B (en) * 2017-04-07 2022-04-05 日本制铁株式会社 Sintered friction material
US11534829B2 (en) 2017-04-07 2022-12-27 Nippon Steel Corporation Sintered friction material
WO2019115524A1 (en) * 2017-12-14 2019-06-20 Metallo Belgium Improvement in copper/tin/lead production
CN111542623A (en) * 2017-12-14 2020-08-14 梅塔洛比利时公司 Improvements in copper/tin/lead production
RU2772863C2 (en) * 2017-12-14 2022-05-26 Металло Белджиум Improvement of production of copper/tin/lead
CN114774703A (en) * 2017-12-14 2022-07-22 梅塔洛比利时公司 Improvements in copper/tin/lead production
CN111542623B (en) * 2017-12-14 2023-03-14 梅塔洛比利时公司 Improvements in copper/tin/lead production
US11767576B2 (en) 2017-12-14 2023-09-26 Metallo Belgium Copper/tin/lead production

Similar Documents

Publication Publication Date Title
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
KR100187616B1 (en) Sintered friction material composite copper alloy powder used therefor and manufacturing method thereof
KR101265391B1 (en) Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
KR100206502B1 (en) High strength self-lubricating composite material
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
KR100813484B1 (en) Hybrid material and method for manufacturing same
EP0861698B1 (en) Iron based powder mixture for powder metallurgy
JPH07166278A (en) Coppery sliding material and production thereof
WO2001032337A1 (en) Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
US3983615A (en) Sliding seal member for an internal combustion engine
KR0149739B1 (en) Sintered contact component
JPS6119750A (en) Cupreous sintered body
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JPH05320681A (en) Composite sliding material containing solid lubricant and its production
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JPH029099B2 (en)
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JPS63282221A (en) Manufacture of composite sintered material
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
JP3788385B2 (en) Manufacturing method of iron-based sintered alloy members with excellent dimensional accuracy, strength and slidability
JPH04176801A (en) Free-cutting sintered steel powder
JP2006037179A (en) Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JPH06264170A (en) Aluminum alloy having high strength and wear resistance