JPH01241713A - Manufacture of oxide superconductor wire - Google Patents

Manufacture of oxide superconductor wire

Info

Publication number
JPH01241713A
JPH01241713A JP63070148A JP7014888A JPH01241713A JP H01241713 A JPH01241713 A JP H01241713A JP 63070148 A JP63070148 A JP 63070148A JP 7014888 A JP7014888 A JP 7014888A JP H01241713 A JPH01241713 A JP H01241713A
Authority
JP
Japan
Prior art keywords
wire
oxide
composite
precursor
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070148A
Other languages
Japanese (ja)
Inventor
Kenji Goto
謙次 後藤
Yoshimitsu Ikeno
池野 義光
Atsushi Kume
篤 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63070148A priority Critical patent/JPH01241713A/en
Publication of JPH01241713A publication Critical patent/JPH01241713A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the superconductive characteristic by making a precursor of an oxide-based superconductor by sintering a composite formed body obtained by inserting a core wire made of a non-oxidizing material into a formed body, inserting the precursor into a metallic pipe to form a complex body, reducing the diameter of the complex body to make it into a wire-material and heat- treating the wire material. CONSTITUTION:A material of the compositional ratio of A2B1Cu1O5 and a material of the compositional ratio of B3Cu5Oy (where y=5-15) are mixed together with the mol mixing ratio of 1:1. When the mixture is press-formed to make a composite body, at least one core wire made of non-oxidizing mate rial is inserted into the formed body to make a composite formed body. The composite formed body is sintered to make a precursor of an oxide based super conductor. The precursor is inserted into a metallic pipe to form a composite body. The composite body is made into a wire by a diameter reducing process and heat treated. (The element A is of the group IIIa and the element B is of the group IIa.) This makes it possible to obtain a superconductor wire of a high mechanical strength, an excellent superconductive characteristic such as the critical current density with a high efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は超電導マグネットコイルや電力輸送等に使用
される超電導線に係わり、超電導体として酸化物系超電
導体を用いたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to superconducting magnet coils, superconducting wires used for power transport, etc., and relates to superconducting wires using oxide-based superconductors as superconductors.

[従来の技術] 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を越える値を示す酸化物
系の超電導材料が種々発見されている。
[Prior Art] Recently, various oxide-based superconducting materials have been discovered whose critical temperature (T c ) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature.

この種の酸化物系超電導材料は、一般式A−B−Cu−
0(ただしAはY、Sc、La、Yb、Er、Eu、H
o。
This type of oxide-based superconducting material has the general formula AB-Cu-
0 (However, A is Y, Sc, La, Yb, Er, Eu, H
o.

Dy等の周期率表IIIa族元素の1種以上を示し、B
はMg、Ca,SR,Ba等の周期率表Ua族元素の1
種以上を示す)で示されるものである。
Indicates one or more elements of group IIIa of the periodic table such as Dy, B
is one of the Ua group elements of the periodic table such as Mg, Ca, SR, Ba, etc.
(indicating more than one species).

従来、このような酸化物系超電導体を備えた超電導線の
製造方法の一例として以下に説明する方法が知られてい
る。
Conventionally, the method described below is known as an example of a method for manufacturing a superconducting wire including such an oxide-based superconductor.

A−B−Cu−0で示される酸化物系超電導体を構成す
る各元素を含む複数の原料粉末を混合して混合粉末を作
成し、ついでこの混合粉末を仮焼して不要成分を除去し
、この仮焼粉末を熱処理して超電導粉末とした後にこの
超電導粉末を金属パイプに充填し、更に縮径して所望の
直径の線材などに成形した後、熱処理を施して超電導線
材を製造する方法である。
A mixed powder is created by mixing multiple raw material powders containing each element constituting the oxide superconductor represented by A-B-Cu-0, and then this mixed powder is calcined to remove unnecessary components. A method of manufacturing a superconducting wire by heat-treating this calcined powder to make a superconducting powder, filling this superconducting powder into a metal pipe, further reducing the diameter and forming it into a wire of a desired diameter, and then heat-treating it. It is.

[発明が解決しようとする課題J しかしながら上記のような製造方法では原料粉末を完全
に均一に混合し、十分に圧粉して粉末成形体を形成する
ことが困難であるため、圧密度が十分でない粉末成形体
に熱処理を施して焼結することになり、得られた超電導
線にあっては各元素の固相反応が十分になされていない
傾向があり、酸化物系超電導体全体が均一な結晶構造と
ならず、優れた特性を示す超電導線を製造することがで
きない問題があった。またこの固相反応は原料粉末の界
面部分で進行するものであり、反応速度が小さいので長
時間にわたる高温熱処理を施しても超電導体の生成効率
が悪い問題があった。さらに圧密度が十分ではない粉末
成形体を焼結して超電導線を製造した場合、超電導体内
部の気孔率が比較的大きいために超電導線の曲げ強度が
不足するなど機械的強度面での不満らある。
[Problem to be solved by the invention J] However, in the above manufacturing method, it is difficult to mix the raw material powders completely uniformly and sufficiently compact them to form a powder compact, so it is difficult to achieve a sufficient degree of compaction. In the superconducting wire obtained, the solid phase reaction of each element tends to be insufficient, and the entire oxide superconductor is uniform. There was a problem in that it was not possible to manufacture a superconducting wire that did not have a crystalline structure and had excellent characteristics. In addition, this solid phase reaction proceeds at the interface of the raw material powder, and the reaction rate is slow, so there is a problem that the production efficiency of superconductors is poor even if long-term high-temperature heat treatment is performed. Furthermore, when superconducting wires are manufactured by sintering powder compacts that are not sufficiently compacted, there are dissatisfaction with mechanical strength, such as insufficient bending strength of the superconducting wires due to the relatively large porosity inside the superconductors. There are.

この発明は上記課題に鑑みてなされたもので、機械強度
が高く、臨界電流密度などの超電導特性が優れた高特性
の酸化物系超電導線材を効率良く製造する方法を提供す
ることを目的としている。
This invention was made in view of the above problems, and aims to provide a method for efficiently manufacturing a high-performance oxide-based superconducting wire material that has high mechanical strength and excellent superconducting properties such as critical current density. .

[課題を解決するための手段] この発明は、一般式A−B−Cu−0(ただしAはY 
、Sc、La、Yb、Er、Eu、Ho、Dy等の周期
率表IIIa族元素の1種以上を示し、BはMg、Ca
、Sr。
[Means for Solving the Problems] The present invention is based on the general formula AB-Cu-0 (where A is Y
, Sc, La, Yb, Er, Eu, Ho, Dy, etc., and B represents Mg, Ca, etc.
, Sr.

Ba等の周期率表Ia族元素の1種以上を示す。)で示
される組成の酸化物系超電導線の製造方法であって、A
 2 B 1 Cu lOsなる組成比の第1の材料と
D 3011503’(ただしy=5〜15)なる組成
比の第2の材料とを1=1のモル比率で混合したのち、
圧縮成形処理を施し成型体を形成するに際し、成形体内
に非酸化性材料からなる少なくとも1本の芯線を挿入し
て複合成形体とし、この複合成形体を焼結して酸化物系
超電導前駆体とした後、この酸化物系超電導前駆体を金
属パイプ内に挿入して複合体を形成し、次いでこの複合
体を縮径して線材化したのち、熱処理を施すことを解決
手段とした。
Indicates one or more elements of group Ia of the periodic table, such as Ba. ) A method for manufacturing an oxide-based superconducting wire having a composition shown in A
After mixing a first material with a composition ratio of 2 B 1 Cu lOs and a second material with a composition ratio of D 3011503' (however, y = 5 to 15) at a molar ratio of 1 = 1,
When forming a molded body through compression molding, at least one core wire made of a non-oxidizing material is inserted into the molded body to form a composite molded body, and this composite molded body is sintered to form an oxide-based superconducting precursor. The solution was to insert this oxide-based superconducting precursor into a metal pipe to form a composite, then reduce the diameter of this composite to form a wire, and then heat treat it.

[作用コ AtB+Cu+Osなる組成比の第1の材料とB3Cu
50y(ただしV=5〜15)なる組成比の第2の材料
の融点は共に従来法における焼結温度の1000℃より
低いので従来法に比べて焼結温度を低くすることが可能
である。
[First material with a composition ratio of AtB+Cu+Os and B3Cu]
Since the melting points of the second materials having a composition ratio of 50y (V=5 to 15) are both lower than the sintering temperature of 1000° C. in the conventional method, it is possible to lower the sintering temperature compared to the conventional method.

複合成形体内に芯線を挿入したので材料を圧縮成形する
際に材料が均一に圧密され、十分な焼結密度が得られる
。さらに複合体を縮径して線材化する際にも高い加工率
で縮径することができるので、複合体の密度を向上させ
ることができる。
Since the core wire is inserted into the composite molded body, the material is uniformly consolidated during compression molding, and sufficient sintered density can be obtained. Further, when reducing the diameter of the composite to form a wire rod, the diameter can be reduced at a high processing rate, so the density of the composite can be improved.

[実施例] 以下、実施例に沿ってこの発明の製造方法を詳しく説明
する。
[Example] Hereinafter, the manufacturing method of the present invention will be explained in detail with reference to Examples.

この例では、まずYtBa+Cu+Osなる組成比の第
1の材料とB as Cu、Oy(ただしy=5〜15
)なる組成比の第2の材料とを製造する。第1の材料Y
 t B a 1Cu + OsはY、0.粉末とB 
a CO3粉末とCuO粉末をl :1 :l (モル
比)となるようにボールミル等を用いて粉砕したのち均
一に混合し、これを大気中あるいは酸素雰囲気中、80
0〜950℃で5〜60時間加熱して得ることができる
。第2の材料B asCuBOyは第1の材料と同様に
、BaC03粉末とCuO粉末とを3:5(モル比)と
なるように均一に混合し、これを大気中あるいは酸素雰
囲気中、800〜950℃で6〜50時間加熱して得る
ことができる。
In this example, first, a first material with a composition ratio of YtBa+Cu+Os and Bas Cu, Oy (where y=5 to 15
) and a second material having a composition ratio as follows. First material Y
t B a 1Cu + Os is Y, 0. Powder and B
a CO3 powder and CuO powder are pulverized using a ball mill etc. at a molar ratio of 1:1, and then mixed uniformly.
It can be obtained by heating at 0 to 950°C for 5 to 60 hours. The second material B asCuBOy is made by uniformly mixing BaC03 powder and CuO powder at a molar ratio of 3:5, and then heating it in the air or oxygen atmosphere at a concentration of 800 to 950 It can be obtained by heating at ℃ for 6 to 50 hours.

このようにして得られた第1の材料と第2の材料とを、
焼結が速やかに進行するように粉砕して粉末化した後、
第1の材料粉末と第2の材料粉末との混合比率がモル比
でIllになるように均一に混合し、中心に芯線を配し
たゴムチューブ等に充填し、ラバープレス等の加圧装置
により圧粉成形して、中心に芯線が埋設されたバルク状
の複合成形体を作成する。このようにすると第1および
第2の材料粉末は加圧装置の圧力媒体と芯線に挾まれて
均一に圧密されるので、均一な組成の高密度の超電導体
を焼結させることができる。この芯線は複合成形体の焼
結時に第1および第2の材料粉末から酸素を奪うことの
ない非酸化性材料のうち、延展性に富む材料よりなる。
The first material and second material obtained in this way,
After pulverizing and powdering so that sintering progresses quickly,
The first material powder and the second material powder are mixed uniformly so that the molar ratio is Ill, and the mixture is filled into a rubber tube with a core wire in the center, and then pressed with a pressure device such as a rubber press. Powder molding is performed to create a bulk composite molded body with a core wire embedded in the center. In this way, the first and second material powders are uniformly consolidated by being sandwiched between the pressure medium of the pressurizing device and the core wire, so that a high-density superconductor having a uniform composition can be sintered. This core wire is made of a highly extensible non-oxidizing material that does not deprive the first and second material powders of oxygen during sintering of the composite compact.

この芯線として好適に使用される材料を例示すれば銀、
金、白金、チタン、タンタル、ステンレス鋼、銅合金、
銀合金などの金属線や炭素繊維、石英ファイバ、アルミ
ナ等のセラミックファイバなどの融点が熱処理温度の8
00℃以上でかつ高張力が得られる材料である。またこ
の芯線は複合成形体中の材料粉末の断面積に対して10
%以下程度の断面積のものを用いるのが好ましい。材料
粉末の断面積に対して10%以上の断面積を有する芯線
を用いると、製造された超電導線中の超電導体の割合が
低くなり超電導特性の劣化を招くので好ましくない。
Examples of materials suitably used for this core wire are silver,
gold, platinum, titanium, tantalum, stainless steel, copper alloy,
The melting point of metal wires such as silver alloys, carbon fibers, quartz fibers, ceramic fibers such as alumina, etc. is 88% higher than the heat treatment temperature.
It is a material that can obtain high tensile strength at temperatures above 00°C. In addition, this core wire is 10% of the cross-sectional area of the material powder in the composite molded body.
% or less is preferable. If a core wire having a cross-sectional area of 10% or more of the cross-sectional area of the material powder is used, the proportion of superconductor in the manufactured superconducting wire will decrease, resulting in deterioration of superconducting properties, which is not preferable.

次に、この複合成形体を酸素雰囲気中、800〜100
0℃で1〜100時間加熱処理を施し、焼結させてY 
+B atc L130 ?−Xの組成比を有する酸化
物系超電導前駆体を得る。この圧粉成形体を構成してい
る第1および第2の材料粉末の融点は共に1000℃以
下であるので上記熱処理時の加熱によって溶融状態ある
いは半溶融状態とすることができる。一方、芯線の融点
は上記熱処理温度よりも高く、非酸化性のものであるの
で、反応せずに酸化物系超電導前駆体の中心に残り、酸
化物系超電導前駆体の機械強度を高める補強材となる。
Next, this composite molded body was placed in an oxygen atmosphere at a temperature of 800 to 100
Heat treatment was performed at 0℃ for 1 to 100 hours, and Y was sintered.
+B atc L130? An oxide-based superconducting precursor having a composition ratio of -X is obtained. Since the melting points of the first and second material powders constituting this compacted body are both 1000° C. or lower, they can be brought into a molten or semi-molten state by heating during the heat treatment. On the other hand, since the core wire has a melting point higher than the above heat treatment temperature and is non-oxidizing, it remains in the center of the oxide-based superconducting precursor without reacting, and serves as a reinforcing material that increases the mechanical strength of the oxide-based superconducting precursor. becomes.

したがって熱処理時には溶融状態となった第1の材料粉
末と第2の材料粉末とが接触し、これら材料粉末中に含
有されている各元素が拡散反応し、未反応の芯線の周囲
にY IB arc U30 ?−Xの組成比を有する
酸化物系超電導前駆体が生成する。このような熱処理に
よれば材料粉末を共に溶融状態にすることができるので
反応速度の高い均一な反応を進行させることができ、超
電導体の原料粉末を固相反応させていた従来法に比較し
て、空孔の少ない緻密な構造の酸化物系超電導前駆体を
短時間の熱処理で得ることができ効率的である。なおこ
の酸化物系超電導前駆体とは、材料の焼結が一部完了し
ておらず焼結密度が十分でない為にその材料の一部の超
電導特性が低く、より高い超電導特性を得るためには更
なる熱処理を必要とするようなものを指す。
Therefore, during heat treatment, the first material powder and the second material powder, which are in a molten state, come into contact with each other, and each element contained in these material powders undergoes a diffusion reaction, and a YIB arc is formed around the unreacted core wire. U30? An oxide-based superconducting precursor having a composition ratio of -X is produced. This kind of heat treatment makes it possible to bring both the material powders into a molten state, allowing a uniform reaction to proceed with a high reaction rate, compared to the conventional method in which the superconductor raw material powders undergo a solid phase reaction. Therefore, an oxide-based superconducting precursor having a dense structure with few pores can be obtained in a short heat treatment, which is efficient. This oxide-based superconducting precursor is a material whose superconducting properties are low because part of the sintering of the material is not completed and the sintering density is not sufficient, and in order to obtain higher superconducting properties. refers to those that require further heat treatment.

次にこの芯線を有する酸化物系超電導前駆体を金属パイ
プ中に挿入して複合体を形成したのち、この複合体を圧
延加工、線引加工あるいは鍛造加工などの縮径加工を施
して所定の線径を有する線材とする。この金属パイプの
材料には、A gSCu。
Next, the oxide-based superconducting precursor having this core wire is inserted into a metal pipe to form a composite, and then this composite is subjected to a diameter reduction process such as rolling, wire drawing, or forging to a predetermined size. The wire rod has a wire diameter. The material of this metal pipe is AgSCu.

AIあるいはこれらの合金、ステンレス鋼などの金属材
料を用いることができる。このようにすると内部に収納
された酸化物系超電導前駆体は金属パイプと芯線とに挾
まれるので、縮径加工時に全線に亙って均一に圧力が付
与され、気孔が充填されるので、酸化物系超電導前駆体
の密度を増加させることができ、従来法では実現できな
かった5゜5g/cffi’以上の高密度の焼結体を得
ることができる。さらに、酸化物系超電導前駆体内には
芯線が埋設されているので複合体の機械強度を向上させ
、縮径加工時の断線や割れ欠陥を防止することができる
Metal materials such as AI, alloys thereof, and stainless steel can be used. In this way, the oxide-based superconducting precursor stored inside is sandwiched between the metal pipe and the core wire, so pressure is applied uniformly to the entire wire during diameter reduction processing, and the pores are filled. The density of the oxide-based superconducting precursor can be increased, and a sintered body with a high density of 5.5 g/cffi' or more, which could not be achieved by conventional methods, can be obtained. Furthermore, since the core wire is embedded within the oxide-based superconducting precursor, the mechanical strength of the composite can be improved, and wire breakage and cracking defects can be prevented during diameter reduction processing.

次いでこの線材化された複合体に熱処理を施す。Next, this wire-shaped composite is subjected to heat treatment.

この熱処理は好ましくは酸素雰囲気中、800〜100
0℃で1〜I00時間程度加熱した後に徐冷することに
よって行う。この熱処理は線材化された複合体中の酸化
物系超電導前駆体の超電導特性を向上させるためのもの
であって、この酸化物系超電導前駆体は先の縮径処理に
より密度が増加しているので、これを加熱することによ
り先の焼結処理の際の未反応部分の溶融反応を進行させ
ることができる。また上記熱処理によっても芯線は酸化
されることなく酸化物系超電導線の中心に残り、酸化物
系超電導体の機械強度を高める補強材となる。したがっ
てこのような熱処理により上記酸化物系超電導前駆体は
その全線に亙って均一な超電導特性を有する組成比がY
 +B atc U307−にで示され、その中心に補
強材となる芯線を有する酸化物系超電導線となる。さら
に従来法では1000℃以上に加熱しないと実現できな
かった理論密度に近い5 、5 g/ am’以上の焼
結密度を実現することができ、これにより高い臨界温度
と臨界電流密度とが実現できる。なおこの熱処理の後、
室温まで徐冷するには400〜600℃の温度域に一定
時間保持し、生成した酸化物系超電導線材の結晶構造が
斜方晶に変態するのを促進する方法を利用しても良い。
This heat treatment is preferably performed in an oxygen atmosphere at a temperature of 800 to 100
This is carried out by heating at 0° C. for about 1 to 100 hours and then slowly cooling. This heat treatment is to improve the superconducting properties of the oxide-based superconducting precursor in the wire-shaped composite, and the density of this oxide-based superconducting precursor has been increased by the previous diameter reduction treatment. Therefore, by heating this, the melting reaction of the unreacted portion during the previous sintering process can proceed. Further, even through the above heat treatment, the core wire remains at the center of the oxide superconducting wire without being oxidized, and serves as a reinforcing material that increases the mechanical strength of the oxide superconductor. Therefore, by such heat treatment, the above-mentioned oxide-based superconducting precursor has a composition ratio of Y that has uniform superconducting properties over its entire line.
+B atc U307- is an oxide-based superconducting wire having a core wire serving as a reinforcing material at its center. Furthermore, it is possible to achieve a sintered density of 5.5 g/am' or higher, which is close to the theoretical density, which could not be achieved without heating to 1000°C or higher using conventional methods, and this allows for a high critical temperature and critical current density. can. Furthermore, after this heat treatment,
For slow cooling to room temperature, a method may be used in which the wire is held in a temperature range of 400 to 600° C. for a certain period of time to promote transformation of the crystal structure of the produced oxide-based superconducting wire into orthorhombic crystal.

このような製造方法では第1および第2の材料粉末とを
混合し、これらを焼結させることにより、均一で反応速
度の高い溶融拡散反応を生じさせることができるので、
超電導体の原料粉末を固相反応させていた従来法に比較
して、原料中の各元素の反応速度が速いために空孔の少
ない緻密な構造の超電導体を短時間で製造することがで
きる。さらに成形体中には芯線を埋設しであるので、第
1および第2の材料粉末を均一に混合し、十分に圧密す
ることができるので、高密度の超電導体を製造すること
ができる。また複合体中の酸化物系超電導前駆体は縮径
加工の際に金属パイプと芯線とに挾まれているために十
分に圧密されるので熱処理により各元素が反応する際に
、元素の拡散か円滑になされる。さらに芯線は熱処理に
よって反応せずに残るので超電導線の機械強度を向上さ
せる補強材となり、このため生成された超電導線は焼結
密度か高く、気孔率が低い均一な組成となり、優れた超
電導特性と機械強度を示す。
In such a manufacturing method, by mixing the first and second material powders and sintering them, it is possible to cause a uniform melt-diffusion reaction with a high reaction rate.
Compared to the conventional method of solid-phase reaction of superconductor raw material powder, the reaction rate of each element in the raw material is faster, making it possible to produce a superconductor with a dense structure with fewer pores in a shorter time. . Furthermore, since the core wire is embedded in the molded body, the first and second material powders can be uniformly mixed and sufficiently consolidated, so that a high-density superconductor can be manufactured. In addition, the oxide-based superconducting precursor in the composite is sufficiently compacted because it is sandwiched between the metal pipe and the core wire during diameter reduction processing, so that when each element reacts during heat treatment, the diffusion of the elements occurs. done smoothly. Furthermore, since the core wire remains unreacted during heat treatment, it becomes a reinforcing material that improves the mechanical strength of the superconducting wire.As a result, the produced superconducting wire has a uniform composition with high sintering density and low porosity, and has excellent superconducting properties. and mechanical strength.

また金属パイプを除去した後に熱処理を施すので、なお
上記例においてはY−Ba−Cu−0系の酸化物系超電
導線の製造方法について説明したが、この発明はその他
のA−B−Cu−0系の酸化物系超電導線の製造方法に
適用できるのは勿論である。また第1および第2の材料
は粉末でも粒状でもよく、酸化物系超電導線内に複数本
の芯線を挿入しても良い。
Further, since heat treatment is performed after removing the metal pipe, the above example describes a method for manufacturing a Y-Ba-Cu-0 based oxide superconducting wire, but the present invention is applicable to other A-B-Cu-0 superconducting wires. Of course, the present invention can be applied to a method for manufacturing a 0-based oxide-based superconducting wire. Further, the first and second materials may be in powder or granular form, and a plurality of core wires may be inserted into the oxide superconducting wire.

(製造例) この発明の製造方法に基づいてY−Ba−Cu−0系超
電導線の製造を実施した。
(Manufacturing Example) A Y-Ba-Cu-0 based superconducting wire was manufactured based on the manufacturing method of the present invention.

Y、0.とBaCO3とCuOの各粉末をモル比で1 
:1 :lになるように均一に粉砕混合した後、この粉
末を大気雰囲気中、950℃で24時間加熱しY yB
 aCuo sとして、この後粉砕処理を施して第1の
材料粉末とした。次にB a COsとCuOとをモル
比で3;5になるように混合したのち、この粉末を大気
雰囲気中、850℃で24時間加熱しBa、Cu、Oy
として、この後粉砕処理を施して第2の材料粉末とした
。この第1の材料粉末と第2の材料粉末とを混合比率が
モル比で!=1になるように混合し、直径0.7cmの
ゴムチューブ内に充填し、その中心に銀製の直径0.2
cmの芯線を挿入したのち、ラバープレスによりバルク
状の複合成形体を作成した。この複合成形体を酸素雰囲
気中、920℃で20時間加熱したところ、芯線は反応
せずに残り、芯線の周囲の材料粉末か溶融反応を起こし
、Y B arc uaO?−Xの組成比で示され、銀
製の芯線を有する酸化物系超電導前駆体が得られた。次
にこの酸化物系超電導前駆体を内径7 mm、外径10
mmの銀製の金属パイプ内に挿入し、更にこれを直径1
.5111I11まで縮径加工して;夏合体の線材を形
成した。次にこの酸化物系超電導前駆体を酸素気流中、
950℃で8時間加熱し、その後室温まで一り00℃/
時間で徐冷して、中心に銀製の芯線を有する酸化物系超
電導線を得た。
Y, 0. and each powder of BaCO3 and CuO in a molar ratio of 1
After uniformly pulverizing and mixing to give a ratio of 1:1 to 1:1, the powder was heated at 950°C for 24 hours in the air to produce Y yB.
ACuos was then subjected to a pulverization treatment to obtain a first material powder. Next, B a COs and CuO were mixed in a molar ratio of 3:5, and the powder was heated at 850°C for 24 hours in the air to form Ba, Cu, Oy.
After that, it was subjected to a pulverization treatment to obtain a second material powder. The mixing ratio of this first material powder and second material powder is the molar ratio! = 1, fill it in a rubber tube with a diameter of 0.7 cm, and place a silver tube with a diameter of 0.2 cm in the center.
After inserting a core wire of cm, a bulk composite molded body was created using a rubber press. When this composite molded body was heated at 920°C in an oxygen atmosphere for 20 hours, the core wire remained unreacted, and the material powder around the core wire underwent a melting reaction, resulting in Y Barc uaO? An oxide-based superconducting precursor having a silver core wire and having a composition ratio of -X was obtained. Next, this oxide-based superconducting precursor was made into a mold with an inner diameter of 7 mm and an outer diameter of 10 mm.
Insert it into a silver metal pipe with a diameter of 1 mm.
.. The diameter was reduced to 5111I11; a summer coalescent wire rod was formed. Next, this oxide-based superconducting precursor was placed in an oxygen stream.
Heated at 950℃ for 8 hours, then heated to room temperature at 00℃/
After cooling slowly for several hours, an oxide superconducting wire having a silver core wire was obtained.

このようにして得られた酸化物系超電導線の臨界温度(
T c)および臨界電流密度(Jc)を測定した結果、
Tc=89に、 Jc=3700A/Cm’と優れた超
電導特性を示した。またこの酸化物系超電導線の断面を
X線回折分析した結果、Y、Ba、Cu307−Xなる
組成の斜方晶の生成が確認された。さらにこの超電導線
を巻胴に巻回してみたところ、クラックを生じることな
く巻回することができ、機械強度も十分高いことが明ら
かとなった。
The critical temperature of the oxide superconducting wire obtained in this way (
As a result of measuring Tc) and critical current density (Jc),
It exhibited excellent superconducting properties with Tc=89 and Jc=3700A/Cm'. Furthermore, as a result of X-ray diffraction analysis of a cross section of this oxide-based superconducting wire, the formation of orthorhombic crystals having a composition of Y, Ba, and Cu307-X was confirmed. Furthermore, when this superconducting wire was wound around a winding drum, it was found that the wire could be wound without cracking and that the mechanical strength was sufficiently high.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明の製造方法は、A2 B 
+ Cu r Osなる組成比の第1の材料とB3Cu
5Oy(ただしy=5〜15)なる組成比の第2の材料
とをl;1のモル比率で混合したのち、圧縮成形処理を
施し成型体を形成するに際し、成形体内に非酸化性材料
からなる少なくとも1本の芯線を挿入して複合成形体と
し、この複合成形体を焼結して酸化物系超電導前駆体と
した後、この酸化物系超電導前駆体を金属パイプ内?こ
挿入して複合体を形成し、次いでこの複合体を縮径して
線材化したのち、熱処理を施すものであるので、各原料
粉末をA :B :Cu= l :4 :6の比率で混
合した混合粉末に熱処理を施す従来方法に比較して、反
応速度が高く均一な反応を生じさせて酸化物系超電導体
を生成させることができ、均質で緻密な構造を有する酸
化物系超電導体を生成できる効果がある。
As explained above, the manufacturing method of the present invention includes A2 B
+Cu r Os and the first material with a composition ratio of B3Cu
After mixing with a second material having a composition ratio of 5 Oy (y = 5 to 15) at a molar ratio of 1:1, compression molding is performed to form a molded body. At least one core wire is inserted to form a composite molded body, and this composite molded body is sintered to form an oxide-based superconducting precursor, and then this oxide-based superconducting precursor is placed inside a metal pipe. This is inserted to form a composite, which is then reduced in diameter to form a wire and then heat treated, so each raw material powder is mixed in a ratio of A:B:Cu=l:4:6. Compared to the conventional method of heat-treating a mixed powder, it is possible to generate an oxide superconductor through a faster and more uniform reaction, and the oxide superconductor has a homogeneous and dense structure. It has the effect of generating.

また芯線を挿入したので材料粉末を圧縮成形加工しバル
ク状の複合成形体を形成する際と、金属バイブ内に収納
された酸化物系超電導前駆体を縮径加工する際に、十分
な圧力を付与することができるようになり、高い焼結密
度の酸化物系超電導線を得ることができる。さらに得ら
れた酸化物系超電導線は高密度で、その中心には芯線が
埋設されているので、高い機械強度を有するものとなる
In addition, since the core wire is inserted, sufficient pressure is applied when compressing the material powder to form a bulk composite molded body and when reducing the diameter of the oxide-based superconducting precursor housed in the metal vibrator. As a result, an oxide-based superconducting wire with high sintered density can be obtained. Furthermore, the obtained oxide-based superconducting wire has a high density and has a core wire embedded in its center, so it has high mechanical strength.

Claims (1)

【特許請求の範囲】 一般式A−B−Cu−O(ただしAはY,Sc,La,
Yb,Er,Eu,Ho,Dy等の周期率表IIIa族元
素の1種以上を示し、BはMg,Ca,SR,Ba等の
周期率表IIa族元素の1種以上を示す。)で示される組
成の酸化物系超電導線の製造方法であって、 A_2B_1Cu_1O_5なる組成比の第1の材料と
B_3Cu_5Oy(ただしy=5〜15)なる組成比
の第2の材料とを1:1のモル比率で混合したのち、圧
縮成形処理を施し成型体を形成するに際し、成形体内に
非酸化性材料からなる少なくとも1本の芯線を挿入して
複合成形体とし、この複合成形体を焼結して酸化物系超
電導前駆体とした後、この酸化物系超電導前駆体を金属
パイプ内に挿入して複合体を形成し、次いでこの複合体
を縮径して線材化したのち、熱処理を施すことを特徴と
する酸化物系超電導線の製造方法。
[Claims] General formula A-B-Cu-O (where A is Y, Sc, La,
B represents one or more elements of group IIIa of the periodic table such as Yb, Er, Eu, Ho, and Dy, and B represents one or more of elements of group IIa of the periodic table such as Mg, Ca, SR, and Ba. ), in which a first material with a composition ratio of A_2B_1Cu_1O_5 and a second material with a composition ratio of B_3Cu_5Oy (y=5 to 15) are mixed at 1:1. After mixing at a molar ratio of This oxide-based superconducting precursor is then inserted into a metal pipe to form a composite, which is then reduced in diameter to form a wire and then heat-treated. A method for manufacturing an oxide-based superconducting wire, characterized by:
JP63070148A 1988-03-24 1988-03-24 Manufacture of oxide superconductor wire Pending JPH01241713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070148A JPH01241713A (en) 1988-03-24 1988-03-24 Manufacture of oxide superconductor wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070148A JPH01241713A (en) 1988-03-24 1988-03-24 Manufacture of oxide superconductor wire

Publications (1)

Publication Number Publication Date
JPH01241713A true JPH01241713A (en) 1989-09-26

Family

ID=13423197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070148A Pending JPH01241713A (en) 1988-03-24 1988-03-24 Manufacture of oxide superconductor wire

Country Status (1)

Country Link
JP (1) JPH01241713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020826A1 (en) * 1994-01-28 1995-08-03 American Superconductor Corporation Superconducting wind-and-react coils and methods of manufacture
US6194352B1 (en) 1994-01-28 2001-02-27 American Superconductor Corporation Multifilament composite BSCCO oxide superconductor
US6284712B1 (en) 1993-04-01 2001-09-04 Alexander Otto Processing of oxide superconductors
JP2002265222A (en) * 2001-03-09 2002-09-18 Dowa Mining Co Ltd Oxide superconductor and its production process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284712B1 (en) 1993-04-01 2001-09-04 Alexander Otto Processing of oxide superconductors
US6436876B1 (en) 1993-04-01 2002-08-20 American Superconductor Corporation Processing of oxide superconductors
WO1995020826A1 (en) * 1994-01-28 1995-08-03 American Superconductor Corporation Superconducting wind-and-react coils and methods of manufacture
US5531015A (en) * 1994-01-28 1996-07-02 American Superconductor Corporation Method of making superconducting wind-and-react coils
US5798678A (en) * 1994-01-28 1998-08-25 American Superconductor Corporation Superconducting wind-and-react-coils and methods of manufacture
US6194352B1 (en) 1994-01-28 2001-02-27 American Superconductor Corporation Multifilament composite BSCCO oxide superconductor
US6603379B1 (en) 1994-01-28 2003-08-05 American Superconductor Corporation Superconducing wind-and-react-coils and methods of manufacture
JP2002265222A (en) * 2001-03-09 2002-09-18 Dowa Mining Co Ltd Oxide superconductor and its production process

Similar Documents

Publication Publication Date Title
JPH01241713A (en) Manufacture of oxide superconductor wire
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPH01167289A (en) Production of oxide superconductor
JPH01241714A (en) Manufacture of oxide superconductor wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH01241717A (en) Manufacture of oxide superconductor wire
JP2611778B2 (en) Superconducting wire manufacturing method
JP2574173B2 (en) Superconducting wire manufacturing method
JP2727565B2 (en) Superconductor manufacturing method
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP2590157B2 (en) Manufacturing method of superconductor wire
JPH01241715A (en) Manufacture of oxide superconductor wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JPS63232210A (en) Manufacture of superconductive wire
JPH01241712A (en) Manufacture of oxide superconductor wire
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JPH01115015A (en) Manufacture of superconductor wire material
JPH02160317A (en) Manufacture of superconducting wire
JPH01128318A (en) Manufacture of superconductive wire material
JPH01304618A (en) Manufacture of oxide superconductive filament
JPH04317415A (en) Production of bi-based oxide superconductor
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH01241711A (en) Manufacture of oxide superconductor wire
JPS63270314A (en) Production of superconductive material of oxide type
JPH01241716A (en) Manufacture of oxide superconductor wire