JPH01115015A - Manufacture of superconductor wire material - Google Patents

Manufacture of superconductor wire material

Info

Publication number
JPH01115015A
JPH01115015A JP62273955A JP27395587A JPH01115015A JP H01115015 A JPH01115015 A JP H01115015A JP 62273955 A JP62273955 A JP 62273955A JP 27395587 A JP27395587 A JP 27395587A JP H01115015 A JPH01115015 A JP H01115015A
Authority
JP
Japan
Prior art keywords
oxygen
superconductor
oxide superconductor
tube
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62273955A
Other languages
Japanese (ja)
Inventor
Shigeo Nakayama
茂雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62273955A priority Critical patent/JPH01115015A/en
Publication of JPH01115015A publication Critical patent/JPH01115015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable obtaining easily a superconductor wire material having superior superconducting characteristics via short-time heat treatment by applying the heat treatment after forming oxygen feed through-holes in a wire-shaped body comprising the tube material of silver or the alloy thereof filled with an oxide superconductor. CONSTITUTION:The powder of an oxide superconductor or mixed powder as the material of an oxide superconductor is filled in a tube of silver having shape maintenance capability without any reaction with oxygen at a high temperature. Then, the powder is compacted from the outside of the tube by a swaging machine and the like. Thereafter, the tube is elongated via a drawing process and the like, and processed into a wire shape. Also, the wire-shaped body with through-holes formed for feeding oxygen uniformly to the oxide superconductor is subjected to heat treatment in an atmosphere containing oxygen. The tube of silver having superior oxygen supply capability is used as a shield pipe and the heat treatment is applied after forming a plurality of through holes reaching the oxide superconductor inside the tube as aforementioned. As a result, it is possible to obtain easily a superconductor wire material having superconducting characteristics similar to a bulk material.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を使用した超電導体線材の製
造方法に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a superconductor wire using an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−0系の屑状ペロプスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物it!電導体の研究が行わ
れている(Z、Phys、B Condensed M
atter64、189−193(1986))、その
中でもY−Ba−Cu−0系で代表される酸素欠陥を有
する欠陥ペロブスカイト型((LnBa2Cu30 、
、型)(δは酸素欠陥を表し通常1以下、Lnは、Y 
、La、 Sc、 Nd、 Sn、 Eu、 Gd、O
v、110、[「、■1、vbおよび[Uから選ばれた
少なくとも 1種の元素、Baの一部はS「等で置換可
能))の酸化物超電導体は、臨界温度が90に以上と液
体窒素の沸点以上の高い温度を示すため非常に有望な材
料として注目されている(Phys、 Rev、 Le
tt。
(Prior Art) In recent years, since it was announced that Ba-La-Cu-0 based scrap perovskite oxides may have a high critical temperature, oxide IT! Research on electrical conductors is being conducted (Z, Phys, B Condensed M
atter64, 189-193 (1986)), among which defective perovskite type with oxygen defects represented by Y-Ba-Cu-0 system ((LnBa2Cu30,
, type) (δ represents oxygen defect and is usually 1 or less, Ln is Y
, La, Sc, Nd, Sn, Eu, Gd, O
The oxide superconductor of v, 110, [", ■1, vb and [at least one element selected from U, a part of Ba can be replaced with S", etc.) has a critical temperature of 90 or more. It is attracting attention as a very promising material because it exhibits a high temperature higher than the boiling point of liquid nitrogen (Phys, Rev, Le
tt.

Vol、58 No、9,908−910)。Vol. 58 No. 9, 908-910).

ところで、このような酸化物超電導体は、結晶性の酸化
物の焼結体あるいはその粉末として得られるため、これ
らを例えば線材として利用する場合、銅や銀等の金属管
に酸化物超電導体粉末を充填した後、線引きする等して
長尺化して使用することが試みられている。また、上述
した酸素欠陥を有する欠陥ペロブスカイト型の酸化物超
電導体の場合には特に、結晶中の酸素空席の量によって
超電導特性が大きく影響を受け、この酸素空席の量が多
いと臨界電流密度等の超電導特性が低下してしまうため
、線引きを行った後にこの酸素空席へ酸素を導入するた
めに充分に酸素を供給することが可能な雰囲気中で熱処
理を行っている0通常、この熱処理は900℃前後で行
われている。
By the way, such oxide superconductors are obtained as sintered bodies of crystalline oxides or their powders, so when using them as wire rods, for example, oxide superconductor powder is placed in a metal tube such as copper or silver. Attempts have been made to fill the material and then draw it into a longer length for use. In addition, especially in the case of defective perovskite-type oxide superconductors having oxygen vacancies mentioned above, the superconducting properties are greatly affected by the amount of oxygen vacancies in the crystal, and if the amount of oxygen vacancies is large, the critical current density etc. Since the superconducting properties of the wire are reduced, heat treatment is performed in an atmosphere where sufficient oxygen can be supplied to introduce oxygen into the oxygen vacancies after wire drawing.Normally, this heat treatment is performed at a temperature of 900 It is carried out at around ℃.

ところで、上述した金属管に酸化物超電導体粉末を充填
して線材化する方法において、金属管として例えば銅の
ような酸素の透過性の悪い素材を使用した場合には、上
述した酸素導入のための熱処理の際に充分に酸素を供給
することができず、充分な超電導特性が得られないとい
う問題がある。
By the way, in the above-mentioned method of filling a metal tube with oxide superconductor powder and making it into a wire, if a material with poor oxygen permeability, such as copper, is used as the metal tube, the above-mentioned oxygen introduction may occur. There is a problem in that sufficient oxygen cannot be supplied during the heat treatment, and sufficient superconducting properties cannot be obtained.

また、銅は結晶中への酸素導入のための熱処理時に激し
く酸化し、非常に脆くなり線材としての強度が得られな
くなってしまうという問題もある。
Another problem is that copper is severely oxidized during heat treatment to introduce oxygen into the crystal, making it extremely brittle and unable to provide strength as a wire.

このため、高温においても酸素と反応せず、酸素が透過
し内部の酸化物超電導体粉末への酸素供給に優れた銀が
、被覆管として期待されている。
For this reason, silver is expected to be used as a cladding tube because it does not react with oxygen even at high temperatures, allows oxygen to pass through it, and is excellent in supplying oxygen to the oxide superconductor powder inside.

(発明が解決しようとする問題点) しかしながら、上述したように鎖管を被覆管として用い
たものは、他の金属を用いたものに比べて酸素供給能力
に優れているが、銀の酸素透過能力は肉厚に大きく依存
するため、熱処理時間が肉厚Cよっては長時間となり、
V造コストが高くなるといった問題がある。このため、
線引き加工の際に被覆管の肉厚を充分に薄くするために
加工時間を長くすると、肉厚の不均一等により破損の危
険性が高くなる。また、充分に肉厚を薄くすることがで
きたとしても、バルク等から比べると単位時間あたりの
酸素供給量は低く、充分な超電導特性を得るためには長
時間の熱処理が必要であったり、さらに長時間かけて熱
処理を行ってもバルクに比べると超電導特性が低いとい
う難点がある。
(Problem to be solved by the invention) However, as mentioned above, those using chain tubes as cladding tubes have superior oxygen supply ability compared to those using other metals, but the oxygen permeability of silver is Since the capacity greatly depends on the wall thickness, the heat treatment time will be long depending on the wall thickness C.
There is a problem that V-building costs increase. For this reason,
If the processing time is prolonged in order to sufficiently reduce the wall thickness of the cladding during wire drawing, the risk of breakage increases due to uneven wall thickness, etc. Furthermore, even if the wall thickness could be made sufficiently thin, the amount of oxygen supplied per unit time would be low compared to bulk, etc., and long-term heat treatment would be required to obtain sufficient superconducting properties. Furthermore, even if heat treatment is performed over a long period of time, the superconducting properties are lower than that of the bulk material.

本発明はこのような従来の難点を解決するためになされ
たもので、被覆管の肉厚によらず充分仁酸素を供給する
ことが可能で、優れた超電導特性を有する超電導体線材
の製造方法を提供することを目的とする。
The present invention has been made to solve these conventional difficulties, and provides a method for manufacturing a superconductor wire that can supply sufficient oxygen regardless of the thickness of the cladding tube and has excellent superconducting properties. The purpose is to provide

〔発明の構成] (問題点を解決するための手段) 本発明の超電導体線材の製造方法は、酸化物超電導体粉
末あるいは加熱により酸化物超電導体となる混合粉末を
銀または銀合金からなる管材内に充填する工程と、この
管材を線状に加工する工程と、この加工工程により得た
線状体の前記管材表面から内部充填物に達する複数の貫
通孔を形成する工程と、この貫通孔の形成された線状体
を酸素含有雰囲気中で熱処理する工程とを有することを
特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a superconductor wire of the present invention is to prepare an oxide superconductor powder or a mixed powder that becomes an oxide superconductor by heating into a tube material made of silver or a silver alloy. a step of processing this tube material into a linear shape, a step of forming a plurality of through holes reaching the inner filling material from the surface of the tube material of the linear body obtained by this processing step, and a step of forming the through holes. The method is characterized by comprising a step of heat-treating the formed linear body in an oxygen-containing atmosphere.

酸化物超電導体としては、多数のものが知られているが
、臨界温度の高い、希土類元素含有のペロブスカイト型
の酸化物超電導体の使用が実用的効果が高い、ここでい
う希土類元素を含有しペロブスカイト型構造を有する酸
化物rA電導体は、超電導状態を実現できるものであれ
ばよく、例えばLnBa  Cu  O系(δは酸素欠
陥を表し通常1237−δ 以下の数、Lnは、Y、 La、 Sc、 Nd、 S
i、 Eu、 Gd、ay、110、E「、■1、Yb
、 Lu等の希土類元素から選ばれた少なくとも 1種
の元素、Baの一部はCa等で置換可能、)等の酸素欠
陥を有する欠陥ペロブスカイト型、5r−La−CU−
0系等の層状ペロブスカイト型等の広義にペロブスカイ
ト型を有する酸化物が例示される。tた、希土類元素は
広義の定義とし、Sc、 YおよびLa系を含むものと
する。代表的な系としてY−Ba−Cu−0系のほかに
、YをEu、Oy、Ho、E「、Tn、 Yb、 Lu
等の希土類で置換した系、5c−Ba−Cu−0系、5
r−La−Cu−0系、さらにS「をBa、 Ca’t
’置換した系等が挙げられる。
Many types of oxide superconductors are known, but the use of perovskite-type oxide superconductors containing rare earth elements, which have a high critical temperature, has a high practical effect. The oxide rA conductor having a perovskite structure may be one that can realize a superconducting state, for example, LnBa Cu O type (δ represents an oxygen defect and is usually a number of 1237-δ or less, Ln is Y, La, Sc, Nd, S
i, Eu, Gd, ay, 110, E", ■1, Yb
, at least one element selected from rare earth elements such as Lu, a part of Ba can be replaced with Ca etc.), 5r-La-CU-
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as 0 type. Furthermore, rare earth elements are defined in a broad sense and include Sc, Y, and La elements. In addition to the Y-Ba-Cu-0 system, representative systems include Y as Eu, Oy, Ho, E'', Tn, Yb, Lu.
5c-Ba-Cu-0 system, 5
r-La-Cu-0 system, and further S'Ba, Ca't
Examples include 'substituted systems.

本発明に使用される酸化物超電導体粉末は、例えば以下
のようにして製造される。
The oxide superconductor powder used in the present invention is produced, for example, as follows.

まず、Y 、 Ba、 Cu等のペロブスカイト型酸化
物超電導体の構成元素を十分混合する。混合の際には、
Y2 03 、BaCO3、CuO等の酸化物や炭酸塩
を原料として用いることができるほか、焼成後酸化物に
転化する硝酸塩、水酸化物等の化合物を用いてもよい、
さらには共沈法等で得たシュウ酸塩等を用いてもよい。
First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are sufficiently mixed. When mixing,
In addition to oxides and carbonates such as Y2 03 , BaCO3, and CuO, which can be used as raw materials, compounds such as nitrates and hydroxides that are converted to oxides after firing may also be used.
Furthermore, oxalate obtained by a coprecipitation method or the like may be used.

ペロブスカイト型酸化物超電導体を構成する元素は、基
本的に化学量論比の組成となるように混合するが、多少
製造条件等との関係等でずれていても差支えない0例え
ば、Y−Ba−Cu−0系ではY 1 nolに対しB
a 2110+、Cu 3 notが標準組成であるが
、実用上はY 11’lolに対して、Ba 2±0.
6 l1ol、Cu 3±0.2 nol程度のずれは
問題ない。
The elements constituting the perovskite-type oxide superconductor are basically mixed to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions etc. For example, Y-Ba -In the Cu-0 system, B for Y 1 nol
a 2110+, Cu 3 not is the standard composition, but in practice it is Y 11'lol and Ba 2±0.
A deviation of approximately 6 l1ol and Cu 3±0.2 nol is not a problem.

そして、前述の原料を十分に混合した後、850〜98
0℃程度の温度で焼成する。この焼成は充分に酸素の供
給できるような酸素含有雰囲気中で行うことが好ましい
0次いで、必要に応じて酸素含有雰囲気中、好ましくは
酸素雰囲気中で熱処理するか、または同様な雰囲気中で
300℃程度まで徐冷することにより、酸素欠陥δに酸
素を導入し超電導特性を向上させることができる。この
熱処理は、通常300〜700℃程度で行う。
After thoroughly mixing the above-mentioned raw materials, 850 to 98
Fire at a temperature of about 0°C. This firing is preferably carried out in an oxygen-containing atmosphere where sufficient oxygen can be supplied. Next, if necessary, heat treatment is performed in an oxygen-containing atmosphere, preferably an oxygen atmosphere, or at 300°C in a similar atmosphere. By slow cooling to a certain degree, oxygen can be introduced into the oxygen defects δ and the superconducting properties can be improved. This heat treatment is usually performed at about 300 to 700°C.

次に、この焼成物をボールミル、サンドグラインダ、そ
の他公知の手段により粉砕する。このとき、ペロプスカ
イト型の酸化物超電導体は、へき開面から分割されて微
粉末となる。この粉砕は、平均粒径が0.1〜5μIと
なるように行うことが好ましい。
Next, this fired product is pulverized using a ball mill, a sand grinder, or other known means. At this time, the perovskite-type oxide superconductor is split from the cleavage plane and becomes fine powder. This pulverization is preferably performed so that the average particle size is 0.1 to 5 μI.

このようにして得られた酸化物超電導体粉末は、酸素欠
陥δを有する酸素欠陥型ペロプスカイト構造(LnBa
2Cu307−、 (δは通常1以下の数))となる。
The oxide superconductor powder thus obtained has an oxygen-deficient perovskite structure (LnBa
2Cu307-, (δ is usually a number of 1 or less)).

なお、BaをS「やCa等で置換することも可能であり
、さらにCuの一部をTi、 V 、 Cr、Mn、 
Fe、C01N1、Zn等で置換することもできる。こ
の置換量は、′M電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまり多量の置換は超電導特性
を低下させてしまうので80io 1%以下とする。
In addition, it is also possible to replace Ba with S'', Ca, etc., and further replace a part of Cu with Ti, V, Cr, Mn,
Substitution with Fe, C01N1, Zn, etc. is also possible. The amount of substitution can be set as appropriate within a range that does not reduce the 'M conductive properties, but too much substitution will reduce the superconducting properties, so it is set to 80io1% or less.

本発明の超電導体線材の製造方法についてさらに詳述す
ると、まず上述したような方法により作製した酸化物超
電導体粉末、あるいは上述しな酸化物超電導体の原料と
なる混合粉末を高温においても酸素と反応せず形状維持
能力に優れた銀からなる管材内に充填する。この管材の
材質としては、銀のみに限らず、本発明の効果を損わな
い範囲で銀合金を使用することも可能である。次いで、
スェージングマシン等により管材外から粉末をつき固め
た後、伸線加工を施す等して長尺化し、線状に加工する
To explain in more detail the method for manufacturing the superconductor wire of the present invention, first, the oxide superconductor powder produced by the method described above or the mixed powder that is the raw material for the oxide superconductor described above is exposed to oxygen even at high temperatures. It is filled into a tube made of silver, which does not react and has excellent shape retention ability. The material of this tube material is not limited to silver, but it is also possible to use a silver alloy within a range that does not impair the effects of the present invention. Then,
After compacting the powder from the outside of the tube using a swaging machine or the like, it is made into a long length by wire drawing, etc., and processed into a linear shape.

次に、この酸化物超電導体粉末または加熱により酸化物
超電導体となる混合粉末を充填した管材の表面から内部
充填物に達する複数の貫通孔を形成する。この貫通孔の
形成は、ドリルやレーザ加工により容易に行うことが可
能である。また、貫通孔の大きさは、あまり大きいと線
材として使用する際に不便であり、また逆に小さすぎる
と酸素供給量が不充分となるため、直径0.1gm −
0,5ii程度が適当である。また、均一に酸化物超電
導体に酸素を供給するために等間隔で設けることが好ま
しい。
Next, a plurality of through holes reaching the inner filling are formed from the surface of the tube filled with the oxide superconductor powder or the mixed powder that becomes an oxide superconductor by heating. This through hole can be easily formed by drilling or laser processing. In addition, if the size of the through hole is too large, it will be inconvenient to use it as a wire rod, and if it is too small, the amount of oxygen supplied will be insufficient, so the diameter is 0.1 g -
Approximately 0.5ii is appropriate. Further, in order to uniformly supply oxygen to the oxide superconductor, it is preferable to provide them at equal intervals.

この後、この貫通孔を形成した線状体に酸素含有雰囲気
中で熱処理を施す。この熱処理は、850℃〜980℃
程度の温度条件で行うことが適当であり、この熱処理は
0.5〜2時間程度で充分である。
Thereafter, the linear body with the through holes formed therein is subjected to heat treatment in an oxygen-containing atmosphere. This heat treatment is carried out at 850°C to 980°C.
It is appropriate to carry out the heat treatment under a temperature condition of approximately 0.5 to 2 hours.

次いでこの熱処理温度から300℃程度まで酸素を充分
に供給しながら徐冷することにより超電導特性が向上す
る。また、酸素を充分に供給しながら300℃〜700
℃程度の温度で数時間程度保持することも効果的である
Next, the superconducting properties are improved by slowly cooling from this heat treatment temperature to about 300° C. while supplying sufficient oxygen. Also, while supplying sufficient oxygen,
It is also effective to maintain the temperature at a temperature of about °C for several hours.

なお、この超電導体線材を実際に使用する場合には、例
えば表面にメツキを施したり、また使用温度によっては
熱硬化樹脂等によって貫通孔を塞いだ後に使用する。
When this superconductor wire is actually used, the surface is plated, or depending on the operating temperature, the through holes are closed with a thermosetting resin or the like before use.

(作 用) 本発明の超電導体線材の製造方法において、銀または銀
合金からなる管材内に酸化物超電導体を充填してなる線
状体に酸素供給用の貫通孔を形成した後に熱処理を施し
ているので、管材の肉厚によらず充分に酸素を供給する
ことが可能となり、よって短時間の熱処理で優れたa電
導特性を有する超電導体線材を容易に得ることが可能と
なる。
(Function) In the method for manufacturing a superconductor wire of the present invention, a wire body made of a tube made of silver or a silver alloy filled with an oxide superconductor is heat-treated after a through hole for oxygen supply is formed in the wire body. Therefore, it is possible to supply sufficient oxygen regardless of the wall thickness of the tube material, and it is therefore possible to easily obtain a superconductor wire having excellent a-conductivity characteristics with a short heat treatment.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 粒径1〜5μIIのBaC03粉末21101%、Y2
O3粉末0.5mo1%、 CuO粉末3ioHを、充
分混合して大気中900℃で48時間焼成して反応させ
た後、この焼成物をさらに酸素雰囲気中で800℃で2
4時間焼成して反応させ、酸素空席に酸素を導入した後
、ボールミルを用いて粉砕し、平均粒径0.5μmのペ
ロブスカイト型の酸化物超電導体粉末を得た。
Example BaC03 powder 21101% with a particle size of 1 to 5μII, Y2
After thoroughly mixing 0.5 mo1% of O3 powder and 3ioH of CuO powder and firing in the atmosphere at 900°C for 48 hours to react, this fired product was further heated at 800°C in an oxygen atmosphere for 2 hours.
After firing for 4 hours to cause a reaction and introduce oxygen into the oxygen vacancies, the mixture was pulverized using a ball mill to obtain perovskite-type oxide superconductor powder with an average particle size of 0.5 μm.

次に、この酸化物超電導体粉末を外径2G11+1X内
径1611+1X長さ70mmの一端を鋼材により封止
されなた鎖管中に入れ、プレス圧1tO1’l/dでつ
きかためた後、他端に銀栓をして通気孔を残して溶接し
、次いでタークスヘッド機で一端を保持して外径2、0
IIn x長さ8璽まで冷間で伸線加工を施し、線状に
加工した。
Next, one end of this oxide superconductor powder with an outer diameter of 2G11+1X, an inner diameter of 1611+1X, and a length of 70mm was put into a chain pipe sealed with a steel material, and after being hardened with a press pressure of 1tO1'l/d, the other end was Welded with a silver stopper, leaving a ventilation hole, and then held one end with a Turkshead machine to reduce the outer diameter to 2.0.
Cold wire drawing was performed to a length of IIn x 8 coils to form a wire.

次いで、この線状体の径方向に゛5ni間隔でドリルに
よって直径0,11〜0,21程度の貫通孔を形成した
Next, through holes with a diameter of about 0.11 to 0.21 mm were formed by a drill at intervals of 5 ni in the radial direction of this linear body.

この後、この線状体を大気中で930℃、10時間の条
件で熱処理し、続いて600℃まで5℃/分で冷却し、
600℃から370’Cまで0.2jQ1分で酸素を供
給しながら1℃/分で徐冷して目的とする超電導体線材
を得た。
After that, this linear body was heat-treated in the atmosphere at 930°C for 10 hours, and then cooled to 600°C at a rate of 5°C/min.
The superconductor wire was slowly cooled from 600°C to 370'C at 1°C/min while supplying oxygen at 0.2jQ1min to obtain the desired superconductor wire.

このようにして得た超電導体線材の超電導特性を測定し
た°ところ、臨界温度は94にで、臨界電流密度は11
10^/dと良好な結果が得られた。
When the superconducting properties of the superconductor wire thus obtained were measured, the critical temperature was 94 degrees, and the critical current density was 11 degrees.
A good result of 10^/d was obtained.

また、本発明との比較のため、実施例における貫通孔を
形成しない以外は同一条件で超電導体線材を作製し、こ
の超電導体線材についてもその特性を調べたところ、臨
界電流密度520A/dと低いものであった。
In addition, for comparison with the present invention, a superconductor wire was produced under the same conditions as in the example except that the through holes were not formed, and the characteristics of this superconductor wire were also investigated. As a result, the critical current density was 520 A/d. It was low.

C発明の効果コ 以上の実施例からも明らかなように、本発明の超電導体
線材の製造方法によれば、酸素供給能力に優れた銀から
なる管材を被覆管として使用し、さらに内部の酸化物超
電導体に達する複数の貫通孔を設けた後に熱処理を施し
ているので、管材の肉厚によらず充分に酸素を供給する
ことができるなめ、バルク材と同様な超電導特性を有す
る超電導体線材を容易に得ることが可能となる。
C. Effects of the Invention As is clear from the above examples, according to the method for manufacturing a superconductor wire of the present invention, a tube material made of silver with excellent oxygen supply ability is used as a cladding tube, and the internal oxidation Since heat treatment is applied after providing multiple through holes that reach the superconductor, sufficient oxygen can be supplied regardless of the thickness of the tube material, resulting in a superconductor wire material that has superconducting properties similar to those of bulk material. can be easily obtained.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (4)

【特許請求の範囲】[Claims] (1)酸化物超電導体粉末あるいは加熱により酸化物超
電導体となる混合粉末を銀または銀合金からなる管材内
に充填する工程と、この管材を線状に加工する工程と、
この加工工程により得た線状体の前記管材表面から内部
充填物に達する複数の貫通孔を形成する工程と、この貫
通孔の形成された線状体を酸素含有雰囲気中で熱処理す
る工程とを有することを特徴とする超電導体線材の製造
方法。
(1) A step of filling an oxide superconductor powder or a mixed powder that becomes an oxide superconductor by heating into a tube material made of silver or a silver alloy, and a step of processing this tube material into a linear shape.
A step of forming a plurality of through holes reaching the internal filling material from the tube material surface of the linear body obtained by this processing step, and a step of heat treating the linear body with the through holes formed therein in an oxygen-containing atmosphere. A method for manufacturing a superconductor wire, comprising:
(2)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の超電導体であることを特徴とする特許
請求の範囲第1項記載の超電導体線材の製造方法。
(2) The method for manufacturing a superconductor wire according to claim 1, wherein the oxide superconductor is a perovskite-type superconductor containing a rare earth element.
(3)前記酸化物超電導体は、希土類元素、Baおよび
Cuを原子比で実質的に1:2:3の割合で含有するこ
とを特徴とする特許請求の範囲第1項または第2項記載
の超電導体線材の製造方法。
(3) The oxide superconductor contains rare earth elements, Ba and Cu in an atomic ratio of substantially 1:2:3. A method for manufacturing superconductor wire.
(4)前記酸化物超電導体は、LnBa_2Cu_3O
_7_−_δ(Lnは希土類元素から選ばれた少なくと
も1種、δは酸素欠陥を表す。)で示される酸素欠陥型
ペロブスカイト構造を有することを特徴とする特許請求
の範囲第1項ないし第3項のいずれか1項記載の超電導
体線材の製造方法。
(4) The oxide superconductor is LnBa_2Cu_3O
Claims 1 to 3 are characterized by having an oxygen-deficient perovskite structure represented by _7_-_δ (Ln is at least one selected from rare earth elements, and δ represents an oxygen defect). A method for producing a superconductor wire according to any one of the above.
JP62273955A 1987-10-29 1987-10-29 Manufacture of superconductor wire material Pending JPH01115015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273955A JPH01115015A (en) 1987-10-29 1987-10-29 Manufacture of superconductor wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273955A JPH01115015A (en) 1987-10-29 1987-10-29 Manufacture of superconductor wire material

Publications (1)

Publication Number Publication Date
JPH01115015A true JPH01115015A (en) 1989-05-08

Family

ID=17534898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273955A Pending JPH01115015A (en) 1987-10-29 1987-10-29 Manufacture of superconductor wire material

Country Status (1)

Country Link
JP (1) JPH01115015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185914A (en) * 1987-02-05 1997-07-15 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconducting wire
JP2008232249A (en) * 2007-03-20 2008-10-02 Nok Corp Dust cover fixing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291311A (en) * 1987-05-22 1988-11-29 Fujikura Ltd Superconducting wire
JPS6471005A (en) * 1987-05-02 1989-03-16 Sumitomo Electric Industries Superconductive composite and its manufacture
JPH01140520A (en) * 1987-02-05 1989-06-01 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconductive wire
JPH01163910A (en) * 1987-05-01 1989-06-28 Sumitomo Electric Ind Ltd Superconductive composite and its manufacture
JPH01251514A (en) * 1987-05-25 1989-10-06 Hitachi Ltd Superconductive wire and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140520A (en) * 1987-02-05 1989-06-01 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconductive wire
JPH01163910A (en) * 1987-05-01 1989-06-28 Sumitomo Electric Ind Ltd Superconductive composite and its manufacture
JPS6471005A (en) * 1987-05-02 1989-03-16 Sumitomo Electric Industries Superconductive composite and its manufacture
JPS63291311A (en) * 1987-05-22 1988-11-29 Fujikura Ltd Superconducting wire
JPH01251514A (en) * 1987-05-25 1989-10-06 Hitachi Ltd Superconductive wire and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185914A (en) * 1987-02-05 1997-07-15 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconducting wire
JP2008232249A (en) * 2007-03-20 2008-10-02 Nok Corp Dust cover fixing structure

Similar Documents

Publication Publication Date Title
US5045527A (en) Method of producing a superconductive oxide conductor
US4952554A (en) Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body
JPH01140520A (en) Manufacture of composite oxide ceramic superconductive wire
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH01115015A (en) Manufacture of superconductor wire material
KR910009198B1 (en) Method of manufacturing superconductive products
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
EP0297707A2 (en) Superconductive electric wire and method for making it
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPH01147814A (en) Manufacture of superconductor coil
JPH01241713A (en) Manufacture of oxide superconductor wire
JP2590157B2 (en) Manufacturing method of superconductor wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH01128318A (en) Manufacture of superconductive wire material
JP2565954B2 (en) Method for manufacturing superconductor coil
JPH01119002A (en) Superconductor coil and manufacture thereof
JPH01128317A (en) Manufacture of superconductive wire material
JPH01163912A (en) Manufacture of oxide superconductor material
JP2574173B2 (en) Superconducting wire manufacturing method
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JPH01163906A (en) Oxide superconductor wire material
JPH01153565A (en) Production of oxide superconductor
JPH01241714A (en) Manufacture of oxide superconductor wire
JPH01304618A (en) Manufacture of oxide superconductive filament