JPS63274795A - Composite foil and production thereof - Google Patents

Composite foil and production thereof

Info

Publication number
JPS63274795A
JPS63274795A JP10753687A JP10753687A JPS63274795A JP S63274795 A JPS63274795 A JP S63274795A JP 10753687 A JP10753687 A JP 10753687A JP 10753687 A JP10753687 A JP 10753687A JP S63274795 A JPS63274795 A JP S63274795A
Authority
JP
Japan
Prior art keywords
foil
layer
copper
alloy
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10753687A
Other languages
Japanese (ja)
Other versions
JPH0235040B2 (en
Inventor
Masato Takami
正人 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP10753687A priority Critical patent/JPH0235040B2/en
Publication of JPS63274795A publication Critical patent/JPS63274795A/en
Publication of JPH0235040B2 publication Critical patent/JPH0235040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper

Abstract

PURPOSE:To produce very thin composite copper foil for a printed circuit by forming an intermediate layer of Sb or a Cu-Sb alloy by electroplating on the surface of supporting metallic foil of Al, Cu, Ni, Sn or the like and by electrodepositing a very thin Cu sheet on the intermediate layer. CONSTITUTION:An intermediate layer of Sb or a Cu-Sb alloy having 0.005-1mum thickness is formed by electroplating on the surface of supporting metallic foil of Cu, Ni, Al, Sn, brass or bronze, etc., having 10-100mum thickness. In case of Al foil, direct Sb or Cu-Sb alloy plating can not be carried out, so the foil is subjected to Zn substitution treatment in a zincate bath before the plating. The intermediate layer is then electroplated with Cu to <=12mum thickness and the surface of the resulting Cu layer is roughened and passivated. Very thin composite copper foil for a high density printed circuit is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は印刷回路用極薄銅箔を提供する複合箔、さらに
詳しくは支持体金属箔層と極薄銅箔眉間に適度な接着力
をもつ中間薄層を有する複合箔およびその製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a composite foil that provides an ultra-thin copper foil for printed circuits, and more specifically, a composite foil that provides an ultra-thin copper foil for printed circuits, and more specifically, a composite foil that provides an appropriate adhesive force between the support metal foil layer and the ultra-thin copper foil eyebrows. The present invention relates to a composite foil having an intermediate thin layer and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

印刷回路板は電子機器の発展とともに、急速に高密度化
、高精度化している。回路中、回路間隔は年々、極細化
してきており、従来より使用されている、35μm11
8μ鋼クラスの銅箔では、印刷回路製造工程に於けるエ
ツチング段階での導体端部のへこみ量、いわゆるアンダ
ーカットが大きく、回路の一層のファインパターン化に
は難点がある。
Printed circuit boards are rapidly becoming denser and more precise with the development of electronic devices. The circuit spacing in the circuit is becoming finer year by year, and the conventionally used 35μm11
In the case of 8μ steel class copper foil, there is a large amount of indentation, or so-called undercut, at the end of the conductor during the etching stage in the printed circuit manufacturing process, making it difficult to create finer patterns for the circuit.

それを解決するために銅箔の厚みをさらに薄クシた極薄
銅箔で対応しようという試みがなされているが、12μ
m以下の極薄銅箔はその取り扱い上、自重でシワや傷を
生じるため、支持体が必要である。
In order to solve this problem, attempts have been made to use ultra-thin copper foil, which is made even thinner.
An ultra-thin copper foil with a thickness of less than 100 m is required to have a support because it wrinkles and scratches due to its own weight when handled.

そのため、従来よりアルミニウム支持体(キャリアー)
などに支持された極薄銅箔が公知である。
Therefore, conventionally aluminum supports (carriers)
Ultra-thin copper foils supported by, for example, are known.

例えば特公昭54−14298号にはアルミニウム箔の
表面を機械的あるいは化学的に梨地化し、脱脂、酸洗、
亜鉛置換処理などで活性化した後、銅層を設ける方法が
、また特公昭56−35038号には銅とアルミニウム
を重ねて圧延した複合圧延箔を使用することが、また、
特開昭58−108785号には銅支持層と1〜12μ
重厚の銅の薄層間にニッケル及びその合金などの中間層
を設けることなどが提案されているが、これらはキャリ
アーとしてアルミニウムや銅をエツチング除去せねばな
らず、その工程が煩雑となり、エツチング廃液の処理に
費用が掛かる等の問題もあり、極薄w4箔を使用する上
で充分満足される特性を有するものではなかった。
For example, in Japanese Patent Publication No. 54-14298, the surface of aluminum foil is mechanically or chemically polished, degreased, pickled,
There is a method of providing a copper layer after activation by zinc substitution treatment, and Japanese Patent Publication No. 56-35038 describes the use of a composite rolled foil made by laminating and rolling copper and aluminum.
JP-A No. 58-108785 has a copper support layer and a 1 to 12μ
It has been proposed to provide an intermediate layer of nickel or nickel alloys between thin layers of thick copper, but these require the use of aluminum or copper as a carrier to be removed by etching, making the process complicated and requiring a waste of etching liquid. There are also problems such as high processing costs, and the properties are not fully satisfactory when using ultra-thin W4 foil.

また特公昭57−16758号にはアルミニウム箔を特
殊なアルカリ水溶液中で活性化した後、ピロリン酸銅め
っきにより極薄銅箔を製造する方法や、その他、特公昭
60−30751号など剥離方式(ピーラブルタイプ)
の極薄銅箔の製造方法が多々提案されているが、これら
の複合箔を基材と積層成型したとき、その支持体と極薄
銅箔との接着が強固でありすぎたり、不十分で支持体と
極薄銅箔の間でふくれや剥れを生じたりして充分満足で
きる特性を有するものではなかった。
In addition, Japanese Patent Publication No. 57-16758 describes a method of manufacturing ultra-thin copper foil by pyrophosphate copper plating after activating aluminum foil in a special alkaline aqueous solution, and other peeling methods such as Japanese Patent Publication No. 60-30751 Peelable type)
Many methods for producing ultra-thin copper foil have been proposed, but when these composite foils are laminated with a base material, the adhesion between the support and the ultra-thin copper foil is either too strong or insufficient. Blistering and peeling occurred between the support and the ultra-thin copper foil, and the properties were not completely satisfactory.

さらに、特公昭53−18329号には銅を支持体とし
て、離型層がクロム、鉛、ニッケル、銀、あるいはクロ
ム酸塩、硫化物である極薄銅箔が記載されているが、ニ
ッケルは離型層となりえず、引き剥し困難であるし、他
の離型層についてもその処理法が厳密を要するものであ
り、また接着力が強く引き剥しが困難となったり、また
、基材と積層させる際などにおいて、支持体から極薄銅
箔が自然剥離するほどに接着力が弱い場合などがあり、
必ずしも満足のいくものではなかった。
Furthermore, Japanese Patent Publication No. 53-18329 describes an ultra-thin copper foil using copper as a support and having a release layer of chromium, lead, nickel, silver, chromate, or sulfide, but nickel is It cannot be used as a mold release layer and is difficult to peel off, and other mold release layers also require strict treatment methods, and the adhesive strength is strong and it is difficult to peel off, and it is difficult to peel off from the base material. When laminating, there are cases where the adhesive strength is so weak that the ultra-thin copper foil naturally peels off from the support.
It wasn't always satisfying.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

そこで従来技術の欠点を解決するため、すなわち、極薄
銅箔を提供することに関し、金属支持体をエツチング除
去する工程を必要としない剥離方式の複合箔を提供し、
かつその金属支持体と極薄銅層間に均一で適度な接着性
(引き剥し強さ)をもつ中間層を有する新規な複合箔お
よびその製造を種々検討した結果、本発明を完成したも
のである。
Therefore, in order to solve the drawbacks of the prior art, namely, to provide an ultra-thin copper foil, we provide a peel-off composite foil that does not require a step of etching away the metal support.
The present invention was completed as a result of various studies on a novel composite foil having an intermediate layer having uniform and appropriate adhesion (peel strength) between the metal support and the ultra-thin copper layer, and the production thereof. .

〔問題を解決するための手段〕[Means to solve the problem]

即ち、本発明は、支持体金属箔層と12μm以下の厚さ
の極薄銅箔層との間にSb又はCuffSb合金の中間
層を有することを特徴とする複合箔、であり、必要に応
じて、極薄銅箔層が粗面化処理層及び/又は不働態化処
理層をもつもので、またその製造方法は支持体金属箔上
にSb又はCu−Sb合金層を電気めっきし、その上に
12μm以下の銅層を電解析出させ、さらにその表面に
粗面化処理及び/又は不働態化処理を行うことを特徴と
する複合箔の製造方法である。
That is, the present invention is a composite foil characterized in that it has an intermediate layer of Sb or CuffSb alloy between a support metal foil layer and an ultra-thin copper foil layer with a thickness of 12 μm or less. The ultra-thin copper foil layer has a roughening treatment layer and/or a passivation treatment layer, and its manufacturing method involves electroplating an Sb or Cu-Sb alloy layer on a support metal foil. This method of manufacturing a composite foil is characterized in that a copper layer of 12 μm or less is electrolytically deposited thereon, and the surface thereof is further roughened and/or passivated.

〔作用〕[Effect]

本発明は、Sb又はCu−Sb合金の中間層を設けたこ
とに特徴があり、このSb又はCu−Sb合金層の厚さ
は0.005〜1 μI、好ましくは0.03〜0.3
μmである。0.005μm以下では支持体金属箔−極
薄銅箔間の接着力が強固になり、引き剥し困難となる。
The present invention is characterized by providing an intermediate layer of Sb or Cu-Sb alloy, and the thickness of this Sb or Cu-Sb alloy layer is 0.005 to 1 μI, preferably 0.03 to 0.3
It is μm. If the thickness is less than 0.005 μm, the adhesive force between the support metal foil and the ultrathin copper foil becomes strong, making it difficult to peel off.

ここで適度な接着力とは、基材との積層成型後、支持体
の引き剥し強さが0.1〜0.4 kg/cmである。
Appropriate adhesive strength here means that the peel strength of the support after lamination molding with the base material is 0.1 to 0.4 kg/cm.

これが0.6〜0.7kg/cm以上では引き剥しか困
難となってくる。一方、Sb又はCu−Sb合金の中間
層の厚さが1μm以上とした場合には、経済的でないた
め好ましくない。
If the weight exceeds 0.6 to 0.7 kg/cm, it becomes difficult to remove the film. On the other hand, if the thickness of the intermediate layer of Sb or Cu-Sb alloy is 1 μm or more, it is not economical and therefore not preferable.

また、Cu−Sb合金層を形成させる場合、その合金中
Sbは好ましくは3%以上、さらに好ましくは8%以上
であり、これ以下では引き剥しか困難となる。
Further, when forming a Cu-Sb alloy layer, the Sb content in the alloy is preferably 3% or more, more preferably 8% or more, and if it is less than this, it will be difficult to peel it off.

本発明のSb又はCu−Sb合金層を支持体金属箔表面
上に形成させる方法は、公知の電気めっき法、化学めっ
き法、真空蒸着法、スパッタリング法など各種の方法に
よって可能であるが、工業土臭うインに最適と思われる
ものは、水溶液電気めっき法である。その電解浴として
は例えば、酒石酸または、クエン酸浴を使用する。Sb
単独層形成の場合は、水酸化ナトリウム、水酸化カリウ
ムを使用したアルカリ浴も良い。
The Sb or Cu-Sb alloy layer of the present invention can be formed on the surface of the metal foil of the support by various known methods such as electroplating, chemical plating, vacuum evaporation, and sputtering. Aqueous electroplating seems to be the most suitable method for insulating environments with earthy smells. As the electrolytic bath, for example, a tartaric acid or citric acid bath is used. Sb
In the case of forming a single layer, an alkaline bath using sodium hydroxide or potassium hydroxide is also suitable.

酒石酸浴を例にとると、酒石酸濃度は30〜200g/
βの範囲が適当である。アンチモンイオン源としては酒
石酸アンチモニルカリウム、酒石酸アンチモニルナトリ
ウム、二酸化アンチモンなどを使用し、その量はSb単
独層の場合塩として、20〜100g/lが適当であり
、Cu−3b合金層の場合は、アンチモン塩は、銅塩量
にもよるが、1〜100g#!が適当である。銅イオン
源は硫酸銅、酒石酸銅などを使用し、塩としてOからア
ンチモン塩と同量かそれ以上の量も加えることができる
。また、酒石酸銅の場合、あるいはその沈澱生成の場合
、適量の硫酸を加えると良い。また浴電圧を下げるため
、硫酸ナトリウムあるいは硫酸カリウムを添加しても良
い。浴温は室温から50℃が良い、陽極は白金など不溶
性陽極を使用するが、Cu−Sb合金層の場合はw4陽
極でも良い。電流密度は0.5〜5 A/dm”が適当
である。
Taking a tartaric acid bath as an example, the tartaric acid concentration is 30-200g/
The range of β is appropriate. Potassium antimonyl tartrate, sodium antimonyl tartrate, antimony dioxide, etc. are used as the antimony ion source, and the appropriate amount is 20 to 100 g/l as a salt in the case of an Sb single layer, and in the case of a Cu-3b alloy layer. The amount of antimony salt is 1 to 100g, depending on the amount of copper salt! is appropriate. Copper sulfate, copper tartrate, or the like is used as the copper ion source, and O to antimony salt can be added in an amount equal to or larger than that of the salt. Furthermore, in the case of copper tartrate or its precipitation, it is advisable to add an appropriate amount of sulfuric acid. Furthermore, sodium sulfate or potassium sulfate may be added to lower the bath voltage. The bath temperature is preferably room temperature to 50°C. An insoluble anode such as platinum is used as the anode, but in the case of a Cu-Sb alloy layer, a W4 anode may be used. A suitable current density is 0.5 to 5 A/dm''.

支持体金属箔は、銅、ニッケル、アルミニウム、スズ、
真鍮より選ばれた箔を使用するのが好ましい。支持体金
属箔の厚さは10〜100μmが適当である。上記のう
ちアルミニウムについては、直接アンチモン、あるいは
銅−アンチモンめっきができないため、アルミニウム表
面を脱脂水洗後、必要に応じて、硝酸などで酸洗し、水
洗し、ジンケート浴で亜鉛置換処理を行い、水洗後この
支持体金属箔を陰極としてアンチモンまたは銅−アンチ
モンめっきを施す。
Support metal foils include copper, nickel, aluminum, tin,
Preferably, a foil chosen over brass is used. The appropriate thickness of the support metal foil is 10 to 100 μm. Of the above, aluminum cannot be directly plated with antimony or copper-antimony, so after degreasing and washing the aluminum surface with water, if necessary, pickling with nitric acid etc., washing with water, and performing zinc replacement treatment in a zincate bath. After washing with water, antimony or copper-antimony plating is applied using the support metal foil as a cathode.

これらのSb又はCu−Sb合金層を設けた支持体金属
箔上に、やはり電気めっきにより厚さ12μm以下Φ銅
層をつける。本発明のSb又はCu−Sb合金層は、そ
の表面に析出させる極薄銅箔層に悪影響を全く与えない
ので析出異常のない均一できわめて薄い銅箔層を形成す
ることができる。その銅めっき浴としてはビロリン酸浴
、硫酸浴などいかなる浴でも適用可能であるが、浴管理
の容易さやコスト的な面から、硫酸浴が好ましい。
On the support metal foil provided with these Sb or Cu-Sb alloy layers, a Φ copper layer with a thickness of 12 μm or less is applied by electroplating. The Sb or Cu-Sb alloy layer of the present invention has no adverse effect on the ultra-thin copper foil layer deposited on its surface, so it is possible to form a uniform and extremely thin copper foil layer with no precipitation abnormalities. Any bath such as a birophosphoric acid bath or a sulfuric acid bath can be used as the copper plating bath, but a sulfuric acid bath is preferable from the viewpoint of ease of bath management and cost.

この銅層をめっきした後、基材とのより高い接着性を得
るためにはその表面に粗面化処理を施す。
After plating this copper layer, its surface is roughened in order to obtain higher adhesion to the substrate.

これは例えば特公昭45−34245号に記載された方
法や、その他、硫酸銅−硫酸浴中で限界電流密度以上で
陰極電解するなどの方法がある。
This can be done, for example, by the method described in Japanese Patent Publication No. 45-34245, or by cathodic electrolysis in a copper sulfate-sulfuric acid bath at a current density higher than the critical current density.

また必要に応じ、この粗面化処理された複合箔表面に不
働態化処理を行う0例えば、異種金属でコーティングす
る方法や重クロム酸イオンを含む水溶液に浸漬するクロ
メート処理法などがあり、また、BTA (ベンゾトリ
アゾール)やその誘導体の水溶液中に浸漬するなどの有
機防錆皮膜を施してもよい。以上で本発明の複合箔が得
られる。
If necessary, the surface of the roughened composite foil may be subjected to passivation treatment.For example, there is a method of coating with a different metal, a chromate treatment method of immersing it in an aqueous solution containing dichromate ions, etc. , an organic rust-preventive coating may be applied by immersion in an aqueous solution of BTA (benzotriazole) or its derivatives. The composite foil of the present invention is thus obtained.

次に、本発明の複合箔を樹脂含浸基材と積層し成型する
場合、その中間層であるSb又はCu−Sb合金層はそ
の熱と圧力で支持体金属箔及び極薄銅箔層へある程度拡
散すると考えられ、支持体金属箔を引き剥すと、極薄銅
箔表面にこの中間層(接着N)が多少残る。しかし、前
記中間層が残ったとしても研磨により、除去する必要は
なく、一般によく使用されている塩化第二鉄や塩化第二
銅などのエツチング液に対し、銅と同程度の速度で溶解
するため、エツチングによる回路の形成に障害とならず
、また、回路上にスティンを残さない。
Next, when the composite foil of the present invention is laminated with a resin-impregnated base material and molded, the intermediate layer, Sb or Cu-Sb alloy layer, is partially bonded to the support metal foil and the ultra-thin copper foil layer by the heat and pressure. It is thought that it diffuses, and when the support metal foil is peeled off, some of this intermediate layer (adhesion N) remains on the surface of the ultra-thin copper foil. However, even if the intermediate layer remains, it does not need to be removed by polishing, and it dissolves at the same rate as copper in commonly used etching solutions such as ferric chloride and cupric chloride. Therefore, it does not interfere with the formation of a circuit by etching, and does not leave stains on the circuit.

また、アルミニウム箔を支持体金属箔としたとき、従来
技術では、積層成型時にアルミニウムと極f31 m 
Ffi間にふくれや剥れを生じやすいという欠点があっ
たが、本発明の、特にSb層を中間層として適用すると
、そのふくれや剥れの現象が全く生じず、きわめて良好
な成型体を得ることができる。
In addition, when aluminum foil is used as a support metal foil, in the conventional technology, aluminum and pole f31 m are formed during lamination molding.
However, when the present invention, especially the Sb layer, is applied as an intermediate layer, the phenomenon of blistering and peeling does not occur at all, and an extremely good molded product can be obtained. be able to.

しかしながらCu−Sb合金層を中間層として用いた場
合、その合金層の銅量を約20%以上に増加させるとそ
のふくれ現象が生じやすくなる。
However, when a Cu--Sb alloy layer is used as an intermediate layer, if the amount of copper in the alloy layer is increased to about 20% or more, the blistering phenomenon tends to occur.

以下、本発明の具体的な実施例を示す。Hereinafter, specific examples of the present invention will be shown.

〔実施例〕〔Example〕

実施例(1) 35μm厚さの電解#r4箔を用意し、その光沢面に、
(A−1)酒石酸アンチモニルカリウム 30g/ 1
酒石酸           50g/ 1硫酸ナトリ
ウム       50g/ 1浴温        
   35℃ の浴で、電流密度2A/dm” 、10秒間陰極電解し
、0.12μm厚さのアンチモン層を析出させた。これ
を水洗し、その表面に (B)  硫酸銅(三木塩)       200g/
 1硫酸           100g/ 1塩酸 
           40ppm浴温       
     50℃ の浴で、電流密度3A/dII+2.8分間陰極電解し
、約5μm厚さの極薄銅箔層を析出させた。これを水洗
し、 (C)  硫酸銅(三水塩)       150g/
 1硫酸            50g/ 1硝酸ナ
トリウム       30g/ 1浴温      
      40℃ の浴で、電流密度15A/dm”、11分間陰極電解し
、粗面化処理を施した。これを水洗し、さらにその表面
を重クロム酸ナトリウム10g/ 12水溶液中に室温
で10秒間浸漬し、水洗後乾燥させ、複合箔を得た。
Example (1) A 35 μm thick electrolytic #r4 foil was prepared, and its glossy surface was coated with
(A-1) Potassium antimonyl tartrate 30g/1
Tartaric acid 50g/1 Sodium sulfate 50g/1 Bath temperature
In a bath at 35°C, cathodic electrolysis was carried out for 10 seconds at a current density of 2 A/dm'' to deposit an antimony layer with a thickness of 0.12 μm. This was washed with water, and 200 g of (B) copper sulfate (Miki salt) was deposited on the surface. /
1 sulfuric acid 100g/1 hydrochloric acid
40ppm bath temperature
Cathodic electrolysis was carried out in a bath at 50° C. at a current density of 3 A/dII for 2.8 minutes to deposit an ultra-thin copper foil layer with a thickness of about 5 μm. Wash this with water, (C) Copper sulfate (trihydrate) 150g/
1 Sulfuric acid 50g/ 1 Sodium nitrate 30g/ 1 Bath temperature
The surface was roughened by cathodic electrolysis for 11 minutes at a current density of 15 A/dm in a bath at 40°C. This was washed with water, and the surface was soaked in a 10 g/12 aqueous solution of sodium dichromate for 10 seconds at room temperature. The composite foil was obtained by immersion, washing with water, and drying.

この複合箔をPR−4基材に積層し、168℃、40k
g/cdの条件で60分間加熱圧着させ成型した。この
成型体から支持体であったSr4 f&を引き剥す時の
引き剥し強度(JIS−C−6481に準拠、以下の実
施例についても同じ)を測定したところ、0.20kg
/cmであった。このため、成型体から支持体の銅箔は
容易に引き剥すことができ、かつ適度な接着力であった
。支持体銅箔を引き剥した成型体の極薄銅箔をフォトレ
ジスト法(塩化第二銅エツチング)により回路中0.1
mmのファインパターンを作成したが、この回路はアン
ダーカットが非常に小さく、また断線やブリッジのない
良好な高密度回路であった。
This composite foil was laminated on a PR-4 base material and heated to 40k at 168°C.
Molding was carried out by heat-pressing for 60 minutes under the conditions of g/cd. The peel strength (based on JIS-C-6481, the same applies to the following examples) when peeling off the support Sr4 f& from this molded body was 0.20 kg.
/cm. Therefore, the copper foil of the support could be easily peeled off from the molded body, and the adhesive strength was moderate. The ultra-thin copper foil of the molded body after peeling off the supporting copper foil is coated with a photoresist method (cupric chloride etching) to form a circuit with a thickness of 0.1
A fine pattern of mm in diameter was created, and this circuit had very small undercuts and was a good high-density circuit with no disconnections or bridges.

実施例(2) 35μm厚さの電解銅箔を用意し、その光沢面に、(^
−2)酒石酸アンチモニルカリウム 30g/ 1硫酸
tR(三水塩)        10g/ 12酒石酸
           50g/β硫酸ナトリウム  
     50g/ 1浴温            
35℃ の浴で、電流密度2A/dm” 、10秒間陰極電解し
、銅−アンチモン合金層を析出させた。この層は別に電
解ニッケル箔上に同じ条件で析出させ、その分析をした
ところ、Sb71χ、 Cu29χの合金層で、厚さは
0.10μmであった。このSb−Cu合金層を持つ支
持体銅箔上に種菌銅箔層、粗面化処理層、クロメート処
理層を実施例(1)と同じ条件で析出又は処理し複合箔
を得た。これを実施例(1)と同じ条件でPR−4基材
に積層成型し、その成型体から支持体で、あった銅箔を
引き剥すときの引き剥し強度を測定したところ、0.3
0kg/cmであった。
Example (2) Prepare an electrolytic copper foil with a thickness of 35 μm, and put (^
-2) Potassium antimonyl tartrate 30g/1sulfuric acid tR (trihydrate) 10g/12tartrate 50g/sodium β sulfate
50g/1 bath temperature
A copper-antimony alloy layer was deposited by cathodic electrolysis in a 35°C bath at a current density of 2 A/dm for 10 seconds. This layer was separately deposited on an electrolytic nickel foil under the same conditions and analyzed. It was an alloy layer of Sb71χ and Cu29χ, and the thickness was 0.10 μm.A seed copper foil layer, a roughening treatment layer, and a chromate treatment layer were placed on the support copper foil having this Sb-Cu alloy layer in the example ( A composite foil was obtained by depositing or treating under the same conditions as in Example (1).This was laminated and molded on a PR-4 base material under the same conditions as in Example (1), and the copper foil was removed from the molded body using a support. When peeling strength was measured, it was 0.3
It was 0 kg/cm.

実施例(3) 35μm厚さの電解銅箔を用意し、その光沢面に、(A
−3)酒石酸アンチモニルカリウム 30g/ j!硫
酸銅(三木塩)        20g/ 1酒石酸 
          50g/ Il硫酸ナトリウム 
      50g/ It浴温          
  35℃ の浴で、電流密度2A/dm” 、10秒間陰極電解し
、銅−アンチモン合金層を析出させた。この層は別に電
解ニッケル箔上に同じ条件で析出させ、その分析をした
ところ、Cu58χ、 Sb42χの合金層で、厚さは
0.09μmであった。このCu−3b合金層を持つ支
持体銅箔上に極薄銅箔層、粗面化処理層、クロメート処
理層を実施例(1)と同じ条件で析出又は処理して複合
箔を得た。これを実施例(1)と同じ条件でPR−4基
材に積層成型し、その成型体から支持体であった銅箔を
引き剥すときの引き剥し強度を測定したところ、0.3
0kg/cmであった。
Example (3) Electrolytic copper foil with a thickness of 35 μm was prepared, and (A
-3) Potassium antimonyl tartrate 30g/j! Copper sulfate (Miki salt) 20g/1 tartaric acid
50g/ Sodium Il sulfate
50g/It bath temperature
A copper-antimony alloy layer was deposited by cathodic electrolysis in a 35°C bath at a current density of 2 A/dm for 10 seconds. This layer was separately deposited on an electrolytic nickel foil under the same conditions and analyzed. It was an alloy layer of Cu58χ and Sb42χ, and the thickness was 0.09 μm.A very thin copper foil layer, a roughening treatment layer, and a chromate treatment layer were formed on the supporting copper foil having this Cu-3b alloy layer. A composite foil was obtained by precipitation or treatment under the same conditions as in Example (1).This was laminated and molded on a PR-4 base material under the same conditions as in Example (1), and the molded body was separated from the copper foil that was the support. When we measured the peel strength when peeling off, it was 0.3
It was 0 kg/cm.

実施例(4) 25μmの厚さの電解ニッケル箔を用意し、その光沢面
に、実施例(2)と同じ条件でCu−3b合金層を形成
し、そして実施例(1)と同じ条件で極薄銅箔層、粗面
化処理層およびクロメート処理層を析出又は処理して複
合箔を得た。このようにして得られた複合箔を実施例(
1)と同じ条件でPR−4基材に積層成型し、その成型
体から支持体であったニッケル箔を引き剥し、そのとき
の引き剥し強度を測定したところ、0.25kg/cm
であった。
Example (4) An electrolytic nickel foil with a thickness of 25 μm was prepared, and a Cu-3b alloy layer was formed on its shiny surface under the same conditions as Example (2), and then under the same conditions as Example (1). A composite foil was obtained by depositing or treating an ultrathin copper foil layer, a roughened layer, and a chromate layer. The composite foil thus obtained was used in Example (
Laminate molding was performed on a PR-4 base material under the same conditions as in 1), the nickel foil that was the support was peeled off from the molded body, and the peel strength at that time was measured, and it was 0.25 kg/cm
Met.

実施例(5) 35μm厚さの圧延銅箔を用意し、80g/ 1水酸化
ナトリウム水溶液中で50℃、電流密度10A/dm2
で3分間陰極電解し、脱脂した。これを水洗し、次いで
3χ硫酸水溶液中に室温で1分間浸漬し、水洗し、 (A−4)酒石酸アンチモニルカリウム 30g/ I
t酒石酸          100g/ I!浴温 
           35℃ の浴で、電流密度2A/dn+2.5秒間陰極電解し、
厚さ0.06μ題のアンチモン層を析出させた。その後
、この表面上に極薄銅箔層、粗面化処理層、クロメート
処理層を実施例(1)と同じ条件で析出又は処理して複
合箔を得た。この複合箔を実施例(1)と同じ条件でP
R−4基材に積層成型し、その成型体から支持体である
圧延銅箔を引き剥し、そのときの引き剥し強度を測定し
たところ、O;20kg/cmであった。
Example (5) A rolled copper foil with a thickness of 35 μm was prepared and heated at 50° C. with a current density of 10 A/dm2 in an 80 g/1 sodium hydroxide aqueous solution.
It was degreased by cathodic electrolysis for 3 minutes. This was washed with water, then immersed in a 3χ sulfuric acid aqueous solution at room temperature for 1 minute, and washed with water. (A-4) Potassium antimonyl tartrate 30 g/I
ttartaric acid 100g/I! bath temperature
Cathodic electrolysis was carried out for 2.5 seconds at a current density of 2 A/dn in a bath at 35°C.
An antimony layer with a thickness of 0.06 μm was deposited. Thereafter, an ultrathin copper foil layer, a roughened layer, and a chromate layer were deposited or treated on the surface under the same conditions as in Example (1) to obtain a composite foil. This composite foil was heated under the same conditions as in Example (1).
It was laminated and molded on an R-4 base material, the rolled copper foil serving as a support was peeled off from the molded body, and the peel strength at that time was measured, and it was found to be O: 20 kg/cm.

実施例(6) 35μm厚さのアルミニウム箔を用意し、これを、(A
−4) リン酸三ナトリウム     25g/ 1炭
酸ナトリウム       25g/ 1浴温    
        50℃ の脱脂浴中に1分間浸漬し、水洗し、次に18χ硝酸水
溶液に室温で1分間浸漬し、水洗し、(E)  水酸化
ナトリウム      120g/ 10ツセル塩  
       50g/ 1亜鉛イオン       
  18g/ 12硝酸ナトリウム        I
g#!塩化第二鉄         2g/ (1の浴
中に室温で1分間浸漬し、水洗した後、この支持体アル
ミニウム箔を陰極として実施例(1)で用いた(A−1
)浴で、電流密度2A/dn+” 、  5秒間電解し
、アンチモン層を析出させた。この表面上に極薄銅箔層
、粗面化処理層、クロメート処理層を実施例(1)と同
じ条件で析出又は処理し、複合箔を得た。これを実施例
(1)と同じ条件でPR−4基材に積層し、加熱圧着成
型したが、ふ(れなどかまった(無(、良好な成型体を
得た。この成型体から支持体であったアルミニム箔を引
き剥し、そのときの引き剥し強度は0.40kg/c+
++であった。
Example (6) An aluminum foil with a thickness of 35 μm was prepared, and this was
-4) Trisodium phosphate 25g/1 sodium carbonate 25g/1bath temperature
(E) Sodium hydroxide 120g/10 Tussel salt
50g/1 zinc ion
18g/12 Sodium Nitrate I
g#! Ferric chloride 2g/(A-1) was immersed in the bath for 1 minute at room temperature and washed with water, and the support aluminum foil was used as a cathode in Example (1) (A-1).
) bath at a current density of 2 A/dn+" for 5 seconds to deposit an antimony layer. On this surface, an ultra-thin copper foil layer, a roughened layer, and a chromate layer were applied in the same manner as in Example (1). A composite foil was obtained by depositing or treating under the same conditions as in Example (1).This was laminated on a PR-4 base material under the same conditions as in Example (1) and molded under heat and pressure. A molded body was obtained.The aluminum foil that was the support was peeled off from this molded body, and the peel strength at that time was 0.40 kg/c+
It was ++.

〔発明の効果〕 本発明のSbまたはCu−Sb合金層を中間層として有
する支持体金属箔−極薄銅箔からなる複合箔はその実用
化が容易であり、大量生産が可能である。
[Effects of the Invention] The composite foil comprising a support metal foil and an ultrathin copper foil having an Sb or Cu-Sb alloy layer as an intermediate layer of the present invention is easy to put into practical use and can be mass-produced.

支持体金属箔は剥離型であり、印刷回路板製造時、エツ
チング除去型のような排液処理の問題はなく、またその
剥離時の接着力は適度でかつ均一であり、剥離不能、あ
るいは自然剥離による脱落などの問題もない。またSb
SCu−3bは塩化第二鉄、塩化第二銅など代表的なエ
ツチング液に可溶で、障害とならない。
The support metal foil is a removable type, and there is no problem with drainage treatment unlike the etching removal type during the production of printed circuit boards, and the adhesive strength when peeled off is moderate and uniform, making it impossible to peel off or naturally. There are no problems such as falling off due to peeling. Also Sb
SCu-3b is soluble in typical etching solutions such as ferric chloride and cupric chloride, and does not pose a problem.

以上、本発明の複合箔は例えばガラス系樹脂含浸基材と
積層成型することで良好な成型体を得ることができ、そ
の支持体金属箔を剥離して、印刷回路の高密度化に対応
できる極薄銅箔層を提供することで実用上きわめて有益
なものである。
As described above, the composite foil of the present invention can be laminated and molded with, for example, a glass-based resin-impregnated base material to obtain a good molded product, and by peeling off the supporting metal foil, it can be used for high-density printed circuits. It is extremely useful in practice by providing an ultra-thin copper foil layer.

Claims (6)

【特許請求の範囲】[Claims] (1)支持体金属箔層と12μm以下の厚さの極薄銅箔
層との間にSb又はCu−Sb合金の中間層を有するこ
とを特徴とする複合箔。
(1) A composite foil characterized by having an intermediate layer of Sb or Cu-Sb alloy between a support metal foil layer and an ultra-thin copper foil layer having a thickness of 12 μm or less.
(2)支持体金属箔が銅、ニッケル、アルミニウム、ス
ズ、真鍮、青銅より選ばれた箔であることを特徴とする
特許請求の範囲第1項に記載の複合箔。
(2) The composite foil according to claim 1, wherein the support metal foil is a foil selected from copper, nickel, aluminum, tin, brass, and bronze.
(3)支持体金属箔がSb又は、Cu−Sb合金の中間
層と接する面に亜鉛置換層を有するアルミニウム箔であ
ることを特徴とする特許請求の範囲第1項に記載の複合
箔。
(3) The composite foil according to claim 1, wherein the support metal foil is an aluminum foil having a zinc substitution layer on the surface in contact with the intermediate layer of Sb or Cu-Sb alloy.
(4)極薄銅箔が粗面化処理層及び/又は不働態化処理
層を有することを特徴とする特許請求の範囲第1項〜3
項のいずれかに記載の複合箔。
(4) Claims 1 to 3, characterized in that the ultra-thin copper foil has a roughening treatment layer and/or a passivation treatment layer.
Composite foil according to any of paragraphs.
(5)支持体金属箔上にSb又はCu−Sb合金層を電
気めっきし、その上に12μm以下の銅層を電解析出さ
せ、さらにその表面に粗面化処理及び/又は不働態化処
理を行うことを特徴とする複合箔の製造方法。
(5) Electroplating an Sb or Cu-Sb alloy layer on the support metal foil, electrolytically depositing a copper layer of 12 μm or less on it, and further roughening and/or passivating the surface. A method for manufacturing a composite foil, characterized by performing the following steps.
(6)アルミニウム箔をジンケート浴で処理し、表面に
亜鉛置換層を形成した支持体金属箔を用いることを特徴
とする特許請求の範囲第5項に記載された複合箔の製造
方法。
(6) The method for producing a composite foil according to claim 5, characterized in that a support metal foil is used in which aluminum foil is treated with a zincate bath to form a zinc substitution layer on the surface.
JP10753687A 1987-04-30 1987-04-30 FUKUGOHAKUOYOBISONOSEIZOHOHO Expired - Lifetime JPH0235040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10753687A JPH0235040B2 (en) 1987-04-30 1987-04-30 FUKUGOHAKUOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10753687A JPH0235040B2 (en) 1987-04-30 1987-04-30 FUKUGOHAKUOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS63274795A true JPS63274795A (en) 1988-11-11
JPH0235040B2 JPH0235040B2 (en) 1990-08-08

Family

ID=14461677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10753687A Expired - Lifetime JPH0235040B2 (en) 1987-04-30 1987-04-30 FUKUGOHAKUOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0235040B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016402A1 (en) * 1999-08-31 2001-03-08 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2001021859A1 (en) * 1999-09-21 2001-03-29 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2001034879A1 (en) * 1999-11-11 2001-05-17 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2001034880A1 (en) * 1999-11-11 2001-05-17 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016402A1 (en) * 1999-08-31 2001-03-08 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2001021859A1 (en) * 1999-09-21 2001-03-29 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
US6777108B1 (en) 1999-09-21 2004-08-17 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2001034879A1 (en) * 1999-11-11 2001-05-17 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2001034880A1 (en) * 1999-11-11 2001-05-17 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil with carrier foil and method for manufacturing the same
CN1293236C (en) * 1999-11-11 2007-01-03 三井金属鉱业株式会社 Electrolytic copper foil with carrier foil and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0235040B2 (en) 1990-08-08

Similar Documents

Publication Publication Date Title
US4193849A (en) Method for making a raw board for use in printed circuits
KR100547513B1 (en) Electrolyte copper foil having carrier foil,manufacturing method thereof, and layered plate using the electrolyte copper foil having carrier foil
US6777108B1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
JPH0818401B2 (en) Composite foil and its manufacturing method
JPH0251272B2 (en)
JP2002292788A (en) Composite copper foil and method for manufacturing the same
JPH0787270B2 (en) Copper foil for printed circuit and manufacturing method thereof
US5322975A (en) Universal carrier supported thin copper line
JPS6134385B2 (en)
JP2010201804A (en) Composite metal foil, method for producing the same, and printed wiring board
US5066366A (en) Method for making foil
TWI443226B (en) Copper foil with resistive film
JPH08236930A (en) Copper foil for printed circuit and its manufacture
JP4612978B2 (en) Composite copper foil and method for producing the same
JP2717910B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP3623621B2 (en) Copper foil surface treatment method
JP4524026B2 (en) Copper or copper alloy foil and method for producing the same
JPS63274795A (en) Composite foil and production thereof
US4552627A (en) Preparation for improving the adhesion properties of metal foils
JPS5921392B2 (en) Manufacturing method of copper foil for printed circuits
JPH07188979A (en) Copper foil for printed circuit and its production
JPH0654829B2 (en) Method of treating copper foil for printed circuits
JP2005240132A (en) Electrolytic copper foil, and electrolytic polishing method for shiny face of electrolytic copper foil
JP4083927B2 (en) Copper foil surface treatment method
JPH06237078A (en) Manufacture of copper foil for printed circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees