JP4083927B2 - Copper foil surface treatment method - Google Patents

Copper foil surface treatment method Download PDF

Info

Publication number
JP4083927B2
JP4083927B2 JP18468399A JP18468399A JP4083927B2 JP 4083927 B2 JP4083927 B2 JP 4083927B2 JP 18468399 A JP18468399 A JP 18468399A JP 18468399 A JP18468399 A JP 18468399A JP 4083927 B2 JP4083927 B2 JP 4083927B2
Authority
JP
Japan
Prior art keywords
copper
copper foil
treatment
bath
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18468399A
Other languages
Japanese (ja)
Other versions
JP2001011689A (en
Inventor
正人 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP18468399A priority Critical patent/JP4083927B2/en
Publication of JP2001011689A publication Critical patent/JP2001011689A/en
Application granted granted Critical
Publication of JP4083927B2 publication Critical patent/JP4083927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は銅箔の表面処理に関するものであり、特に詳しくはプリント配線板用を代表とする導電体用途において、粗面形状が均一でかつ、適用樹脂に対し接着性の高い表面処理を銅箔に施す方法に関するものである。
【0002】
【従来の技術】
銅箔は電子、電気材料用としては特にプリント配線板用途に大量に使用されている。
プリント配線板は高性能化、高信頼性化が進んでおり、そのため要求特性は複雑で且つ多様化してきている。このプリント配線板の構成材料の一つとなっている銅箔についても同様に、厳しい品質要求が課せられて来ている。
プリント配線板の製造では、まず銅箔の粗面側を合成樹脂含浸基材と合わせて積層し、プレスにより加熱圧着して銅張積層板を得る。一般によく使用されるガラスエポキシ基板では170 ℃前後の温度で1〜2時間のプレスにより完成する。
【0003】
プリント配線板用銅箔としては片側粗面、片側光沢面を持つ電解銅箔が圧倒的に多く使用されている。通常、電解銅箔は銅の電解液から電着装置により、銅を電解析出させ、未処理銅箔と呼ばれる原箔を製造し、次に処理装置により、一連の表面処理を行う。
一般的には、粗面側(非光沢面側)を酸洗し、粗面化して樹脂との接着力を確保する処理を行い、さらにその接着性における耐熱、耐薬品などの特性やエッチング特性などを向上、安定化させる処理を行い、完成される。これらの処理についてはさまざまな技術が開発、提案され、高機能性表面となっている。最近のプリント配線板の高密度化においては、例えば薄物プリント配線板やビルドアップ工法のプリント配線板では絶縁層となる樹脂層が極めて薄くなっているため、銅箔粗面が大きい場合、層間絶縁性に問題が生じる可能性がある。
【0004】
また、ファインライン化により、銅箔粗面が小さい方がライン間の絶縁を保てるなどの理由により粗面側は低プロファイル化が望まれてきている。しかし接着力が十分でないと製造工程中や製品となった後での銅箔回路の剥がれや浮き等、デラミネーションの問題が生じてくるので、両者を満足する表面処理が最も好ましいが、互いに相反する事であるのでより優れた表面処理方法の開発が待たれていた。
【0005】
一方反対側の面、光沢面側には粗面側とは異なる特性、すなわち耐熱変色性、半田濡れ性、レジスト密着性、などが要求されており、粗面側、光沢面側それぞれ別の処理方法が必要である。但し多層プリント配線板用途には特に内層用として適用する場合においては半田濡れ性の必要はなく、また、光沢面側は従来粗面化処理を施す必要はなかった。しかし、DT箔(Double treatment,両面処理)と称する銅箔以外でもレジストの密着性、プリント板形成時の内層処理の密着力上昇のため、軽い粗面化処理が要望されてきている。
【0006】
以上のように、銅箔の両面において種々の要望に答えるべく複雑な処理が開発されてきている。従来の技術では粗面化処理に関する技術としては種々提案されている。たとえば特公昭53-38700号にヒ素を含む酸性電解浴中で3段の電解処理を行う方法やまた特公昭53-39327号、特公昭54-38053号にはヒ素、アンチモン、ビスマス、セレン、テルルを含む酸性銅電解浴中で限界電流密度前後で電解する方法などがあり、実際にはヒ素が多用されている。また、特公昭61-54592号、特開平4-202796号には交流電解による表面粗面化処理が提案されている。
【0007】
しかし、上記のような従来の粗面化処理においては、ヒ素、セレン、テルルのような人体に有害な物質を使用することは環境問題上使用が極めて制限されてきている。プリント板再利用あるいは産業廃棄物の観点でも銅箔に含まれる有害成分の蓄積が懸念され、代替方法が強く要求されているものである。
また、さらに交流電解の場合は、高温の塩酸浴を使用するので、その塩酸ガスのミストは極めて銅に対して腐食性があり、表面処理において厳重な注意が必要となり、また適用樹脂に対して十分な接着力が得られない。
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来技術にあるような、ヒ素、セレン、テルルなど毒性のある元素を使用せず均一で表面粗さが低く、十分な接着力を得ることができる新しい粗面化処理を開発することである。
【0009】
【課題を解決するための手段】
本発明は、銅箔の少なくとも一方の面を、アルミニウムイオン及び/又はチタンイオンを含む硫酸、硫酸銅電解浴中で限界電流密度付近又はそれ以上で陰極電解することにより、銅の突起物を析出させ粗面化処理を行い、その上に銅又は銅合金の被覆めっきを行い、次いで、防錆処理を施すことを特徴とする銅箔の表面処理方法である。
【0010】
本発明の表面処理方法を具体的に記すと、まず最初に、未処理銅箔を酸洗浄し、表面酸化物や汚れを除去する。その後、粗面側表面に本発明の粗面化処理を行う。この処理液としては添加元素を含む硫酸、硫酸銅水溶液を使用する。硫酸濃度としては 50〜200g/lの範囲が通常使われているが、液温、電流密度等の条件によっては、この範囲を外れることも可能である。
添加元素としては、アルミニウムイオン及び/又はチタンイオンであり、その濃度は 0.03〜5.0g/lが良く、0.03g/l以下の場合、粗面形状の均一化効果が低くなる場合があり、5.0g/l以上では添加量を増加させても、それ以上効果が上がらず、不経済となる。
また、濃度範囲について詳しくはアルミニウムイオンの場合、0.1 〜3g/lがさらに良く、チタンイオンの場合は 0.03 〜0.5g/lがさらに良い。添加方法はチタンイオンの場合、硫酸第二チタン溶液が好ましい。アルミニウムイオンの場合は硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウムナトリウムなどを使用する。
【0011】
銅箔表面の陰極電解は、時間、温度、必要粗化量によって変化するが、特に規定すると次の通りである。
陰極電解する時間は 2〜60秒、浴温度は 10〜50℃が良い。電流密度は5〜100 A/dm2で、電気量として20〜200クーロン/dm2が適当であり、さらに詳しくは40〜130クーロン/dm2が好適である。この処理の後、銅の突起状又は樹枝状析出物上に銅又は銅合金を被覆めっきし、銅の突起物の固着性を向上させる。その処理条件としては、例えば、
CuSO4・5H2O 250g/l
H2SO4 100g/l
浴温度50℃、5A/dm2の電流密度、80秒間程度の陰極電解により達成され、粗化面が完成される。
【0012】
本発明の粗面化処理における処理液にアルミニウムイオン及び/又はチタンイオンを添加させない場合、得られる銅突起物からなる粗面形状は極めて不均一でかつ粗大な樹枝状物が発生し、プレス成型後、エッチング基板面において残銅を生じることがある。この欠陥はプリント配線板としては致命的となる。また、残銅とならなくとも配線密度が高くなっている現在、微妙なエッチング時間による配線エッジの精細性に劣り、配線間でのショートの可能性があり、絶縁性に問題が生じる。
【0013】
一方、処理液にアルミニウムイオン及び/又はチタンイオンを添加させた場合は、アミニウムイオン、チタンイオンは銅と共析しにくいが、銅の析出を抑制する働きがある。この働きによって、銅の析出を均一化することができる。
また、チタンイオンは銅の析出突起物を微細化する働きもある。その傾向が強すぎる場合は、銅突起物の固着性が低下することがあるが、次いで行う銅又は銅合金の被覆めっき処理を多い目に施せば固着性は良くなる。
【0014】
このように粗面化処理を行った銅箔は、粗面形状が均一化し、表面粗さは低下し、ファインパターンに適合した粗面となる。
本発明の粗面化処理を施した銅箔は、銅又は銅合金による被覆めっきの後、次いで、防錆処理(耐熱性付与、耐薬品性付与の処理)を行うが、その前に例えば特公平2-24037号や特公平8-19550号などのCo-Mo,WやCu-Znのバリヤー層、さらに別の公知のバリヤー層を形成させ、耐熱性を強化させても良い。
【0015】
防錆処理には、クロメート処理やベンズトリアゾ−ルを代表とする有機防錆処理、また、シランカップリング剤処理などがあり、単一に又は組み合わせて行うことができる。クロメート処理は重クロム酸イオンを含む水溶液を使用し、酸性でもアルカリ性でも良く、浸漬処理又は陰極電解処理を行う。薬品としては三酸化クロム、重クロム酸カリウム、重クロム酸ナトリウムなどを使用する。ベンゾトリアゾール類の有機防錆にはメチルベンゾトリアゾール、アミノベンゾトリアゾール、カルボキシルベンゾトリアゾール、ベンゾトリアゾールなどがあり、水溶液として浸漬処理又はスプレー処理などにより施す。シランカップリング剤にはエポキシ基を持つもの、アミノ基、メチルカプト基、ビニール基を持つものなど多種あるが、樹脂との適応性のあるものを使用すると良く、水溶液として、浸漬処理又はスプレー処理などにより施す。
以上の処理によりプリント配線板用銅箔が完成する。
【0016】
前述した通り、従来、銅箔の光沢面側は多層板内層用として用いる両面処理銅箔(DT箔)として以外では通常粗面化処理を施す必要はなかった。
しかし、近年プリント配線板製造においてレジストの密着性、ソフトエッチング工程の省略や、内層処理の密着力上昇のため、あらかじめ微細均一で軽度の粗面化処理を施したDT箔が要望されてきている。
本発明の表面処理を施した銅箔は、表面形状が均一でかつ、適用樹脂に対し接着性も高いので、これらの要望に答えられるDT箔として適用できる。
銅箔に本発明の表面処理を施す場合、銅箔の光沢面側の粗面化量を粗面に比べて適度に少なくすれば良い。
【0017】
なお、銅箔処理における粗面、光沢面を逆にして上記本発明の処理を行ってもよい。粗面、光沢面を逆に処理した場合は、銅張積層板作成時、未処理銅箔で光沢面側であった面を先に樹脂と接着させる。
このように粗面、光沢面を逆にした方法は、片面に何も処理を施さない場合よりも樹脂との成型後、樹脂と接着していない面は、レジストとの密着性が高く、また、接着性も良いのでプリント板製造業者における内層処理工程において、その前処理であるソフトエッチングの工程が不要となる。しかも銅箔の製造者側では銅箔の表面処理工程が従来の両面処理銅箔を製造することと比べると軽い表面処理で済むので非常に容易に製造できることになる。
【0018】
【発明の実施の形態】
本発明の表面処理方法によって得られた銅箔は銅張積層板に適用され、プリント配線板として使用される。
以下、本発明の実施例を銅張積層板に適用した場合の特性について述べる。
【0019】
【実施例】
(実施例1)
35μm厚さの未処理電解銅箔の粗面側を

Figure 0004083927
の浴中において、10A/dm2、10秒間陰極電解し、水洗後、
Figure 0004083927
の浴中において、5A/dm2、80秒間陰極電解し、水洗した。
Figure 0004083927
の浴中において 0.5A/dm2、5秒間陰極電解し、水洗後、乾燥させた。
この銅箔の表面特性(均一性、表面粗さ)を調べた。その結果を表1に示す。
また、この銅箔の粗面を被着面としてFR-4グレードのガラスエポキシ樹脂含浸基材に積層し、40kgf/cm2 の圧力、170℃、60分間の条件でプレスし、成型した。その銅張積層板の特性(接着力、銅残)を調べた。その結果を表1に示す。
【0020】
(実施例2)
実施例1において、 (A)浴の代わりに
Figure 0004083927
の浴中において、10A/dm2、8秒間陰極電解し、水洗し、
次いで実施例1の(B)浴中において5A/dm2 120秒間陰極電解すること以外は全て実施例1と同じ方法で処理し、同じ方法で各特性試験を行った。
その結果を表1に示す。
【0021】
(実施例3)
実施例1において、(A)浴の代わりに
Figure 0004083927
の浴中において、10A/dm2、10秒間陰極電解すること以外は全て実施例1と同じ方法で処理し、同じ方法で各特性試験を行った。その結果を表1に示す。
【0022】
(実施例4)
実施例1において、(A)浴の代わりに
Figure 0004083927
の浴中において、10A/dm2、10秒間陰極電解すること以外は全て実施例1と同じ方法で処理し、同じ方法で各特性試験を行った。その結果を表1に示す。
【0023】
(実施例5)
実施例1において、(A)浴の代わりに
Figure 0004083927
の浴中において、10A/dm2、10秒間陰極電解すること以外は全て実施例1と同じ方法で処理し、同じ方法で各特性試験を行った。その結果を表1に示す。
【0024】
(実施例6)
実施例1において、(A)浴の代わりに
Figure 0004083927
の浴中において、10A/dm2、10秒間陰極電解すること以外は全て実施例1と同じ方法で処理し、同じ方法で各特性試験を行った。その結果を表1に示す。
【0025】
【比較例】
(比較例1)
実施例1において、(A)浴の代わりに
Figure 0004083927
の浴中において、10A/dm2、10秒間陰極電解すること以外は全て実施例1と同じ方法で処理し、同じ方法で各特性試験を行った。その結果を表1に示す。
【0026】
(比較例2)
比較例1において(I)浴中において電解時間を18秒としたこと以外は同じ処理を行った。また、この銅箔を実施例1と同じ方法で各特性試験を行った。
その結果を表1に示す。
【0027】
【表1】
Figure 0004083927
【0028】
表1において、
「均一性」は表面形状を電子顕微鏡により約1000倍の倍率で観察し、
(1)粗化粒子が粗大でなく、大小の差が小さく均一であるもの−〇
(2)粗化粒子が粗大でないが、大小の差がややあるもの −□
(3)粗化粒子が粗大で、不均一であるもの −△
(4)粗化粒子がきわめて粗大で不均一であるもの −×
と評価を行った。
「接着力」はその基材からの引きはがし強度を示し、JIS-C-6481-1986 5.7項の方法に準じた。
「エッチング基板面残留銅」は塩化第二銅エッチングにより、銅をエッチング除去後、50倍の倍率で実体顕微鏡観察を行った。
(1)残銅が全く無いもの −○
(2)残銅が認められるもの−× で評価した。
【0029】
【発明の効果】
上記、表1の結果から、本発明の表面処理方法は従来の表面処理方法よりも表面形状の均一性が高く、樹脂との接着力に優れ、表面粗さを低減させる効果を持っており、優れた表面処理銅箔となっていることがわかる。
以上、本発明の表面処理方法には、次のような効果がある。
(1)従来のようなヒ素、セレン、テルルなど毒性のある元素を使用せずに粗面化処理する方法であり、環境及び人体への悪影響が全く無い。
(2)粗面形状が均一でかつ、適用樹脂に対し接着力の高い表面処理銅箔が得られ、高密度のプリント配線板に適合する。
(3)この表面処理方法は実工程において、軽い表面処理で済むので導入が非常に容易であり、量産製造が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface treatment of a copper foil, and in particular, in a conductor application typified by a printed wiring board, the copper foil is subjected to a surface treatment having a uniform rough surface shape and high adhesiveness to an applied resin. It is related to the method applied to.
[0002]
[Prior art]
Copper foil is used in large quantities especially for printed wiring boards for electronic and electrical materials.
Printed wiring boards have been improved in performance and reliability. Therefore, required characteristics are complicated and diversified. Similarly, strict quality requirements have been imposed on copper foil, which is one of the constituent materials of this printed wiring board.
In the production of the printed wiring board, first, the rough surface side of the copper foil is laminated together with the synthetic resin-impregnated base material, and heat-pressed by a press to obtain a copper-clad laminate. In general, a glass epoxy substrate often used is completed by pressing at a temperature of about 170 ° C. for 1 to 2 hours.
[0003]
As copper foils for printed wiring boards, electrolytic copper foils having one side rough surface and one side glossy surface are overwhelmingly used. Usually, the electrolytic copper foil is subjected to electrolytic deposition of copper from an electrolytic solution of copper by an electrodeposition apparatus to produce a raw foil called untreated copper foil, and then a series of surface treatments are performed by a processing apparatus.
Generally, the rough surface side (non-gloss surface side) is pickled and roughened to ensure adhesion to the resin, and the adhesive properties such as heat resistance, chemical resistance, and etching properties The process to improve and stabilize is completed. Various techniques have been developed and proposed for these treatments, resulting in a highly functional surface. In the recent increase in the density of printed wiring boards, for example, in thin printed wiring boards and build-up printed wiring boards, the resin layer that becomes the insulating layer is extremely thin. May cause problems.
[0004]
In addition, a fine profile has been desired to reduce the profile on the rough surface side, for example, because the smaller copper foil rough surface can maintain insulation between lines. However, if the adhesive strength is not sufficient, delamination problems such as peeling and floating of the copper foil circuit will occur during the manufacturing process and after the product has been produced. Therefore, the development of a better surface treatment method has been awaited.
[0005]
On the other hand, on the opposite side and glossy side, different characteristics from the rough side, that is, heat discoloration, solder wettability, resist adhesion, etc. are required. A method is needed. However, for multilayer printed wiring board applications, there is no need for solder wettability, particularly when applied as an inner layer, and it has not been necessary to apply a roughening treatment to the glossy side. However, other than the copper foil called DT foil (Double treatment, double-sided treatment), a light roughening treatment has been demanded for increasing the adhesion of the resist and the adhesion of the inner layer treatment during the formation of the printed board.
[0006]
As described above, complicated treatments have been developed to meet various demands on both sides of the copper foil. In the prior art, various techniques related to the roughening treatment have been proposed. For example, Japanese Patent Publication No. 53-38700 has three-stage electrolytic treatment in an acidic electrolytic bath containing arsenic, and Japanese Patent Publication No. 53-39327 and Japanese Patent Publication No. 54-38053 have arsenic, antimony, bismuth, selenium and tellurium. There is a method of performing electrolysis around a limiting current density in an acidic copper electrolytic bath containing arsenic, and arsenic is often used in practice. Japanese Patent Publication No. 61-54592 and Japanese Patent Laid-Open No. 4-202796 propose surface roughening treatment by alternating current electrolysis.
[0007]
However, in the conventional roughening treatment as described above, the use of substances harmful to the human body such as arsenic, selenium, and tellurium has been extremely limited due to environmental problems. From the viewpoint of reuse of printed boards or industrial waste, there is concern about accumulation of harmful components contained in copper foil, and alternative methods are strongly demanded.
Furthermore, in the case of AC electrolysis, since a high-temperature hydrochloric acid bath is used, the mist of hydrochloric acid gas is extremely corrosive to copper, and strict care is required in surface treatment. Sufficient adhesion cannot be obtained.
[0008]
[Problems to be solved by the invention]
The problem to be solved by the present invention is a new roughness that is uniform and low in surface roughness and can provide sufficient adhesion without using toxic elements such as arsenic, selenium, and tellurium as in the prior art. It is to develop the surface treatment.
[0009]
[Means for Solving the Problems]
In the present invention, at least one surface of a copper foil is subjected to cathodic electrolysis in a sulfuric acid or copper sulfate electrolytic bath containing aluminum ions and / or titanium ions at or near the limit current density, thereby depositing copper protrusions. The copper foil surface treatment method is characterized in that a roughening treatment is performed, copper or a copper alloy is coated thereon, and then a rust prevention treatment is performed.
[0010]
Specifically describing the surface treatment method of the present invention, first, the untreated copper foil is acid-washed to remove surface oxides and dirt. Then, the roughening process of this invention is performed to the rough surface side surface. As the treatment liquid, sulfuric acid containing an additive element and an aqueous copper sulfate solution are used. As the sulfuric acid concentration, a range of 50 to 200 g / l is usually used, but depending on conditions such as liquid temperature and current density, it is possible to deviate from this range.
The additive element is aluminum ion and / or titanium ion, and its concentration is preferably 0.03 to 5.0 g / l, and if it is 0.03 g / l or less, the effect of homogenizing the rough surface may be low. Above g / l, even if the amount added is increased, the effect is not improved any more and it becomes uneconomical.
As for the concentration range, in the case of aluminum ions, 0.1 to 3 g / l is better, and in the case of titanium ions, 0.03 to 0.5 g / l is even better. In the case of titanium ions, the addition method is preferably a titanium dioxide solution. In the case of aluminum ions, aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate or the like is used.
[0011]
Cathodic electrolysis on the surface of the copper foil varies depending on time, temperature, and the required amount of roughening.
The cathodic electrolysis time is 2 to 60 seconds and the bath temperature is 10 to 50 ° C. The current density is 5 to 100 A / dm 2 , and 20 to 200 coulomb / dm 2 is appropriate as the amount of electricity, and more specifically 40 to 130 coulomb / dm 2 is more preferable. After this treatment, copper or copper alloy is coated on the copper protrusions or dendritic precipitates to improve the adhesion of the copper protrusions. As the processing conditions, for example,
CuSO 4・ 5H 2 O 250g / l
H 2 SO 4 100 g / l
The roughened surface is completed by a bath temperature of 50 ° C., a current density of 5 A / dm 2 , and cathodic electrolysis for about 80 seconds.
[0012]
When aluminum ions and / or titanium ions are not added to the treatment liquid in the roughening treatment of the present invention, the rough surface shape obtained from the copper protrusions is extremely uneven and coarse dendrites are generated, and press molding is performed. Later, residual copper may be generated on the etched substrate surface. This defect is fatal for a printed wiring board. In addition, the wiring density is high even if it is not a remaining copper, and the fineness of the wiring edge due to a delicate etching time is inferior, and there is a possibility of short-circuiting between wirings, resulting in a problem in insulation.
[0013]
On the other hand, when aluminum ions and / or titanium ions are added to the treatment liquid, aminium ions and titanium ions are difficult to eutect with copper, but have a function of suppressing copper precipitation. By this function, copper deposition can be made uniform.
Titanium ions also have a function of refining copper deposit protrusions. When the tendency is too strong, the sticking property of the copper protrusions may be lowered, but the sticking property will be improved if the subsequent copper or copper alloy coating treatment is applied to many eyes.
[0014]
Thus, the roughened copper foil has a uniform rough surface shape, a reduced surface roughness, and becomes a rough surface suitable for a fine pattern.
The copper foil subjected to the roughening treatment of the present invention is subjected to rust prevention treatment (treatment for imparting heat resistance and chemical resistance) after coating plating with copper or a copper alloy. A barrier layer of Co-Mo, W or Cu-Zn, such as Kokoku 2-24037 or JP-B-8-19550, or another known barrier layer may be formed to enhance heat resistance.
[0015]
Rust prevention treatment includes chromate treatment, organic rust prevention treatment typified by benztriazole, and silane coupling agent treatment, which can be carried out singly or in combination. The chromate treatment uses an aqueous solution containing dichromate ions, which may be acidic or alkaline, and is subjected to immersion treatment or cathodic electrolysis treatment. As the chemical, chromium trioxide, potassium dichromate, sodium dichromate, etc. are used. Organic rust prevention of benzotriazoles includes methylbenzotriazole, aminobenzotriazole, carboxyl benzotriazole, benzotriazole, etc., and is applied as an aqueous solution by immersion treatment or spray treatment. There are various types of silane coupling agents, such as those having an epoxy group, amino groups, methylcapto groups, and vinyl groups, but it is preferable to use ones that are compatible with the resin, such as immersion treatment or spray treatment as an aqueous solution. Apply by.
The copper foil for printed wiring boards is completed by the above process.
[0016]
As described above, conventionally, the glossy surface side of the copper foil usually does not need to be roughened except as a double-sided copper foil (DT foil) used for the inner layer of the multilayer board.
However, in recent years, there has been a demand for a DT foil that has been subjected to a fine, uniform and light roughening treatment in advance in order to eliminate resist adhesion, soft etching process, and increase the adhesion of inner layer processing in printed wiring board manufacture. .
The copper foil subjected to the surface treatment of the present invention has a uniform surface shape and high adhesion to the applied resin, and therefore can be applied as a DT foil that can meet these demands.
When the copper foil is subjected to the surface treatment of the present invention, the roughening amount on the glossy surface side of the copper foil may be appropriately reduced as compared with the rough surface.
[0017]
In addition, you may perform the process of the said invention by making the rough surface and glossy surface in a copper foil process into reverse. When the rough surface and the glossy surface are processed in reverse, the surface that was the glossy surface side of the untreated copper foil is first bonded to the resin when the copper-clad laminate is prepared.
In this way, the method of reversing the rough surface and the glossy surface has higher adhesion to the resist on the surface that is not bonded to the resin after molding with the resin than when no treatment is performed on one surface. In addition, since the adhesiveness is good, the soft etching process, which is the pretreatment, is not required in the inner layer processing process in the printed board manufacturer. Moreover, on the copper foil manufacturer side, since the surface treatment process of the copper foil is lighter than the conventional double-sided copper foil, it can be manufactured very easily.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The copper foil obtained by the surface treatment method of the present invention is applied to a copper clad laminate and used as a printed wiring board.
Hereinafter, characteristics when the embodiment of the present invention is applied to a copper clad laminate will be described.
[0019]
【Example】
(Example 1)
The rough side of untreated electrolytic copper foil with a thickness of 35 μm
Figure 0004083927
In the bath of 10A / dm 2 , cathodic electrolysis for 10 seconds, washed with water,
Figure 0004083927
Was subjected to cathodic electrolysis at 5 A / dm 2 for 80 seconds and washed with water.
Figure 0004083927
Was subjected to cathodic electrolysis at 0.5 A / dm 2 for 5 seconds, washed with water and dried.
The surface characteristics (uniformity, surface roughness) of this copper foil were examined. The results are shown in Table 1.
The rough surface of the copper foil was laminated on an FR-4 grade glass epoxy resin-impregnated base material as a coating surface, and pressed and molded under the conditions of 40 kgf / cm 2 pressure, 170 ° C. for 60 minutes. The characteristics (adhesive strength, copper residue) of the copper-clad laminate were investigated. The results are shown in Table 1.
[0020]
(Example 2)
In Example 1, (A) Instead of bath
Figure 0004083927
In the bath of 10A / dm 2 , cathodic electrolysis for 8 seconds, washed with water,
Subsequently, all treatments were carried out in the same manner as in Example 1 except that cathodic electrolysis was carried out in the bath (B) of Example 1 for 5 A / dm 2 for 120 seconds, and each characteristic test was performed in the same manner.
The results are shown in Table 1.
[0021]
Example 3
In Example 1, instead of (A) bath
Figure 0004083927
In this bath, all treatments were performed in the same manner as in Example 1 except that cathodic electrolysis was performed at 10 A / dm 2 for 10 seconds, and each characteristic test was performed in the same manner. The results are shown in Table 1.
[0022]
Example 4
In Example 1, instead of (A) bath
Figure 0004083927
In this bath, all treatments were performed in the same manner as in Example 1 except that cathodic electrolysis was performed at 10 A / dm 2 for 10 seconds, and each characteristic test was performed in the same manner. The results are shown in Table 1.
[0023]
(Example 5)
In Example 1, instead of (A) bath
Figure 0004083927
In this bath, all treatments were performed in the same manner as in Example 1 except that cathodic electrolysis was performed at 10 A / dm 2 for 10 seconds, and each characteristic test was performed in the same manner. The results are shown in Table 1.
[0024]
Example 6
In Example 1, instead of (A) bath
Figure 0004083927
In this bath, all treatments were performed in the same manner as in Example 1 except that cathodic electrolysis was performed at 10 A / dm 2 for 10 seconds, and each characteristic test was performed in the same manner. The results are shown in Table 1.
[0025]
[Comparative example]
(Comparative Example 1)
In Example 1, instead of (A) bath
Figure 0004083927
In this bath, all treatments were performed in the same manner as in Example 1 except that cathodic electrolysis was performed at 10 A / dm 2 for 10 seconds, and each characteristic test was performed in the same manner. The results are shown in Table 1.
[0026]
(Comparative Example 2)
In Comparative Example 1, the same treatment was performed except that the electrolysis time was 18 seconds in the (I) bath. In addition, each copper foil was subjected to a characteristic test in the same manner as in Example 1.
The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004083927
[0028]
In Table 1,
“Uniformity” is a surface shape observed with an electron microscope at a magnification of about 1000 times.
(1) Roughened particles are not coarse and the difference in size is small and uniform.
(2) Roughened particles are not coarse, but there is a slight difference in size − □
(3) Roughened particles are coarse and uneven-△
(4) Roughened particles are very coarse and non-uniform − ×
And evaluated.
“Adhesive strength” indicates the peel strength from the base material and conforms to the method described in Section 5.7 of JIS-C-6481-1986.
“Etching substrate surface residual copper” was observed with a stereomicroscope at a magnification of 50 times after removing copper by etching with cupric chloride etching.
(1) No residual copper − ○
(2) Remaining copper is observed-Evaluation was made with x.
[0029]
【The invention's effect】
From the results of Table 1 above, the surface treatment method of the present invention has higher surface shape uniformity than the conventional surface treatment method, excellent adhesion to the resin, and has the effect of reducing the surface roughness, It turns out that it is the surface-treated copper foil which was excellent.
As described above, the surface treatment method of the present invention has the following effects.
(1) A conventional surface roughening method without using toxic elements such as arsenic, selenium, and tellurium, and has no adverse effects on the environment or human body.
(2) A surface-treated copper foil with a uniform rough surface shape and high adhesion to the applied resin can be obtained, and is suitable for high-density printed wiring boards.
(3) Since this surface treatment method requires only a light surface treatment in the actual process, it is very easy to introduce and mass production is possible.

Claims (2)

銅箔の少なくとも一方の面を、アルミニウムイオン及び/又はチタンイオンを含む硫酸、硫酸銅電解浴中で限界電流密度付近又はそれ以上で陰極電解することにより銅の突起物を析出させ粗面化処理を行い、その上に銅又は銅合金の被覆めっきを行い、次いで、防錆処理を施すことを特徴とする銅箔の表面処理方法。At least one surface of the copper foil is subjected to cathodic electrolysis in a sulfuric acid or copper sulfate electrolytic bath containing aluminum ions and / or titanium ions at or near the limit current density, thereby depositing copper protrusions to roughen the surface. A surface treatment method for copper foil, characterized in that copper or copper alloy coating is performed thereon, followed by rust prevention treatment. アルミニウムイオン及び/又はチタンイオンが 0.03g/l〜5g/lの濃度であることを特徴とする請求項1に記載の銅箔の表面処理方法。The surface treatment method for a copper foil according to claim 1, wherein the aluminum ions and / or titanium ions have a concentration of 0.03 g / l to 5 g / l.
JP18468399A 1999-06-30 1999-06-30 Copper foil surface treatment method Expired - Fee Related JP4083927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18468399A JP4083927B2 (en) 1999-06-30 1999-06-30 Copper foil surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18468399A JP4083927B2 (en) 1999-06-30 1999-06-30 Copper foil surface treatment method

Publications (2)

Publication Number Publication Date
JP2001011689A JP2001011689A (en) 2001-01-16
JP4083927B2 true JP4083927B2 (en) 2008-04-30

Family

ID=16157556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18468399A Expired - Fee Related JP4083927B2 (en) 1999-06-30 1999-06-30 Copper foil surface treatment method

Country Status (1)

Country Link
JP (1) JP4083927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579705B2 (en) * 2005-02-02 2010-11-10 日本製箔株式会社 Clad material and manufacturing method thereof
CN103469267B (en) * 2013-08-07 2015-11-25 江西省江铜-耶兹铜箔有限公司 A kind of processing method of surface-treated electro-deposited copper foil and the Copper Foil of process thereof
JP6255209B2 (en) * 2013-10-21 2017-12-27 福田金属箔粉工業株式会社 Copper foil rust prevention method, rust prevention liquid, and copper foil

Also Published As

Publication number Publication date
JP2001011689A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3670186B2 (en) Method for producing surface-treated copper foil for printed wiring board
US20050123782A1 (en) Copper foil with low profile bond enhancement
EP1133220B1 (en) Copper foil with low profile bond enhancement
US6419811B2 (en) Method for surface treatment of copper foil
KR20010089713A (en) Surface-treated copper foil and method for manufacturing the surface-treated copper foil
US6569543B2 (en) Copper foil with low profile bond enahncement
US5447619A (en) Copper foil for the manufacture of printed circuit boards and method of producing the same
JPH0441696A (en) Surface treatment of copper foil for printed circuit
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
JPH10341066A (en) Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP3623621B2 (en) Copper foil surface treatment method
JP4083927B2 (en) Copper foil surface treatment method
EP0839440B1 (en) Copper foil for the manufacture of printed circuits and method of producing same
EP0525956A2 (en) Metal foil with improved bonding to substrates and method for making said foil
EP0520640A1 (en) Metal foil with improved peel strength and method for making said foil
JP3342479B2 (en) Copper foil surface treatment method
US6042711A (en) Metal foil with improved peel strength and method for making said foil
KR20110050751A (en) Peel strength enhancement of copper laminates
JP4330979B2 (en) Surface treatment electrolytic copper foil
JP2005240132A (en) Electrolytic copper foil, and electrolytic polishing method for shiny face of electrolytic copper foil
JPH0987888A (en) Treatment of copper foil for printed circuit
JPS632158B2 (en)
JP2005340635A (en) Rolled copper foil for printed wiring board, and its production process
JPH08335775A (en) Method for treating copper foil in printed circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Ref document number: 4083927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees