JPS632733A - Torque distribution control device in four-wheel drive vehicle - Google Patents

Torque distribution control device in four-wheel drive vehicle

Info

Publication number
JPS632733A
JPS632733A JP14447986A JP14447986A JPS632733A JP S632733 A JPS632733 A JP S632733A JP 14447986 A JP14447986 A JP 14447986A JP 14447986 A JP14447986 A JP 14447986A JP S632733 A JPS632733 A JP S632733A
Authority
JP
Japan
Prior art keywords
torque
steering
wheel
steering force
wheel drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14447986A
Other languages
Japanese (ja)
Inventor
Yukihiro Kodama
児玉 幸大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP14447986A priority Critical patent/JPS632733A/en
Priority to US07/063,173 priority patent/US4896738A/en
Priority to DE19873720459 priority patent/DE3720459A1/en
Publication of JPS632733A publication Critical patent/JPS632733A/en
Priority to US07/338,714 priority patent/US5018596A/en
Priority to US07/494,719 priority patent/US5005662A/en
Priority to US07/494,078 priority patent/US5020626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To improve turning round performance without impairing stability in straight running by providing a sensor detecting the steering force of a handle whereby distributing much more torque to rear wheel driving depending on the steering force of the handle. CONSTITUTION:The steering force of a handle is detected by a handle steering force sensor 22 whereby hydraulic pressure which increases torque distribution to rear wheels depending on the quantity of steering force, is applied to a hydraulic clutch 11 by a torque distribution control device 20. Then, torque generated by the clutch 11 is reduced from front wheel driving torque, and furthermore the same is added to rear wheel driving torque in such a way as to be distributed much more to rear wheel driving while bypassing a center differential gear 7. Owing to this constitution, stability in straight running can be secured and a tendency of understeering on a road with a high value of muis negated, thereby ensuring a satisfactory turning round performance.

Description

【発明の詳細な説明】[Detailed description of the invention]

3、発+11]の詳細な説明 (産業上の利用分野] 本発明は、センクーデフ装置付のフルタイム式4輪駆動
車において、前、jす輪の駆動トルク配分を任意に制御
して、操、獣性または安定性千視の走行を可能にする4
輪部rMJ車のトルク配分制御装置に係り、詳1ツクは
、センターデフ装置の駆動力配分機能を利用するものに
関する。
3. Detailed explanation of [Start + 11] (Industrial Application Field) The present invention is a full-time four-wheel drive vehicle equipped with a sensor differential device, and is capable of controlling the drive torque distribution between the front and front wheels as desired. 4, which allows for beastly or stable running with a thousand visions
The present invention relates to a torque distribution control device for a wheel rMJ vehicle, and more particularly relates to one that utilizes the driving force distribution function of a center differential device.

【従来の技術l 従来、フルタイム式4輪部fIJ車の館、後輪駆動トル
ク配分に関してtよ、例えば特開昭56−430310
公報に示づように、曲、後輪の駆りj系の途中に油圧ク
ラッチを設り、そのクラッチトルクを制御するようにし
たちのがあった。また、例えば特開昭55−72420
号公報に示すように、センクーデフ装置付 チを設けたものもあった。 ところで、上記先行技術の1竹とは、駆動系に直接介設
された油圧クラッチにより大ぎい伝達トルクを制御する
構成なので、クラッチ容量が増し、スリップを許容する
上で摩耗等の耐久性が要求される。また、後者は、前、
後輪の一方がスリップして四転芒が生じたときに機能す
る。 これらはいずれも、直結4WD時のタイトコーナブレー
キング現象を回避するために後輪のトルクを減じたり、
またはセンターデフ付の緊急脱出用としてデフロックす
るものrあった。 (発明が解決しようとする問題点1 ところで、−般の自動中の車両ステアリング特性は、通
常の走行ではその駆動方式の影響はあまりないが、高速
走行や降雨、降雪時の走(1では、前輪駆動(FWD)
か後輪駆動(RW D )かによって車両の挙動に違い
が出てくる。 即ち前輪駆動では、前輪のタイ1’が駆動力の影響を受
けるためアンダーステアリング傾向が強まり、限界時に
はドリフト状態となる。−方、後輪駆動では、アンダー
ステアリング傾向が弱まり、限界IK′1“にはオーバ
ステアリング傾向にまでなってスピン状態となることが
多い。 また、4輪駆動車においては、前、後輪を直結したもの
は、主に走行時の軸荷重比に応じて駆動力配分が自動釣
になされるものであり、前、後輪間にいわゆるセンター
デフを設けたものでは、駆動力配分を常に50:50!
sの一定値とするものである。口の4輪駆動中は、確か
にFWDやRWDとは異なった車両ステアリング特性、
即ら略中間的特性となり得るが、車両旋回時などにV4
極的に駆動力配分するものではないので、元の車両のス
テアリンク特性を大幅に変えることはできなかった。 これに対し、車両の前後駆動力配分を可変にりることが
できる車両でtよ、種々のセンサにより車両の走行状態
を検出し、これに応じて100後輪駆動力配分を変更す
ることによって、走行状態に応じたステアリング特性と
なる。例えばハンドル角に応じて後輪駆動力配分を増加
させる方式もあり、ハンドルを切れば切るほど後輪駆動
力配分が増し、車両の回頭性が良くなるので、直進時の
安定性をnうことなく口頭性の改善が可能となる。 しかし、この方式では、高摩擦(μ)路にて適Jfにア
ンダーステアリングが打消されて都合は良いが、低μ路
においては後輪がit〜イールスビン気味となり、A−
バステアリング傾向が過度となって操縦し難い車両にな
るという問題がある。 本発明は、このような点に鑑みなされたもので、低μ路
での過度のA−バステアリング傾向を防止すると共に、
高μ路でのアンダーステアリング傾向を回避することが
できる4輪駆動車のトルク配分制御I装置を提供するこ
とを目的とする。 C問題点を解決するための手段) 上記目的を達成するため、本発明は、変速機出力軸をセ
ンターデフ装置を介して前、1!2輪に伝動し、上記セ
ンターデフ[1をバイパスして2対のギヤ機構と油圧ク
ラッチからなるトルク分配装置を備え、上記油圧クラッ
チへの印加油圧を制願することによって的、後輪の駆動
力配分を可変とする4輪駆動車に、l13いて、変速機
出力軸の駆動トルクを検出する出カド・ルクセンすと、
ハンドルの操舵力を検出するハンドル操舵力センサを設
け、検出されたハンドル操舵力に応じて[・ルク配分を
後輪部1Fll寄りに近づ【プるように構成されている
。 【作  用1 上記構成に基づき、車両の転舵が行われる場合、そのハ
ンドル操舵力をハンドル操舵力センサ“によって検出し
、この検出信丹に塁づいてトルク配分制御装置は、操舵
力の大きさに応じて後輪へのトルク配分を増加させるよ
うなし11圧をトルク分配装置の油圧クラッチに印加し
て、この油圧クラッチで発生するクラッチトルクを、前
輪駆動トルクから減じるとJ(に、しンターデア[1を
バイパスして後輪駆動[・ルクに加え、後輪駆動寄りと
する。 このようにすると、同じタイψ横滑り角でも、低μ路で
は、大ぎな操舵力が発生することがないのでトルク配分
を後輪部りにすることがなく、過度のA−バステアリン
グ傾向を防止することができる。−方、高μ路では、ハ
ンドルの操舵力が大きくなるので、後輪のF〜ルク配分
が大きくなり、アンダーステアリング傾向を回避するこ
とができる。 C実 施 例1 以下、本発明の実施例を図面に阜づいて説明する。第1
図はセンターデフ付4輪駆動中の伝動系の構成を示づス
ケルトン図であり、図において、符81はエンジン、2
 i、t )−ランスミッション、3は前輪、4は後輪
、5はフロントデフ、6はり\7デフ、7はベベルギヤ
の組合せで)開成されるセンターデフ、8はトランスミ
ッション2の出力軸2aに同行された第1歯巾、9はセ
ンターデフ7のデフケースに設(づられた第2南車で、
第1南車8と噛合う。10はトルク分配装置、11はト
・ルク分Fiil!装置10のバイパス軸10aに介設
されたiIl+圧クラツクラッチはセンターデフ7の前
輪側駆動軸7aに固着された第3歯巾、13はバイパス
軸10aの一端に固着されて第3歯車12と噛合う同径
の第4歯車、14は油圧クラッチ11のドラム側に設け
られた大径の第5歯車、15はセンターデフ7の後輪側
駆動軸7bに固着されて第5歯巾14と噛合う小径の第
6IIPI車、1Gはハンドル、17は油圧ユニットで
、油圧クラッチ11へ所定のクラッチ油圧pcを印加す
る。20はマイクロコンビコータからなるトルク配分$
11 tl(l 装置、21はトランスミッション出力
軸2aに取付けられた出力トルクレンサC、エンジン1
からの駆動トルクTを検出する。22はハンドル16の
操舵トルクT11を検出するハンドル操舵力センサであ
る。 また、トルク配分制御装置20の構成を示J第2図にお
いて、符丹30はハンドル操舵トルクThに対応する理
想的なトルク配分、即ち前輪駆動力配分値RFを、第3
図に示すようなマツプの形で予め格納している記憶装置
、31は駆動力配分決定手段で、ハンドル操舵トルクT
hをアト1ノス信号としてマツプ検索し、前輪駆動力配
分値RFを読出ず、、32fまクラッヂ油圧演算手段で
、読出された配分値RFど、出力トルクしン1す21に
よって検出された駆fjJトルクTとに基づいて油圧ク
ラッチ11において発生すべきクラッチトルクTcを演
のし、この値に応じた油圧指令を油圧ユニット・17へ
与える。 次に、トルク分配装置10の動作について説明する。 トランスミッション2から出力される駆動トルクTは、
第1歯中8.第2歯119を今してセンターデフ7へ伝
達され、ここで50;50に配分されて前輪側駆動軸7
aと後輪側駆動軸7bとに伝達される。 ここで、油圧クラップ−11への印加油圧pcが零でオ
フになっていると、前輪3および後輪4警よ、それぞれ
(T/2>の駆動トルクTF 、TRで駆動される。こ
の油圧クラッチ11は、ハブllaがβI +Wの第3
歯車12.第4南車13.バイパス軸10aを介]ノで
前輪側駆動軸7aとtr=速に回転し、ドラム11bが
小径の第6歯車15と大径の第5歯車14とのギ)y比
Kによって減速回転しているので、油圧ユニット17か
ら徐々に油圧pcを印加すると、回転差によって油圧P
cに応じたクラッチトルクTcが発生し、低速回転側の
ドラム11bにそのクラッチトルクTCが加えられ、後
輪側駆動軸7bへの駆」力トルクTRは、 TR=   (T/2  >   +K   −Tcと
なる。 一方、前輪側駆動軸7aへの駆EノトルクTFは、TF
 = (T/2>−Tc となり、油圧クララy−11へ印加される油圧pcに応
じて前輪3の駆動[・ルクTFが低下し、後輪4の駆動
トルクTRが増大する。 このトルク配分糾1211は、運転とがハンドル16を
中立点付近に把持している峙、即らハンドル操舵力セン
サ22によって検出される操舵ト・ルクThが零の時は
、車両に直進運動を求めているわ(プぐあるから、前、
後輪のトルク配分は50:50として、車両の安定性を
優先させる。また、ハンドル16を切っている時、即ら
操舵角に応じてハンドル操舵[・ルクTh/fi発生し
ている時には、車両に旋回運動を求めているわ(プであ
るから、より後輪駆動寄りの4輪駆動(40:60〜2
0 : 80)として、車両の操縦性を優先させる。 このため、第3図に示すような前、v2輪駆動力配分値
RF 、 RR(但し、RF+RR=1)を、記憶装置
30に予め格納しておく。 そしてトルク配分制御装置20は、ハンドル操舵力セン
サ22からの操舵トルクTh信号を入力し、この操舵ト
ルクThをアドレス信号として駆動力配分決定手段31
によって駆動力配分値マツプ30を検索し、前輪駆動力
配分値RFを続出す。 いま、ハンドル1Gが中立点付近にあってTt+=雪で
あれば、クラツア油圧演偉手段32は、クラッチトルク
TCが零、叩ら油圧Pcを零どするような指令を油圧ユ
ニット17へ与え、油圧クラッチ11への印加油圧Pc
を零としてオフし、TF =TRの4輪駆動として走行
の安定性を確保する。 −方、車両の方向を変えるためハンドル16を操舵する
と、その操舵呈に応じて操舵トルクThが発生する。こ
の操舵[・ルクThをハンドル操舵力センサ22で検出
し、この検出信号をアドレス信号として駆動力配分決定
手段31は、記ta装首30からマツプ検索によって前
輪駆動力配分値RFを求め、この配分値RFと、出力ト
ルクセンサ21によって検出されるトランスミッション
出力軸2aの駆動トルクTとに基づいて、クラッチ油圧
演障手段は、RF −((T/2)−TO)/ [((
T/2)−rC)+ [T/2)+に−Tc )]を満
足するようなりラップ−トルクTcを求め、このクラッ
ヂトルクTcに対応する油圧指令を油圧ユニット17に
与え、油圧ユニット17から対応する油圧pcを油圧ク
ラッチ11に印加し、より後輪駆動寄りの4輪駆動とし
て車両の操縦性(回頭性)を霞める。 この場合、第4図に示すような操舵系において、ハンド
ル16に加えられる操舵トルクThは、ギヤボックス1
8の操舵ギ)フ比nを介してタイロッド3b。 ナックルアーム3Cおよびキングピン3aにより前輪3
を操舵する。このときタイヤのキングピン回りのモーメ
ントの釣合いは、前輪横ツノ(1輪分ンをCf、ニュー
マチックトレールをξp、キセスタートレールをξCと
して、 Th−n=2(ξρ+ξc)・(j となり、操舵トルクT11と前輪横力Cfは比例関係に
ある。また、前輪横力Cfは、第5図に示すように路面
の摩擦係数(μ)により大きく変わり、低μ路では大き
な横力Qfは発生しないので、ハンドル1Gの操舵角に
対する操舵トルクT 11は小さくなる。 従って、同じタイ曳7横滑り角でも、低μ路にお−いて
は、大きな操舵トルクThは発生し青ないので、低/l
路での前、後輪3.4へのトルク配分は後輪部f7]寄
りに片寄り過ぎることはなく、オーパスデリング傾向を
防止することができる。なお、高μ路においては、操舵
角に応じた大きな操舵トルクThが発生するので、後輪
4への駆動トルクTRの配分が大きくなり、適度にアン
ダステアリングが打消されて車両の操縦性(回頭性)が
向上する。 なお本発明は、実施例のようなトルク配分装置に限定さ
れるものではない。 【発明の効果】 以上の説明から明らかなように、本発明によれば、ハン
ドル操舵力に応じてトルク配分を後輪部#J寄りに返付
シブるようにしたので、全体的なトルクロスが生じるこ
とがなく、直進走行の安定性を得ることができると共に
、高μ路でのアンダーステアリング傾向が打消されて良
好な口頭性が得られる。 また、低μ路においては、過度のオーパスデアリングと
なることがないという効果が1qられる。
[Prior art l] Conventionally, in the case of full-time four-wheeled FJ cars, regarding rear wheel drive torque distribution, for example, Japanese Patent Application Laid-Open No. 56-430310
As shown in the official gazette, a hydraulic clutch was installed in the middle of the drive system for the rear wheels, and the clutch torque was controlled. Also, for example, JP-A-55-72420
As shown in the publication, there was also one equipped with a chi with a senku differential device. By the way, one aspect of the prior art mentioned above is a configuration in which a large amount of transmitted torque is controlled by a hydraulic clutch directly interposed in the drive system, which increases the clutch capacity and requires durability against wear and tear in order to tolerate slippage. be done. Also, the latter is the former,
It works when one of the rear wheels slips, causing a quadruple fall. All of these reduce rear wheel torque to avoid tight corner braking during direct 4WD,
Or there was one with a center differential that locked the differential for emergency escape. (Problem to be Solved by the Invention 1) By the way, the steering characteristics of a vehicle during automatic operation are not affected much by the drive system during normal driving, but when driving at high speed or during rain or snow (1) Front wheel drive (FWD)
There are differences in the behavior of the vehicle depending on whether it is rear wheel drive (RWD) or rear wheel drive (RWD). That is, in front wheel drive, the front wheel tie 1' is affected by the driving force, which increases the tendency for understeering, resulting in a drift state at the limit. - On the other hand, in a rear-wheel drive vehicle, the understeering tendency weakens, and at the limit IK'1'', the oversteering tendency often occurs, resulting in a spin state. Directly coupled models automatically distribute the driving force mainly according to the axle load ratio during driving, while models with a so-called center differential between the front and rear wheels always distribute the driving force at 50%. :50!
s is set to a constant value. During four-wheel drive, the vehicle steering characteristics are certainly different from FWD and RWD.
In other words, it may have approximately intermediate characteristics, but when the vehicle turns, V4
Since it does not distribute driving force in a polar manner, it was not possible to significantly change the steering link characteristics of the original vehicle. On the other hand, in a vehicle where the front and rear drive force distribution of the vehicle can be made variable, the driving condition of the vehicle is detected by various sensors, and the rear wheel drive force distribution is changed accordingly. , the steering characteristics correspond to the driving conditions. For example, there is a system that increases the rear wheel drive force distribution according to the steering wheel angle, and the more you turn the steering wheel, the more the rear wheel drive force distribution increases, improving the turning performance of the vehicle, which improves the stability when driving straight. This makes it possible to improve oral proficiency. However, with this method, understeering is canceled out to an appropriate Jf on high-friction (μ) roads, which is convenient, but on low-μ roads, the rear wheels tend to feel a bit sluggish, and the A-
There is a problem in that the tendency of bus steering becomes excessive, resulting in a vehicle that is difficult to maneuver. The present invention was made in view of the above points, and prevents excessive A-basteering tendency on low μ roads.
An object of the present invention is to provide a torque distribution control device for a four-wheel drive vehicle that can avoid understeering tendency on high μ roads. Means for Solving Problem C) In order to achieve the above object, the present invention transmits the transmission output shaft to the front, 1 or 2 wheels via a center differential device, and bypasses the center differential [1]. A four-wheel drive vehicle is equipped with a torque distribution device consisting of two pairs of gear mechanisms and a hydraulic clutch, and the driving force distribution between the rear wheels can be varied by controlling the hydraulic pressure applied to the hydraulic clutch. , when the output lux sensor detects the drive torque of the transmission output shaft,
A steering wheel steering force sensor is provided to detect the steering force of the steering wheel, and the vehicle is configured to shift the torque distribution closer to the rear wheel portion 1Fll in accordance with the detected steering force. [Operation 1] Based on the above configuration, when the vehicle is steered, the steering force is detected by the steering force sensor, and based on this detection, the torque distribution control device determines the magnitude of the steering force. If a pressure of 11 is applied to the hydraulic clutch of the torque distribution device to increase the torque distribution to the rear wheels according to the front wheel drive torque, then the clutch torque generated by this hydraulic clutch is subtracted from the front wheel drive torque. Bypassing [1] and rear-wheel drive [・In addition to the torque, the steering wheel is shifted closer to rear-wheel drive. In this way, even with the same tie ψ sideslip angle, a large steering force will not be generated on low μ roads. Therefore, the torque distribution is not distributed to the rear wheels, and excessive A-bas steering tendency can be prevented.On the other hand, on high-μ roads, the steering force of the steering wheel becomes large, so the F-basteering tendency of the rear wheels is prevented. The torque distribution is increased, and the tendency of understeering can be avoided.C Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings.
The figure is a skeleton diagram showing the configuration of the transmission system during four-wheel drive with a center differential.
i, t) - Transmission, 3 is the front wheel, 4 is the rear wheel, 5 is the front differential, 6 is the \7 differential, 7 is the center differential that is opened (with a bevel gear combination), 8 is the output shaft 2a of the transmission 2. The accompanying No. 1 tooth width, 9, is installed in the differential case of center differential 7 (the second south wheel is attached).
It meshes with the first south car 8. 10 is a torque distribution device, 11 is a torque portion Fiil! The iIl+pressure clutch provided on the bypass shaft 10a of the device 10 has a third tooth width fixed to the front drive shaft 7a of the center differential 7, and a third tooth width 13 is fixed to one end of the bypass shaft 10a and meshes with the third gear 12. 14 is a large diameter fifth gear provided on the drum side of the hydraulic clutch 11, and 15 is fixed to the rear wheel side drive shaft 7b of the center differential 7 and meshes with the fifth tooth width 14. A matching small diameter 6th IIPI car, 1G is a handle, and 17 is a hydraulic unit, which applies a predetermined clutch oil pressure pc to the hydraulic clutch 11. 20 is a torque distribution consisting of a micro combi coater $
11 tl (l device, 21 is the output torque ranger C attached to the transmission output shaft 2a, engine 1
Detect the driving torque T from. 22 is a steering wheel steering force sensor that detects the steering torque T11 of the steering wheel 16. Further, in FIG. 2 showing the configuration of the torque distribution control device 20, reference numeral 30 indicates the ideal torque distribution corresponding to the steering wheel steering torque Th, that is, the front wheel drive force distribution value RF.
A memory device 31 stores driving force distribution in the form of a map as shown in the figure.
A map search is performed using h as the AT1 NOS signal, and the front wheel drive force distribution value RF is not read out. The clutch torque Tc to be generated in the hydraulic clutch 11 is expressed based on the fjJ torque T, and a hydraulic command corresponding to this value is given to the hydraulic unit 17. Next, the operation of the torque distribution device 10 will be explained. The driving torque T output from the transmission 2 is
1st tooth middle 8. It is transmitted through the second tooth 119 to the center differential 7, where it is distributed to the front wheel drive shaft 7.
a and the rear wheel drive shaft 7b. Here, when the hydraulic pressure pc applied to the hydraulic clamp 11 is zero and off, the front wheels 3 and the rear wheels 4 are driven with drive torques TF and TR of (T/2>, respectively. The clutch 11 has a third hub lla of βI +W.
Gear 12. 4th south car 13. The drum 11b rotates at a speed tr=speed with the front drive shaft 7a via the bypass shaft 10a, and the drum 11b rotates at a reduced speed according to the gear ratio K between the small-diameter sixth gear 15 and the large-diameter fifth gear 14. Therefore, when the hydraulic pressure pc is gradually applied from the hydraulic unit 17, the hydraulic pressure P increases due to the rotation difference.
Clutch torque Tc is generated according to c, and the clutch torque TC is applied to the drum 11b on the low speed rotation side, and the driving force torque TR to the rear wheel drive shaft 7b is as follows: TR= (T/2 > +K − On the other hand, the drive E torque TF to the front drive shaft 7a is TF
= (T/2>-Tc, and the drive torque TF of the front wheels 3 decreases and the drive torque TR of the rear wheels 4 increases according to the hydraulic pressure pc applied to the hydraulic clarifier y-11. This torque distribution 1211 is that when the driver holds the steering wheel 16 near the neutral point, that is, when the steering torque Th detected by the steering wheel steering force sensor 22 is zero, the vehicle is required to move in a straight line. Wow (there's a game, so...
Torque distribution between the rear wheels is set at 50:50, giving priority to vehicle stability. In addition, when the steering wheel 16 is turned, that is, when the steering wheel [・lux Th/fi] is generated according to the steering angle, the vehicle is required to perform a turning motion. Closer 4-wheel drive (40:60~2
0:80), giving priority to vehicle maneuverability. For this reason, front and v2 wheel drive force distribution values RF and RR (however, RF+RR=1) as shown in FIG. 3 are stored in the storage device 30 in advance. The torque distribution control device 20 inputs the steering torque Th signal from the steering wheel steering force sensor 22, and uses this steering torque Th as an address signal to the driving force distribution determining means 31.
The driving force distribution value map 30 is searched by , and the front wheel driving force distribution value RF is successively determined. Now, if the steering wheel 1G is near the neutral point and Tt+=snow, the clutch torque effect means 32 gives a command to the hydraulic unit 17 to make the clutch torque TC zero and the hydraulic pressure Pc zero, Hydraulic pressure Pc applied to the hydraulic clutch 11
The system is turned off by setting it to zero, and 4-wheel drive with TF = TR ensures driving stability. - On the other hand, when the steering wheel 16 is steered to change the direction of the vehicle, a steering torque Th is generated in accordance with the steering behavior. This steering torque Th is detected by the steering wheel steering force sensor 22, and using this detection signal as an address signal, the driving force distribution determining means 31 calculates the front wheel driving force distribution value RF from the recording head 30 by searching the map. Based on the distribution value RF and the drive torque T of the transmission output shaft 2a detected by the output torque sensor 21, the clutch hydraulic pressure disturbance means calculates RF - ((T/2) - TO) / [((
T/2)-rC)+ [T/2)+ to -Tc)], the wrap-torque Tc is determined, a hydraulic command corresponding to this clutch torque Tc is given to the hydraulic unit 17, and the hydraulic unit 17 outputs the A corresponding hydraulic pressure pc is applied to the hydraulic clutch 11, and the maneuverability (turning performance) of the vehicle is blurred by driving the vehicle in four-wheel drive, which is closer to rear-wheel drive. In this case, in the steering system as shown in FIG. 4, the steering torque Th applied to the steering wheel 16 is
8 steering gear) tie rod 3b via f ratio n. Front wheel 3 by knuckle arm 3C and king pin 3a
to steer. At this time, the balance of the moment around the tire kingpin is Th-n=2(ξρ+ξc)・(j, where Cf is the front wheel lateral horn, ξp is the pneumatic trail, and ξC is the kisser trail), and the steering Torque T11 and front wheel lateral force Cf are in a proportional relationship.Furthermore, front wheel lateral force Cf varies greatly depending on the friction coefficient (μ) of the road surface, as shown in Fig. 5, and large lateral force Qf does not occur on a low μ road. Therefore, the steering torque T11 with respect to the steering angle of the steering wheel 1G becomes small. Therefore, even with the same tie drag 7 sideslip angle, on a low μ road, a large steering torque Th is generated and there is no blue, so the low / l
Torque distribution to the front and rear wheels 3.4 on the road does not shift too much toward the rear wheel portion f7], and the tendency for opus derring can be prevented. In addition, on a high μ road, a large steering torque Th is generated depending on the steering angle, so the distribution of the drive torque TR to the rear wheels 4 becomes large, and understeering is appropriately canceled and the maneuverability (turning) of the vehicle is improved. performance) improves. Note that the present invention is not limited to the torque distribution device as in the embodiment. [Effects of the Invention] As is clear from the above description, according to the present invention, the torque distribution is shifted back toward the rear wheel #J in accordance with the steering force, resulting in an overall torque loss. This makes it possible to achieve stability in straight running, and also to eliminate the tendency for understeering on high μ roads, resulting in good steering performance. Furthermore, on a low μ road, there is an effect of preventing excessive opus dealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のヒンターデフ装置付4輪部初巾の構成
を示すスケルト・ン図、第2図は本発明のトルク配分t
、II御装置の構成を示すブロック図およびトルク分配
装置のトルク配分図、第3図は駆動力配分哨マツプを示
す図、第4図は車両操舵系のスケルト・ン図、第5図は
路面/l I’!と前輪横力との関係を示す図である。 2・・・トランスミッション、3・・・前輪、4・・・
後輪、7・・・センターデフ、8.9・・・歯車、1o
・・・トルク分配装置、11・・・油圧クラッチ、12
〜15・・・歯車、16・・・ハンドル、20・・・ト
ルク配分制御装置、21・・・出力トルクセンサ、22
・・・ハンドル操舵ノノセンリー。 特g11出願人    富士重工業株式会社代理人 弁
理士  小 vA  信 浮量   弁理士   村 
 井     進第1図 第2図 第5図 第31図 第41矛
Figure 1 is a skeleton diagram showing the configuration of the four-wheel initial width with a hinter differential device of the present invention, and Figure 2 is a torque distribution t of the present invention.
, a block diagram showing the configuration of the II control device and a torque distribution diagram of the torque distribution device, FIG. 3 is a diagram showing a driving force distribution map, FIG. 4 is a skeleton diagram of the vehicle steering system, and FIG. 5 is a diagram showing the road surface. /l I'! FIG. 3 is a diagram showing the relationship between the front wheel lateral force and the front wheel lateral force. 2...Transmission, 3...Front wheel, 4...
Rear wheel, 7...center differential, 8.9...gear, 1o
... Torque distribution device, 11 ... Hydraulic clutch, 12
~15... Gear, 16... Handle, 20... Torque distribution control device, 21... Output torque sensor, 22
...Handle steering nononosenryi. Special G11 Applicant Fuji Heavy Industries Co., Ltd. Agent Patent Attorney Small vA Nobu Ukasa Patent Attorney Mura
Susumu I Figure 1 Figure 2 Figure 5 Figure 31 Figure 41

Claims (1)

【特許請求の範囲】  前、後輪の駆動力配分を可変とする4輪駆動車におい
て、 変速機出力軸の駆動トルクを検出する出力トルクセンサ
と、ハンドルの操舵力を検出するハンドル操舵力センサ
を設け、検出されたハンドル操舵力に応じてトルク配分
を後輪駆動寄りに近づけるようにしたことを特徴とする
4輪駆動車のトルク配分制御装置。
[Scope of Claims] In a four-wheel drive vehicle in which driving force distribution between front and rear wheels is variable, there is provided an output torque sensor that detects the drive torque of a transmission output shaft, and a steering wheel steering force sensor that detects the steering force of the steering wheel. 1. A torque distribution control device for a four-wheel drive vehicle, characterized in that the torque distribution is made closer to the rear wheel drive side according to the detected steering force of the steering wheel.
JP14447986A 1986-06-20 1986-06-20 Torque distribution control device in four-wheel drive vehicle Pending JPS632733A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14447986A JPS632733A (en) 1986-06-20 1986-06-20 Torque distribution control device in four-wheel drive vehicle
US07/063,173 US4896738A (en) 1986-06-20 1987-06-15 Power transmitting system for a four-wheel drive vehicle
DE19873720459 DE3720459A1 (en) 1986-06-20 1987-06-19 POWER TRANSMISSION SYSTEM FOR A VEHICLE WITH ALL-WHEEL DRIVE
US07/338,714 US5018596A (en) 1986-06-20 1989-04-14 Power transmitting system for a four-wheel drive vehicle
US07/494,719 US5005662A (en) 1986-06-20 1990-03-15 Power transmission system for a four-wheel drive vehicle
US07/494,078 US5020626A (en) 1986-06-20 1990-03-15 Power transmitting system for a four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14447986A JPS632733A (en) 1986-06-20 1986-06-20 Torque distribution control device in four-wheel drive vehicle

Publications (1)

Publication Number Publication Date
JPS632733A true JPS632733A (en) 1988-01-07

Family

ID=15363263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14447986A Pending JPS632733A (en) 1986-06-20 1986-06-20 Torque distribution control device in four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS632733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100477A (en) * 2015-11-30 2017-06-08 株式会社Subaru Vehicle control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926027B2 (en) * 1978-06-01 1984-06-23 株式会社学習研究社 Correct answer confirmation device in group reaction analyzer
JPS61122032A (en) * 1984-11-17 1986-06-10 Nissan Motor Co Ltd Driving force distribution device for four-wheel driving car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926027B2 (en) * 1978-06-01 1984-06-23 株式会社学習研究社 Correct answer confirmation device in group reaction analyzer
JPS61122032A (en) * 1984-11-17 1986-06-10 Nissan Motor Co Ltd Driving force distribution device for four-wheel driving car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100477A (en) * 2015-11-30 2017-06-08 株式会社Subaru Vehicle control device

Similar Documents

Publication Publication Date Title
JP3617680B2 (en) 4-wheel drive traction control system
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
US4896738A (en) Power transmitting system for a four-wheel drive vehicle
GB2414774A (en) A vehicle control system
JPH0392483A (en) Rear wheel steering control device
US6804592B2 (en) Four wheel steering compensation for low coefficient of friction surface
JP2524708B2 (en) Torque distribution control device for four-wheel drive vehicle
JPS632733A (en) Torque distribution control device in four-wheel drive vehicle
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JP4069925B2 (en) Vehicle steering device and vehicle attitude control device
JPH0569845A (en) Vehicle turning limit judging device
JP2746002B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device
JPH0811493B2 (en) Driving force control device for four-wheel drive vehicle
JPH05278488A (en) Driving force distribution control device for four-wheel drive vehicle
JPS63184575A (en) Control method for rear wheel steering device for automobile
JP4244849B2 (en) Road surface friction coefficient detection controller
KR19980057161A (en) Steering to Ensure Neutral Steer
JP3329835B2 (en) Vehicle yaw moment control device
JPS63154428A (en) Driving force control device for four-wheel drive vehicle
JPH0735130B2 (en) Four-wheel drive vehicle
JPS624676A (en) 4-wheel steering apparatus for car
JPH0419229A (en) Driving force distribution switching type four-wheel drive automobile
JPS63162375A (en) Rear wheel steering device for vehicle
JPS632732A (en) Torque distribution device in four-wheel drive vehicle
JP2534729B2 (en) 4-wheel steering / Differential limiting force integrated control device