JPS63266397A - X-ray reflecting mirror - Google Patents

X-ray reflecting mirror

Info

Publication number
JPS63266397A
JPS63266397A JP62101345A JP10134587A JPS63266397A JP S63266397 A JPS63266397 A JP S63266397A JP 62101345 A JP62101345 A JP 62101345A JP 10134587 A JP10134587 A JP 10134587A JP S63266397 A JPS63266397 A JP S63266397A
Authority
JP
Japan
Prior art keywords
ray
silicon oxide
layers
reflecting mirror
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62101345A
Other languages
Japanese (ja)
Inventor
Tadashi Sato
正 佐藤
Kunio Nakajima
邦雄 中島
Hiroyuki Suzuki
弘幸 鈴木
Koichi Tamura
浩一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP62101345A priority Critical patent/JPS63266397A/en
Publication of JPS63266397A publication Critical patent/JPS63266397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain an X-ray multiple-reflecting mirror which has high reflectivity of even the direct incident rays and has an X-ray dispersion characteristics in a wavelength region from 1Angstrom to 200Angstrom of an objective wavelength region by alternately laminating silicon oxide layers and metallic layers on a substrate. CONSTITUTION:This reflecting mirror is formed by alternately laminating the silicon oxide having largely different optical constants and the metallic layers 3 contg. >=1 kinds of elements among Mo, Ru, Pd, Af, Hf, Ta, W, Re, Os, Ir, Pt, and Au on the metallic substrate 5 consisting of glass, silicon wafer, graphite, etc. The metallic substrate 5 is the ultraprecisely polished substrate on which the dense continuous films having several Angstrom - several 100Angstrom thickness of one layer are laminated by alternate vapor deposition of silicon oxide and metals. The metallic layers 4 which reflect X-ray and the silicon oxide layers 4 as spacers are laminated into the multiple layers, by which the X-rays are multiple-reflected and the reflectivity is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、対象波長領域が1人から200人のX線光学
素子、特にX線反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an X-ray optical element, particularly an X-ray reflecting mirror, whose target wavelength range is from 1 to 200 people.

本発明は、波長が1人から200人の範囲のX線の反射
と分散を必要とする全ての分野に対して、例えば、分光
結晶、モノクロメータ、X線顕微鏡。
The present invention is suitable for all fields requiring reflection and dispersion of X-rays with wavelengths ranging from 1 to 200 nm, such as spectroscopic crystals, monochromators, and X-ray microscopes.

X線望遠鏡、X線リソグラフィ、あるいはX線を利用し
た分析計測機器などへの広範な応用を有する。
It has a wide range of applications such as X-ray telescopes, X-ray lithography, and analytical measurement equipment that uses X-rays.

〔発明の概要〕[Summary of the invention]

本発明のX線反射鏡においては、ガラス、シリコン、グ
ラファイトあるいは金属などの基板上に酸化シリコンと
金属N (Mo、 Ru、 Rh、 I’d、八g、 
Iff。
In the X-ray reflecting mirror of the present invention, silicon oxide and metal N (Mo, Ru, Rh, I'd, 8g,
If.

Ta、 W、 Re、 Os、 Ir、 PLおよび八
Uの中から少な(とも一種以上の元素を含む)とを交互
に積層させることにより形成されている。このX線反射
鏡は、結晶性の拘束を受けず、反射率を制御することが
できる。また、1次および高次の反射率が向上し、ある
いは特別な用途に対しては1次の反射率を増加させ高次
の反射率を実質的にゼロにすることができる。
It is formed by alternately stacking a small amount of Ta, W, Re, Os, Ir, PL, and 8U (all containing one or more elements). This X-ray reflecting mirror is not restricted by crystallinity and can control reflectance. In addition, the first and higher order reflectances are improved, or for special applications, the first order reflectance can be increased and the higher order reflectance can be reduced to substantially zero.

本発明は、波長が1人から200人のX線領域において
反射と分散を必要とするすべての分野に対して、例えば
、分光結晶5モノクロメータ、X線gli徽鏡、X線望
遠鏡、X線リソグラフィあるいはX線を利用する分析計
測機器などの分野への応用が可能である。
The present invention is suitable for all fields that require reflection and dispersion in the X-ray region with wavelengths from 1 to 200, such as spectroscopic crystal 5 monochromators, X-ray gli mirrors, X-ray telescopes, It can be applied to fields such as lithography or analytical measurement equipment that uses X-rays.

(従来の技術) 本発明の対象波長領域である1人から200人の範囲は
、使用する光学素子の面で隣接する波長領域と大きく異
なっている。すなわち、はぼ200人を境にして、それ
より長波長側では直入射光学系が使用でき、また1人よ
り短波長の領域では結晶光学が使われている。それに対
して、その中間の1人から200人のX線波長領域では
、あらゆる物質の垂直入射に対する反射率が実用上はと
んどゼロになるため、反射面にすれすれに光を入射させ
る斜入射光学系が一般に用いられている。
(Prior Art) The target wavelength range of the present invention, which is a range of 1 to 200 people, is significantly different from adjacent wavelength ranges in terms of the optical elements used. That is, a direct incidence optical system can be used for wavelengths longer than 200 people, and crystal optics is used for wavelengths shorter than 1 person. On the other hand, in the X-ray wavelength region between 1 and 200, the reflectance of all materials for normal incidence is practically zero, so oblique incidence allows the light to just barely hit the reflective surface. Optical systems are commonly used.

また、X線領域において反射特性や分散特性を有するも
のとしては、LiP、熱分解グラファイト。
In addition, LiP and pyrolytic graphite have reflection characteristics and dispersion characteristics in the X-ray region.

ラングミエアープロジェット膜などが知られている。Known examples include Langmier Airprojet membrane.

(発明が解決しようとする問題点〕 従来の斜入射光学系を使ったものでは数10%の高い反
射率が得られるが、細い入射ビームに対しても人面禎の
光学素子が必要になるばかりでなく、結像光学系では収
差が極端に大きくなる。また、−FC的に光路が長くな
るという欠点がある。
(Problem to be solved by the invention) A high reflectance of several 10% can be obtained using a conventional oblique incidence optical system, but a human-like optical element is required even for a narrow incidence beam. In addition, the aberration becomes extremely large in the imaging optical system.Furthermore, there is a drawback that the optical path becomes longer due to -FC.

Lid、熱分解グラファイトおよびラングミュア−プロ
ジェット膜などから形成された光学素子は、格子間隔の
拘束が大きいためにX線の使用波長領域が狭く、使用範
囲が限定されてしまう、さらに、これらの材料は反射率
がすべて望ましい値゛よりも大幅に小さいという欠点が
ある。
Optical elements formed from Lid, pyrolytic graphite, Langmuir-Prodgett film, etc. have a narrow lattice spacing constraint, which limits the usable wavelength range of X-rays. All have the disadvantage that their reflectivities are much lower than the desired value.

そこで本発明は、従来のこのような欠点を解決するため
になされたものであり、直入射でも高い反射率を有し、
使用波長範囲が広いX線用反射鏡を提供することを目的
としている。また直入射ばかりでなく、ビームの方向を
箭い効率で直角方向に曲げたり、偏光子やフィルタ、ビ
ームスプリンタの役割を果たす光学素子に対する要望を
も満たすことができる。
Therefore, the present invention was made to solve these conventional drawbacks, and has a high reflectance even when directly incident on it.
The purpose of this invention is to provide an X-ray reflecting mirror that can be used in a wide range of wavelengths. In addition to direct incidence, it is also possible to bend the direction of the beam at right angles with high efficiency, and to satisfy the need for optical elements that play the role of polarizers, filters, and beam splinters.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために本発明は、酸化シリコン
と金fl、ff1 (Mo、 Ru、 Rh、 Pd、
 Ag、 Hf、 Ta。
In order to solve the above problems, the present invention combines silicon oxide and gold fl, ff1 (Mo, Ru, Rh, Pd,
Ag, Hf, Ta.

W、 Re、 Os、 Er、 PLおよびAuの中か
ら少な(とも一種以上の元素を含む)を交互に積層させ
て形成することにより、直入射でも高い反射率を有し、
使用可能なX線の波長領域を1人から200人までに拡
大することができた。
By alternately stacking a small amount of W, Re, Os, Er, PL, and Au (each containing one or more elements), it has a high reflectance even when directly incident on it.
We were able to expand the usable X-ray wavelength range from 1 person to 200 people.

本発明のX線用多層膜反射鏡は、境界面で互いに拡IB
cせず、しかも光学定数の太き(異なる2種類の物質、
すなわち酸化シリコンと金属を交互に蒸着し、超精密研
I9基板上にlWJの厚さが数人〜数100人の緻密な
連続膜を積層させたものである。
The multilayer reflector for X-rays of the present invention mutually expands IB at the interface.
c, and has a large optical constant (two different materials,
That is, silicon oxide and metal are alternately deposited, and a dense continuous film with a thickness of several to several hundred lWJ is laminated on an ultra-precision I9 substrate.

各層対のうち金属層はX線を反射する役割をもち、酸化
シリコンの層はバッファーの役割をする。この層対を連
続的に多層化することによって、X線は各層で多重反射
し反射率を増大させることができる。
In each layer pair, the metal layer serves to reflect X-rays, and the silicon oxide layer serves as a buffer. By successively forming multiple layer pairs, X-rays can be reflected multiple times in each layer, increasing the reflectance.

また各層の膜厚を数人から数100人の間の適切な値に
することによってX線の波長が1人から200人の範囲
でX線用の反射鏡として利用することができ、反射率は
1人付近で20%以上200人では30%以上のものが
得られた。
In addition, by setting the film thickness of each layer to an appropriate value between several people and several hundred people, it can be used as a reflector for X-rays when the wavelength of X-rays is in the range of one to 200 people, and the reflectance The results were more than 20% for around 1 person and more than 30% for 200 people.

〔実施例〕〔Example〕

以下本発明を実施例にもとすいて説明する。 The present invention will be explained below using examples.

本発明のX471反射鏡は、分子線エピタキシー法。The X471 reflecting mirror of the present invention is manufactured using molecular beam epitaxy.

スパッタリング法、イオンビームスパック法、真空薄着
法などによって作製することができるが、ここでは膜作
製に多蒸発源の真空薄着装置を用いた。装置蒸着室内の
真空度はできるだけ高真空が望ましいので、クライオポ
ンプを使って7X10−”丁orrに保ち蒸着を行った
。加熱には電子ビームを用い、各金属(Mo、 Ru、
 Rh、 Pd、 Ag、 IIL Ta、 W。
Although it can be produced by sputtering, ion beam spacing, vacuum thin deposition, etc., a vacuum thin deposition apparatus with multiple evaporation sources was used here to fabricate the film. Since it is desirable that the degree of vacuum in the deposition chamber of the apparatus be as high as possible, a cryopump was used to maintain the vacuum at 7 x 10-''.
Rh, Pd, Ag, IIL Ta, W.

1?a、 Os、 Ir、 Ptおよび八Uの中から少
なくとも一種以上の元素)と酸化シリコンの2つの藩着
源がそれぞれ独立に加熱される。各金属と酸化シリコン
の蒸着層の厚さは、それぞれ独立の二つのシャッターに
よって制御する。さらにプログラミング機構をもつ水晶
発振式膜厚計を用いて、金属と酸化シリコンとのnり厚
を設定し、二つのシャッターの開閉を自動的に行い規則
正しい蒸着を繰り返して行わせることによって膜厚と層
対の数を制御する。
1? At least one element selected from the group consisting of a, Os, Ir, Pt, and 8U) and silicon oxide are heated independently. The thickness of each metal and silicon oxide deposited layer is controlled by two independent shutters. Furthermore, using a crystal oscillation type film thickness gauge with a programming mechanism, the thickness of the metal and silicon oxide can be set, and the film thickness can be adjusted by automatically opening and closing two shutters to repeat regular deposition. Control the number of layer pairs.

基板にはガラス、シリコンウェハ、グラファイト各種金
属を用いた。基板の表面粗さは10Å以下であった。蒸
着中は基板の温度が上昇しないように基板を水冷あるい
は液体窒素で冷却した。
Glass, silicon wafer, graphite, and various metals were used for the substrate. The surface roughness of the substrate was 10 Å or less. During the deposition, the substrate was cooled with water or liquid nitrogen to prevent the temperature of the substrate from rising.

第1図は本発明のX線反射鏡の構成図を示したものであ
る。入射ビーム1は、反射鏡の各層対の金属層3で反射
される。また一部は酸化シリコンrc!J4の中で多重
反射されて反射ビーム2を構成する。
FIG. 1 shows a block diagram of the X-ray reflecting mirror of the present invention. The incident beam 1 is reflected by the metal layer 3 of each layer pair of the reflector. Also some silicon oxide rc! The reflected beam 2 is multiple reflected within J4.

第1表は真空蒸着法で作ったPL−5iO1多H膜につ
いてXvA波長が1.5人から200人の範囲で測定し
た反射率の値である。PtとSingの膜厚と層対を変
化させることによって各X線波長で反射率17〜60%
が得られた。第1表にはpt−stowの組合せの結果
についてのみを示したが、金属としてMo、 Ru。
Table 1 shows the reflectance values measured in the XvA wavelength range of 1.5 to 200 for the PL-5iO1 polyH film made by vacuum evaporation. By changing the film thickness and layer pair of Pt and Sing, the reflectance is 17-60% at each X-ray wavelength.
was gotten. Table 1 shows only the results of the pt-stow combination, but Mo and Ru are used as metals.

Rh、 Pd、八g、 llf、 Ta、 W、 Re
、 Os、 Ir、 PtおよびAuを用いても、ある
いはこれらの金属の合金によってもPt−5in、多層
膜と同様に反射率を向上させるという結果が得られた。
Rh, Pd, 8g, llf, Ta, W, Re
, Os, Ir, Pt, and Au, or an alloy of these metals, results were obtained in which the reflectance was improved in the same way as the Pt-5in multilayer film.

X線波長が数人の領域では各金属とSiO□との層対の
数を増やせば増やすほど反射率が向上するという結果が
得られている。
It has been found that in the range of several X-ray wavelengths, the reflectance improves as the number of layer pairs of each metal and SiO□ increases.

しかし、現実的には層対作製上の装置的制約や基板の平
滑性などの制約から100i以上のものを作ることは困
デ「であることがわかった。
However, in reality, it has been found that it is difficult to manufacture a layer of 100 i or more due to restrictions on equipment for manufacturing layer pairs, smoothness of the substrate, and other restrictions.

第2表はMo、 Ru、 Rh、 I’d、八B、 I
IL Ta、 W、 Re。
Table 2 is Mo, Ru, Rh, I'd, 8B, I
IL Ta, W, Re.

Os、 Ir、 PLおよび篩の各金属と5i02との
多層膜の層対30層についてX線波長が、8.34人と
114人のときに測定した反射率の値を示す、X線の入
射角は10°である。それぞれの波長において各金属と
Sin!との組合せによる多層膜反射鏡は、反射率5〜
90%の値が得られた。
The incidence of X-rays shows the reflectance values measured when the X-ray wavelength is 8.34 and 114 for 30 layers of a multilayer film of Os, Ir, PL, and 5i02 metals. The angle is 10°. At each wavelength, each metal and Sin! The multilayer reflector in combination with
A value of 90% was obtained.

第   1   表 第2図は、W  510g70層膜反射鏡についてX線
波長8.34人での反射率の測定結果を示すものである
。X線の入射角の00から30°まで変化させて測定し
た。また、Wの膜厚は8人、5IO1の膜厚は16人で
ある。X線の波長と層対の膜厚との関係から、特定の入
射角の付近に反射率が大きくなる部分があられれる。
Table 1 and FIG. 2 show the results of measuring the reflectance of the W 510g 70-layer film reflector at an X-ray wavelength of 8.34 people. Measurements were made while changing the incident angle of X-rays from 00° to 30°. Further, the film thickness of W is 8 people, and the film thickness of 5IO1 is 16 people. Due to the relationship between the wavelength of the X-ray and the thickness of the layer pair, there is a portion where the reflectance is high near a specific angle of incidence.

〔発明の効果〕 以上説明したように、本発明はガラス、シリコンウェハ
、グラファイトあるいは各種金属などの基板上に5iO
Jiと金V4m (Mo、 Ru、 Rh、 Pd、八
g。
[Effects of the Invention] As explained above, the present invention provides 5iO on a substrate such as glass, silicon wafer, graphite, or various metals.
Ji and gold V4m (Mo, Ru, Rh, Pd, 8g.

Iff、 Ta、 W、 Re、 Os、 Ir、 P
Lおよび八Uの中から少なくとも一種以上の元素を含む
層)を交互に積層させることにより形成されるX線波長
1人から200人の範囲で使用可能な多層膜反射鏡であ
る。このX線反射鏡は、結晶性の拘束を受けることなく
、制御された反射率を有し、1次および開成の反射率を
向上させ、あるいは特別な用途に対しては1次の反射を
増加さ−き高次の反射を実質的にゼロにすることができ
る。
If, Ta, W, Re, Os, Ir, P
This is a multilayer reflector that can be used at an X-ray wavelength range of 1 to 200, and is formed by alternately laminating layers containing at least one element selected from L and 8U. This X-ray reflector has controlled reflectance without crystalline constraints, improving primary and open beam reflectance, or increasing primary reflection for special applications. Higher-order reflections can be made substantially zero.

4、 図1(71)ffJ*な説明 第1図は本発明に係わるX線反射鏡の構成を示す断面図
、第2図はW −5iOt70居膜反射鏡についてX線
波長8.34人での反射皐の測定結果を示す説明図であ
る。
4. Fig. 1 (71) ffJ* Explanation Fig. 1 is a sectional view showing the configuration of the X-ray reflector according to the present invention, and Fig. 2 is a cross-sectional view showing the structure of the X-ray reflector according to the present invention. FIG.

1・・・入射X線ビーム 2・・・反射X線ビーム 3・・・金属層 4・・・SiOよT!! 5・・・基板 以上 出願人 セイコー電子工業株式会社 X線反肘鏡の訴め図 第1図 反射子(’/、) 已 0 8   色   S   8   。1...Incoming X-ray beam 2...Reflected X-ray beam 3...metal layer 4...SiOyo T! ! 5... Board that's all Applicant: Seiko Electronics Industries Co., Ltd. X-ray anti-elbow mirror illustration Figure 1 Reflector (’/,) 已 0 8 Color S 8.

Claims (2)

【特許請求の範囲】[Claims] (1)複数個の層対が互いの上に形成されており、前記
の層対は対象波長領域が1Åから200Åの波長領域で
X線分散特性を有し、各層対の一層が酸化シリコンであ
り、また各層対の第二層は金属材料によって構成されて
いることを特徴とするX線反射鏡。
(1) A plurality of layer pairs are formed on top of each other, the layer pairs have X-ray dispersion properties in a target wavelength range of 1 Å to 200 Å, and one layer of each layer pair is made of silicon oxide. An X-ray reflecting mirror characterized in that the second layer of each layer pair is made of a metal material.
(2)金属材料層がMo、Ru、Rh、Pd、Ag、H
f、Ta、W、Re、Os、Ir、PtおよびAuの中
から少なくとも一種以上の元素を含むことを特徴とする
特許請求の範囲第1項に記載のX線反射鏡。
(2) Metal material layer is Mo, Ru, Rh, Pd, Ag, H
The X-ray reflecting mirror according to claim 1, characterized in that it contains at least one element selected from f, Ta, W, Re, Os, Ir, Pt, and Au.
JP62101345A 1987-04-24 1987-04-24 X-ray reflecting mirror Pending JPS63266397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101345A JPS63266397A (en) 1987-04-24 1987-04-24 X-ray reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101345A JPS63266397A (en) 1987-04-24 1987-04-24 X-ray reflecting mirror

Publications (1)

Publication Number Publication Date
JPS63266397A true JPS63266397A (en) 1988-11-02

Family

ID=14298248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101345A Pending JPS63266397A (en) 1987-04-24 1987-04-24 X-ray reflecting mirror

Country Status (1)

Country Link
JP (1) JPS63266397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310603A (en) * 1986-10-01 1994-05-10 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
JPH08199342A (en) * 1995-01-19 1996-08-06 Rikagaku Kenkyusho Multilayered film structure for soft x-ray optical device
WO2004012236A3 (en) * 2002-07-30 2004-05-27 Stephen John Henderson High reflectivity and high flux x-ray optic element and method of making same using ald

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310603A (en) * 1986-10-01 1994-05-10 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
JPH08199342A (en) * 1995-01-19 1996-08-06 Rikagaku Kenkyusho Multilayered film structure for soft x-ray optical device
WO2004012236A3 (en) * 2002-07-30 2004-05-27 Stephen John Henderson High reflectivity and high flux x-ray optic element and method of making same using ald

Similar Documents

Publication Publication Date Title
US7679820B2 (en) IR absorbing reflector
US2519722A (en) Metallic mirror and method of making same
JP4566791B2 (en) Soft X-ray multilayer reflector
US4929063A (en) Nonlinear tunable optical bandpass filter
JPS58217901A (en) Laminate vapor-deposited on both sides
JPH0545498A (en) Multilayer film reflector
JPS63266397A (en) X-ray reflecting mirror
JPS6388502A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JP2648599B2 (en) Method of making multilayer reflector for X-ray or vacuum ultraviolet
JPS62226047A (en) Multi-layered film reflecting mirror and its production
JPH04169898A (en) Multi-layer mirror structure for x-ray
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JPS63266400A (en) Multi-layered x-ray reflecting
JPS58223101A (en) Production of polygonal mirror
JPS63106703A (en) Optical element
US20210041781A1 (en) EUV Mask Blanks And Methods Of Manufacture
JPS63266398A (en) X-ray reflecting mirror
JPS63266399A (en) X-ray reflecting mirror
JPS6388503A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JPH06186403A (en) Multilayer film optical member
JPH01309000A (en) X-ray reflector
JPS63266396A (en) Multi-layered x-ray reflecting mirror
JPH0192700A (en) Multi-layered reflecting mirror for x-ray and vacuum ultraviolet ray
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
JPS63271200A (en) X-ray reflecting mirror