JPH04169898A - Multi-layer mirror structure for x-ray - Google Patents

Multi-layer mirror structure for x-ray

Info

Publication number
JPH04169898A
JPH04169898A JP2298201A JP29820190A JPH04169898A JP H04169898 A JPH04169898 A JP H04169898A JP 2298201 A JP2298201 A JP 2298201A JP 29820190 A JP29820190 A JP 29820190A JP H04169898 A JPH04169898 A JP H04169898A
Authority
JP
Japan
Prior art keywords
shutter
ray
film
layer
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2298201A
Other languages
Japanese (ja)
Inventor
Kunio Nakajima
邦雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2298201A priority Critical patent/JPH04169898A/en
Publication of JPH04169898A publication Critical patent/JPH04169898A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof

Abstract

PURPOSE:To obtain not only special wave length but also the wide range reflec tion function of reflection spectrum without receiving the constraint of crystalli zation by making a multi-layer structure in which the film thickness in each layer made on a board is varied continuously or in step. CONSTITUTION:An multi-layer film mirror structure for X-ray, for example, is made by the molecular beam epitaxial method, the sputtering method or the like. A multi-layer film made on a board 1 is a carbon film 2 and a tungsten film 3, which are laminated alternately. An MIC gage is attached to a shutter 7 and the deposition speed of a deposition source is estimated. A shutter 8 is opened from the center of the board 1 to the outside thereof in accordance with specified time to control the film thickness. After the shutter 8 reaches the end of the board 1, the shutter 7 is closed to return the shutter 8 to the center of the board 1. Next, the shutter 7 is opened again, further the shutter 8 is opened and the deposition layer is laminated, and the operation repeated. Further the shutter 8 is stopped at a certain time interval to make the X-ray structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は対象波長6M域が人から200人でのX線反射
率および反射スペクトルを改良したX線多層膜鏡構造体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray multilayer mirror structure that has improved X-ray reflectance and reflection spectrum in the target wavelength range of 6M to 200 people.

本発明はX線波長が1人から200人の範囲のX線の反
射を必要とするほぼすべての分野に対して、例えば、X
線顕微鏡、X線望遠鏡、X線リソグラフィー装置および
その他のX線光源を用いた分析。
The present invention can be applied to almost all fields that require reflection of X-rays with an X-ray wavelength in the range of 1 to 200.
Analysis using ray microscopes, X-ray telescopes, X-ray lithography equipment and other X-ray light sources.

計測装置など広範な応用を有する。It has a wide range of applications such as measurement equipment.

〔発明の概要〕[Summary of the invention]

本発明のX線多層膜鏡構造体はガラス、シリコンなどの
表面粗さの極めて小さい基板上に原子番号の大きい物質
の層と原子番号の小さい物質の層とを交互に積層し、各
層内での膜厚が連続的もしくは段階的に変化する多層膜
構造体である。このX線多層膜鏡構造体は結晶性の拘束
を受けず制御された反射率を有し、ある特定波長のみの
反射ではなく、反射スペクトル幅の広い反射機能を有す
る。
The X-ray multilayer mirror structure of the present invention consists of alternating layers of a material with a high atomic number and a layer of a material with a low atomic number on a substrate with extremely low surface roughness such as glass or silicon. It is a multilayer film structure in which the film thickness changes continuously or stepwise. This X-ray multilayer mirror structure has a controlled reflectance without being constrained by crystallinity, and has a function of reflecting not only a specific wavelength but a wide reflection spectrum.

〔従来の技術〕[Conventional technology]

従来、一般に反射特性を有する結晶および多層膜構造体
はLiF、シリコン、熱分解グラファイト、ラングミュ
ーア・プロジェクト膜などから形成されている。また、
X線反射率の改良、使用波長範囲の拡大あるいはた耐環
境性の改良に目的で新しい結晶性材料を考案する試みが
行われている。
Conventionally, crystals and multilayer structures with reflective properties have generally been formed from LiF, silicon, pyrolytic graphite, Langmuir project films, and the like. Also,
Attempts are being made to create new crystalline materials for the purpose of improving X-ray reflectance, expanding the usable wavelength range, and improving environmental resistance.

このよ゛うな試みの一つとしてタングステンと炭素ある
いはタングステンとへリリウム等の組み合わせによる積
層膜があり反射率を制御することができる。
As one such attempt, there is a laminated film made of a combination of tungsten and carbon or tungsten and helium, etc., which can control the reflectance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

LiF、シリコン、熱分解グラファイト等から形成され
た反射鏡構造たいは、格子間隔の拘束が大きく、ブラッ
クの方程式である次式。
For reflecting mirror structures formed from LiF, silicon, pyrolytic graphite, etc., the lattice spacing is largely constrained, and Black's equation is expressed by the following equation.

nλ=26  sinθB n :次数 λ :波長 d :格子間隔 θB ニブラック角 を満足する波長のみが回折され反射する。同様に、ラン
グミューア・プロジェット膜およびタングステン/炭素
の積層膜についても、各層が均一膜厚に対しては、膜厚
は、上述の式でdに対応するための上述に式を満足する
波長のみ回折され反射することになる。いずれにしても
回折条件を満足する波長のみの反射であるため、反射に
よって得られるスペクトル幅は小さい。
nλ=26 sin θB n: Order λ: Wavelength d: Grid spacing θB Only wavelengths that satisfy the Niblack angle are diffracted and reflected. Similarly, for the Langmuir-Prodgett film and the tungsten/carbon stacked film, if each layer has a uniform thickness, the film thickness is the wavelength that satisfies the above equation to correspond to d in the above equation. Only the light will be diffracted and reflected. In any case, since only wavelengths that satisfy the diffraction conditions are reflected, the spectrum width obtained by reflection is small.

そこで本発明は、従来のこのような欠点を解決し、スペ
クトル幅の広い反射X線を得る事を目的としている。
Therefore, the present invention aims to solve these conventional drawbacks and obtain reflected X-rays with a wide spectral width.

〔課題を解決するための手段〕[Means to solve the problem]

上述の問題を解決するために、本発明は基板上に作製さ
れた各層内での膜厚を連続的もしくは段階的に変化させ
る多層膜構造体にすることにより、スペクトル幅の広い
反射X線を可能とすることができる。また、使用できる
X線波長が1人から200人と範囲の中で任意のスペク
トル領域を反射せることかできる。
In order to solve the above-mentioned problems, the present invention creates a multilayer film structure in which the film thickness of each layer fabricated on a substrate is changed continuously or stepwise, thereby making it possible to emit reflected X-rays with a wide spectrum width. It can be made possible. Furthermore, it is possible to reflect any spectral range within the usable X-ray wavelength range of 1 to 200 people.

〔作用〕[Effect]

W4厚で連続的もしくは段階的に変化しているためブラ
ックの方程式におけるdの埴は巾を持つことになり、当
該ミラーを反射するX線の波長はある程度中の広いもの
となる。
Since the thickness of W4 varies continuously or stepwise, the value d in Black's equation has a width, and the wavelength of the X-rays reflected by the mirror is somewhat wide.

(実施例〕 本発明のX線多層膜鏡構造体は、分子線エピタキシー<
MBE)法、スパッタリング法、真空蒸着法、イオンビ
ーム法、CVD法等によって作製される。暦数はシャッ
ターまたは基板を材料源に対して膜が形成されない幾何
学的な条件の位置に動かすことにより制御される。各層
の膜厚は膜形成が行われている場所での膜のXW反射率
あるいは水晶振動子膜厚計を監視することにより制御さ
れる。基板には、ガラス、シリコン、グラフフィト等を
用い、基板の表面の粗さは、IOA以下であった。
(Example) The X-ray multilayer mirror structure of the present invention is produced by molecular beam epitaxy <
It is manufactured by MBE) method, sputtering method, vacuum evaporation method, ion beam method, CVD method, etc. The number of ephemerides is controlled by moving the shutter or substrate relative to the source of material to a geometric condition where no film is formed. The thickness of each layer is controlled by monitoring the XW reflectance of the film or a quartz crystal film thickness meter at the location where the film is being formed. The substrate was made of glass, silicon, graphite, etc., and the surface roughness of the substrate was IOA or less.

以下、本発明の実施例を図面を参照しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.

膜作製は多元の真空蒸着装置を用いた。真空度はできる
だけ高いことが望ましいのでターボ分子ポンプとイオン
ポンプを使って到達真空度を1θ″′トールにして蒸着
を行った。加熱装置には、電子ビームを用い、タングス
テンと炭素の2種類の物質を独立に加熱する。タングス
テンと炭素のそれぞれの蒸着層の膜厚の制御はシャッタ
ーの開閉により制御する。各層の膜厚測定X線回折によ
り決定した。
The film was fabricated using a multi-source vacuum evaporation system. It is desirable that the degree of vacuum be as high as possible, so we used a turbo-molecular pump and an ion pump to achieve a vacuum of 1θ''' Torr.We used an electron beam as the heating device, and used two types of tungsten and carbon. The substances are heated independently. The thickness of each evaporated layer of tungsten and carbon is controlled by opening and closing a shutter. The thickness of each layer was determined by X-ray diffraction.

実施例1 第1図本発明に係わるX線多層膜鏡構造体の一実施例を
示した説明図である。第1図において、基板1上に作製
する多層膜は炭素膜2およびタングステン膜3で、交互
に積層されている。第2図は本発明に係わるX線多層膜
鏡構遺体作製のための真空蒸着装置内の膜制御法の説明
図である。第2図において、4aおよび4bはタングス
テン、炭素の蒸着源を示し、シャッター5を交互に開閉
する。ツヤツタ−7には、MICゲージがつけられてお
り、蒸着源の蒸着速度を見積もる。ツヤツタ−8は基板
の中央から外側に時間とともに開き、膜厚を制御する。
Embodiment 1 FIG. 1 is an explanatory diagram showing an embodiment of an X-ray multilayer mirror structure according to the present invention. In FIG. 1, the multilayer film fabricated on a substrate 1 includes a carbon film 2 and a tungsten film 3, which are alternately laminated. FIG. 2 is an explanatory diagram of a film control method in a vacuum evaporation apparatus for producing an X-ray multilayer mirror structure according to the present invention. In FIG. 2, 4a and 4b indicate tungsten and carbon vapor deposition sources, and the shutter 5 is alternately opened and closed. The glosser 7 is equipped with a MIC gauge to estimate the evaporation rate of the evaporation source. The glosser 8 opens outward from the center of the substrate over time to control the film thickness.

シャッター8が基板の端まで達したらツヤツタ−7を閉
し、ツヤツタ−8を基板の中央まで戻す。そして再びシ
ャック−7を開け、さらにシャック−8を開き、蒸着膜
を堆積させる。
When the shutter 8 reaches the edge of the board, the glosser 7 is closed and the glosser 8 is returned to the center of the board. Then, the shack 7 is opened again, and the shack 8 is further opened to deposit a vapor deposition film.

これらを繰り返すことによって、第1図(blに示すX
線多層膜構造体が作製される。さらにシャッター8をあ
る時間間隔たり停止させることによって第1図falの
X線構造体が作製できる。第3図10はX線波長領域を
2.5人から16人までの時の、斜入射角3度に対する
本発明に係わるX線多層膜鏡構造体の反射スペクトルと
反射強度の関係を示したものである。タングステン層の
厚さは15人から90人、炭素層の厚さは15人から1
50人まで変化させたときのものである。均一膜厚に対
する反射スペクトルは、スペクトル幅が狭いが、本発明
に係わるX線多層鏡構造体は、任意の反射スペクトル幅
を得ることができる。実施例1は、平面上の基板にたい
して適用したものであるが、球面および非球面に対して
もこの多層膜鏡構造体は適用でき、X線の結像および集
束に対してスペクトル幅の広く、しかも明るい光学系が
可能である。
By repeating these steps,
A linear multilayer film structure is produced. Further, by stopping the shutter 8 for a certain period of time, the X-ray structure shown in FIG. 1 can be produced. Figure 3-10 shows the relationship between the reflection spectrum and reflection intensity of the X-ray multilayer mirror structure according to the present invention for an oblique incidence angle of 3 degrees when the X-ray wavelength range is from 2.5 to 16 people. It is something. The thickness of the tungsten layer is from 15 to 90 people, and the thickness of the carbon layer is from 15 to 1
This is what happens when the number of people changes up to 50. Although the reflection spectrum for a uniform film thickness has a narrow spectrum width, the X-ray multilayer mirror structure according to the present invention can obtain any reflection spectrum width. Although Example 1 was applied to a flat substrate, this multilayer mirror structure can also be applied to spherical and aspherical surfaces, and has a wide spectrum width for imaging and focusing X-rays. Furthermore, a bright optical system is possible.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、ガラス、シリコンなどの
極めて粗さの小さい基板上に原子番号の大きい物質の層
と原子番号の小さい¥!yJtの層とを交互に積層し各
層内での膜厚が連続的もしくは段階的に変化する多層膜
構造体である。この多層膜構造体は、結晶性の拘束を受
けず、制御された反射率を有し、ある特定波長のみの反
射でなく、反射スペクトル幅の広い反射機能を有する。
As explained above, the present invention consists of a layer of a substance with a high atomic number and a layer of a substance with a low atomic number on a substrate with extremely low roughness such as glass or silicon. It is a multilayer film structure in which layers of yJt are alternately laminated and the film thickness within each layer changes continuously or stepwise. This multilayer film structure is not constrained by crystallinity, has a controlled reflectance, and has a function of reflecting not only a specific wavelength but also a wide reflection spectrum.

従って、本発明は、X線波長が1人から200人の範囲
のX線を比較的広いスペクトル幅で必要とする分野に対
して、例えば、X線顕微鏡、X線望遠鏡、X線リソグラ
フィー装置、およびその他のX線光源を用いた分析・計
測装置など広範な応用を有する。
Therefore, the present invention is applicable to fields that require X-rays with an X-ray wavelength in the range of 1 to 200 wavelengths in a relatively wide spectral width, such as an X-ray microscope, an X-ray telescope, an X-ray lithography apparatus, It has a wide range of applications, including analysis and measurement devices using X-ray light sources.

また、平面基板上に形成されたものばかりでなく、集光
・結像に用いられる球面・非球面形状に対しても有効で
ある。
Moreover, it is effective not only for those formed on a flat substrate, but also for spherical and aspherical shapes used for condensing and imaging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるX線多層膜鏡構造体の一実施例
を示した説明図、第20は、本発明のX線多層膜鏡構造
体作製のための真空蒸着装置内の膜制御法を説明する図
、第3図は、本発明のX線多N膜鏡構遺体の反射スペク
トルと反射強度の関係を示す図である。 ■・・・・・・・基板 2・・・・・・・タングステン膜 3・・・・・・・炭素膜 4a・・・ ・・タングステン蒸発源 4b・・・・・・炭素蒸発源 5.7.8・・・ンヤノター 6・・・・・・・MICゲージ 9・・・・・・・基板 10・・・・・・本発明X線多層膜構造体による反射強
度 11・・・・・・均一膜厚のX線多層膜鏡に対する反射
強度 以   上 出願人 セイコー電子工業株式会社 代理人 弁理士  林 敬 之 助 (O)(b) 第 1 図 第 2 図
FIG. 1 is an explanatory diagram showing one embodiment of the X-ray multilayer mirror structure according to the present invention, and FIG. 20 is a film control diagram in a vacuum evaporation apparatus for producing the X-ray multilayer mirror structure of the present invention. FIG. 3 is a diagram illustrating the relationship between the reflection spectrum and reflection intensity of the X-ray multi-N film mirror structure of the present invention. ■...Substrate 2...Tungsten film 3...Carbon film 4a...Tungsten evaporation source 4b...Carbon evaporation source 5. 7.8... Nyanotar 6... MIC gauge 9... Substrate 10... Reflection intensity by the X-ray multilayer film structure of the present invention 11...・Reflection intensity against an X-ray multilayer mirror with a uniform film thickness

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に作製された各層内での膜厚が連続的もし
くは段階的に変化する多層膜構造体であることを特徴と
するX線多層膜鏡構造体であることを特徴とするX線多
層膜鏡構造体。
(1) An X-ray multilayer mirror structure characterized by being a multilayer film structure in which the film thickness within each layer fabricated on a substrate changes continuously or stepwise. Line multilayer mirror structure.
(2)対象波長領域が1Åから200ÅのX線波長であ
ることを特徴とする請求項1記載のX線多層膜鏡構造体
(2) The X-ray multilayer mirror structure according to claim 1, wherein the target wavelength range is an X-ray wavelength of 1 Å to 200 Å.
JP2298201A 1990-11-02 1990-11-02 Multi-layer mirror structure for x-ray Pending JPH04169898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298201A JPH04169898A (en) 1990-11-02 1990-11-02 Multi-layer mirror structure for x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298201A JPH04169898A (en) 1990-11-02 1990-11-02 Multi-layer mirror structure for x-ray

Publications (1)

Publication Number Publication Date
JPH04169898A true JPH04169898A (en) 1992-06-17

Family

ID=17856526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298201A Pending JPH04169898A (en) 1990-11-02 1990-11-02 Multi-layer mirror structure for x-ray

Country Status (1)

Country Link
JP (1) JPH04169898A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406609A (en) * 1992-04-09 1995-04-11 Rigaku Industrial Corporation X-ray analysis apparatus
EP0774156A1 (en) * 1994-08-01 1997-05-21 Osmic, Inc. Optical element of multilayered thin film for x-rays and neutrons
WO1997022976A1 (en) * 1995-12-18 1997-06-26 Osmic, Inc. Steerable x-ray optical system
EP1367605A1 (en) * 2001-04-27 2003-12-03 Nikon Corporation Multilayer-film reflective mirrors and optical systems comprising same
WO2005036266A1 (en) * 2003-09-17 2005-04-21 Carl Zeiss Smt Ag Masks, lithography device and semiconductor component
JP2005340459A (en) * 2004-05-26 2005-12-08 Canon Inc Projection optical system, aligner, device manufacturing method and device
JP2009224792A (en) * 2009-05-27 2009-10-01 Carl Zeiss Smt Ag Mask, lithographic apparatus and semiconductor component
JP2010226123A (en) * 2010-05-11 2010-10-07 Carl Zeiss Smt Ag Mask, lithographic apparatus and semiconductor component
JP2016133485A (en) * 2015-01-22 2016-07-25 キヤノン株式会社 Scintillator panel, radiation detector, and manufacturing method therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406609A (en) * 1992-04-09 1995-04-11 Rigaku Industrial Corporation X-ray analysis apparatus
EP0774156A1 (en) * 1994-08-01 1997-05-21 Osmic, Inc. Optical element of multilayered thin film for x-rays and neutrons
EP0774156A4 (en) * 1994-08-01 1997-07-02
WO1997022976A1 (en) * 1995-12-18 1997-06-26 Osmic, Inc. Steerable x-ray optical system
EP1367605A1 (en) * 2001-04-27 2003-12-03 Nikon Corporation Multilayer-film reflective mirrors and optical systems comprising same
US6833223B2 (en) 2001-04-27 2004-12-21 Nikon Corporation Multilayer-film reflective mirrors and optical systems comprising same
WO2005036266A1 (en) * 2003-09-17 2005-04-21 Carl Zeiss Smt Ag Masks, lithography device and semiconductor component
US7572556B2 (en) 2003-09-17 2009-08-11 Carl Zeiss Smt Ag Masks, lithography device and semiconductor component
US7914955B2 (en) 2003-09-17 2011-03-29 Carl Zeiss Smt Gmbh Masks, lithography device and semiconductor component
US8268518B2 (en) 2003-09-17 2012-09-18 Carl Zeiss Smt Gmbh Method and lithography device with a mask reflecting light
JP2005340459A (en) * 2004-05-26 2005-12-08 Canon Inc Projection optical system, aligner, device manufacturing method and device
JP4532991B2 (en) * 2004-05-26 2010-08-25 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP2009224792A (en) * 2009-05-27 2009-10-01 Carl Zeiss Smt Ag Mask, lithographic apparatus and semiconductor component
JP2010226123A (en) * 2010-05-11 2010-10-07 Carl Zeiss Smt Ag Mask, lithographic apparatus and semiconductor component
JP2016133485A (en) * 2015-01-22 2016-07-25 キヤノン株式会社 Scintillator panel, radiation detector, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5458084A (en) X-ray wave diffraction optics constructed by atomic layer epitaxy
Bajt et al. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers
EP0774156B1 (en) Optical element of multilayered thin film for x-rays and neutrons
JPH04169898A (en) Multi-layer mirror structure for x-ray
Yamashita et al. Fabrication and characterization of multilayer supermirrors for hard X-ray optics
Windt Multilayer films for figured x-ray optics
JPS63106703A (en) Optical element
JPH04169899A (en) X-ray reflector
JPH0627298A (en) Monochromatic same phase x-ray condenser
JPS63271200A (en) X-ray reflecting mirror
JPH01502057A (en) multilayer structure
JPH01309000A (en) X-ray reflector
JPH0476498A (en) X-ray reflector
JPS63114968A (en) Apparatus for forming multilayered film
CA1333426C (en) X-ray wave diffraction optics constructed by atomic layer epitaxy
JPH04164297A (en) X-ray reflecting mirror
JPS63269100A (en) X ray reflector
US20210373212A1 (en) High reflectance and high thermal stability in reactively sputtered multilayers
JPH05346496A (en) Multilayer film reflecting mirror
Dhez Metallic multilayers: New possibilities in X-UV optics
JPH0237303A (en) Multilayered reflecting mirror
Kaminska et al. Rugate filters grown by glancing angle deposition
Sudoh et al. Soft x-ray multilayers fabricated by electron-beam deposition
Evans et al. The soft X-ray to EUV performance of plane and concave Pt-Si multilayer mirrors
Matsumoto et al. Molecular orientation in thin film grown on au, ag, al and si substrates by vacuum evaporation of copolymer of vinylidene fluoride and tetrafluoroethylene