JPS58223101A - Production of polygonal mirror - Google Patents

Production of polygonal mirror

Info

Publication number
JPS58223101A
JPS58223101A JP10554382A JP10554382A JPS58223101A JP S58223101 A JPS58223101 A JP S58223101A JP 10554382 A JP10554382 A JP 10554382A JP 10554382 A JP10554382 A JP 10554382A JP S58223101 A JPS58223101 A JP S58223101A
Authority
JP
Japan
Prior art keywords
film
refractive index
protective
protective film
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10554382A
Other languages
Japanese (ja)
Inventor
Rokuro Watabe
渡部 六郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10554382A priority Critical patent/JPS58223101A/en
Publication of JPS58223101A publication Critical patent/JPS58223101A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/32Eccentric core or cladding

Abstract

PURPOSE:To increase the refractive index of the 2nd protective film and to obtain a high-reflectivity mirror in the production of a polygonal mirror for optical deflector, by forming the 1st and the 2nd protective films consisting of the same metallic oxide as the metallic oxide of a metallic reflection film on said metallic reflection film at a specific optical film thickness by varying vapor deposition conditions. CONSTITUTION:The outside circumference of a disc 11 of an Al alloy or the like is cut to form plural smooth surfaces 13, and after positioning holes 14 are opened, the disc is heat-treated to relieve strain. Ni-p alloy plating is applied over the entire surface including the smooth surfaces of the disc 11 and both side surfaces 16 are ground and finished by lapping, whereafter the surfaces 13 are finished to a specular surface with good accuracy. Al is vapor-deposited on the specular surfaces to form a reflection film 17, then the 1st protective film 17 having 1.45 refractive index is formed with an SiO2 layer of the optical film thickness corresponding to 1/4 wavelength of incident light on the surface of the film 17. The 2nd protective film 19 having 1.80 refractive index larger than the refractive index 18 is formed thereon with an SiO2 layer of the optical film thickness corresponding likeise to the same 1/4 wavelength within the same vapor deposition device, whereby a reflection surface 12 of high reflectivity is obtd. It is fequally well to improve the reflectivity further by forming the films 18, 19 as a pair and forming >=1 pairs of the protective films similarly thereon.

Description

【発明の詳細な説明】 この発明は、レーザプリンタ等の光学系に使用される光
偏向器としての多面鏡の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a polygon mirror as an optical deflector used in an optical system such as a laser printer.

従来、レーザプリンタ等の光学系に使用される光偏向器
としての多面鏡は、まず金属素材とじてのたとえばアル
ミニウム合金体の外周を切削してこのアルミニウム合金
体の外周に反射面となるべき複数個の平滑面を形成する
。そして、次に各平滑面に化学メッキ法によりニッケル
合金層を形成し、その後このニッケル合金層を研磨して
鏡面に仕上げる。さらに、鏡面に仕上げられたニッケル
合金層の表面に真空蒸着によりアルミニウム反射膜を形
成すると共に、再び真空蒸着により金属酸化物としての
酸化ケイ素(Sin)の保護膜を形成し、これにより多
面鏡の反射面がつくられていた。
Conventionally, polygon mirrors used as optical deflectors used in optical systems such as laser printers are manufactured by first cutting the outer periphery of a metal material, such as an aluminum alloy body, and attaching a plurality of mirrors to the outer periphery of the aluminum alloy body to serve as reflective surfaces. Forms several smooth surfaces. Next, a nickel alloy layer is formed on each smooth surface by chemical plating, and then this nickel alloy layer is polished to a mirror finish. Furthermore, an aluminum reflective film is formed by vacuum evaporation on the surface of the mirror-finished nickel alloy layer, and a protective film of silicon oxide (Sin) as a metal oxide is again formed by vacuum evaporation. A reflective surface was created.

ところで、SiO保護膜で形成された多面鏡の反射面の
反射率は、光学的膜厚(屈折率nと薄膜の厚さdとの積
)が最適な場合、すなわちndが特定の波長の2分の1
に等しい場合であってもアルミニウム反射膜の反射率を
超えるようなことはない(たとえば、APPLIED 
0PTIC5VOL14.Na1l(1975)264
1等参照)。
By the way, the reflectance of the reflective surface of a polygon mirror formed of a SiO protective film is determined when the optical film thickness (the product of the refractive index n and the thin film thickness d) is optimal, that is, when nd is 2 of a specific wavelength. one part
does not exceed the reflectance of the aluminum reflective film even if it is equal to
0PTIC5VOL14. Na1l (1975) 264
(See 1st prize).

つまり、反射膜に単層の保護膜を形成して多面鏡の製造
を図る従来の製造方法によると、反射面の反射率の大幅
な向上が望めずユーザーの不満を解消できなかった。
In other words, according to the conventional manufacturing method of manufacturing a polygon mirror by forming a single-layer protective film on the reflective film, it was not possible to significantly improve the reflectance of the reflective surface, and the dissatisfaction of users could not be resolved.

一方、反射率を高める手段として2分の1波長相当の光
学的膜厚を有する保護膜を2分割し、最初の4分の1波
長相当分を低屈折率物質にて形成し、次の4分の1波長
相当分を高屈折率物質にて形成する手段が知られている
。これは、金属反射膜上に形成される保護膜の反射率R
か にて表わされることに基づく。ここで、nL(低屈折率
材料の屈折率)、 なお、Xは保護膜の対の数、n、には金属反射膜により
決まる光学的定数を示している。したがって、保護膜の
光学的膜厚が2分の1波長相当であるような場合にはX
の値は零であり、4分の1波長相当の一対の保護膜が形
成された場合にはXの値は1となる。また、たとえば金
属反射膜がアルミニウムで形成され入射光波長が650
ナノメータである場合にはn、にはそれぞれ1.30.
7.11である。
On the other hand, as a means to increase the reflectance, the protective film having an optical thickness equivalent to 1/2 wavelength is divided into two parts, the first part corresponding to 1/4 wavelength is formed of a low refractive index material, and the next 4 parts are formed with a low refractive index material. A method is known in which a portion corresponding to one-tenth of the wavelength is formed of a high refractive index material. This is the reflectance R of the protective film formed on the metal reflective film.
Based on what is expressed in Here, nL (refractive index of a low refractive index material), X is the number of pairs of protective films, and n is an optical constant determined by the metal reflective film. Therefore, if the optical thickness of the protective film is equivalent to 1/2 wavelength,
The value of X is zero, and the value of X is one when a pair of protective films corresponding to a quarter wavelength are formed. Also, for example, if the metal reflective film is made of aluminum, the wavelength of the incident light is 650.
In the case of nanometers, n is 1.30.
7.11.

しかしながら、従来の手段によると保護膜1異なる物質
で形成していたので、蒸着装置の蒸発源もそれぞれ別異
に設ける必要があり、蒸着作業の手間がかかるなどコス
トアップの原因となっていた。
However, according to the conventional means, since the protective film 1 is formed of different materials, it is necessary to provide separate evaporation sources for each of the vapor deposition apparatuses, which causes an increase in cost due to the time-consuming process of vapor deposition.

この発明は、このような従来の問題点に着目してなされ
たものであり、製造工程の簡単化を図ると共に従来のも
のに比較して高反射率の反射面を形成しうる多面鏡の製
造方法を提供することを目的とする。
This invention was made by focusing on these conventional problems, and aims to manufacture a polygon mirror that simplifies the manufacturing process and can form a reflective surface with a higher reflectance than conventional mirrors. The purpose is to provide a method.

以下、この発明の製造方法を図面を参照しながら説明す
る。
Hereinafter, the manufacturing method of the present invention will be explained with reference to the drawings.

第1図は、この発明に係る多面鏡が適用されるレーザプ
リンタの要部を示し、図において1はレーザ発振器、2
,3は反射ミラー、4は変調器、5はビームエキスパン
ダ、6はモータ、7は多面鏡、8は収束レンズ、9は感
光体ドラム、10は転写紙である。したがって、レーザ
発振器1から出射したレーザ光は反射ミラー2.3によ
り反射されて変調器4、ビームエキスパンダ5を通過し
た後、モータ6にて回転される多面鏡で振られ収束レン
ズ8により感光体9の軸方向に照射されるようになって
いる。
FIG. 1 shows the main parts of a laser printer to which a polygon mirror according to the present invention is applied, in which 1 is a laser oscillator, 2 is
, 3 is a reflecting mirror, 4 is a modulator, 5 is a beam expander, 6 is a motor, 7 is a polygon mirror, 8 is a converging lens, 9 is a photosensitive drum, and 10 is a transfer paper. Therefore, the laser beam emitted from the laser oscillator 1 is reflected by the reflecting mirror 2.3, passes through the modulator 4 and the beam expander 5, is deflected by the polygon mirror rotated by the motor 6, and is exposed to light by the converging lens 8. The light is irradiated in the axial direction of the body 9.

次に、この多面鏡7の製造方法を第2図に示す製造工程
図に基づいて説明すると、まずアルミニウム合金を旋削
して円板体11に形成し、この円板体11をフライス切
削して外周部に反射面12となるべき複数個の平・滑面
13を形成させる(第3図(a)。
Next, the manufacturing method of this polygon mirror 7 will be explained based on the manufacturing process diagram shown in FIG. 2. First, aluminum alloy is turned to form a disc body 11, and this disc body 11 is milled. A plurality of flat/smooth surfaces 13 to serve as reflective surfaces 12 are formed on the outer periphery (FIG. 3(a)).

(b)参照)。 この実施例では平滑面13の数は12
個である。次に穴明は加工により位置決め用の穴14を
穿設し、切削加工による歪を除去するため温度約200
°Cで約2時間の熱処理を施す。
(see (b)). In this embodiment, the number of smooth surfaces 13 is 12.
It is individual. Next, the holes 14 for positioning are drilled by machining, and the temperature is set to about 200 to remove distortion caused by cutting.
Heat treatment is performed at °C for about 2 hours.

次に、複数個の平滑面13が形成された円板体11の表
面を清浄にして、複数個の平滑面13を含む円板体11
の表面に化学メッキ法によりニッケルーリン合金物質の
メッキ層15を形成する(第4図参照)。
Next, the surface of the disk body 11 on which the plurality of smooth surfaces 13 are formed is cleaned, and the disk body 11 including the plurality of smooth surfaces 13 is cleaned.
A plating layer 15 of a nickel-phosphorus alloy material is formed on the surface of the substrate by chemical plating (see FIG. 4).

こうしてメッキされた円板体11の両側面16を研削す
ると共に、ラップ仕上げをして両側面16の所望の平面
度および平行度を得る。さらに、平滑面13を研削して
互に接する平滑面13のなす角度精度および面精度に仕
上げる。そして、この平滑面13をポリッシングするこ
とにより鏡面状態に仕上げると共に再び角度精度および
面精度を検査して必要に応じて修正を行なう。
Both sides 16 of the plated disc body 11 are ground and lapped to obtain the desired flatness and parallelism of both sides 16. Further, the smooth surfaces 13 are ground to achieve the angular accuracy and surface accuracy of the mutually contacting smooth surfaces 13. Then, this smooth surface 13 is polished to a mirror-like finish, and the angular accuracy and surface accuracy are inspected again and corrections are made as necessary.

その後、ニッケルーリン合金物質のメッキ層15にアル
ミニウムを真空蒸着法により蒸着して反射膜17を形成
し、その反射率を測定する。この反射率は第5図の分光
反射率特性に示すように入射光の波長がたとえば633
ナノメータのとき90.8%である。そして、アルミニ
ウムの反射膜17の表面にたとえば633ナノメータの
波長λ0の4分の1に相当する膜厚分だけSiOの真空
蒸着を行なう。
Thereafter, aluminum is deposited on the plating layer 15 of the nickel-phosphorous alloy material by vacuum deposition to form a reflective film 17, and its reflectance is measured. This reflectance is determined when the wavelength of the incident light is, for example, 633, as shown in the spectral reflectance characteristics in Figure 5.
In nanometers, it is 90.8%. Then, vacuum evaporation of SiO is performed on the surface of the aluminum reflective film 17 to a thickness corresponding to one quarter of the wavelength λ0 of 633 nanometers, for example.

この場合における真空蒸着の条件を、真空度については
3 XIO−” X 7Hh−ルとし、蒸着速度につい
ては2オングストロ一ム毎秒とするとこの蒸着膜18(
第1の保護膜)は二酸化ケイ素(SiO2)の成分から
成り屈折率n、が1,45を有するようになる。次に、
この蒸着膜18を蒸着した後さらに波長λ0の4分の1
に相当するSiOの真空蒸着を同一の蒸発源で行なう。
In this case, if the vacuum evaporation conditions are 3XIO-'' x 7Hh-le for the degree of vacuum and 2 angstroms per second for the evaporation rate, then this evaporation film 18 (
The first protective film) is made of silicon dioxide (SiO2) and has a refractive index n of 1.45. next,
After this vapor deposition film 18 is vapor-deposited, a quarter of the wavelength λ0 is further
Vacuum evaporation of SiO corresponding to is performed using the same evaporation source.

ただしこの場合における真空蒸着の条件は、真空度を従
前より高くして6xlO””xiトールとすると共に蒸
着速度を従前より早くして10オングストローム毎秒と
する。
However, the vacuum evaporation conditions in this case are such that the degree of vacuum is higher than before, 6×lO""xi Torr, and the evaporation rate is higher than before, 10 angstroms per second.

これにより蒸着膜19(第2の保護膜)は−酸化ケイ素
(Sin)の成分から成り屈折率nNが1.80を有す
るようになる。こうして反射膜17の表面に同一物質か
ら成る一対の保護膜が形成されて反射面12が完成し反
射率の測定と共に総合精度が検査される。
As a result, the deposited film 19 (second protective film) is made of a -silicon oxide (Sin) component and has a refractive index nN of 1.80. In this way, a pair of protective films made of the same material are formed on the surface of the reflective film 17 to complete the reflective surface 12, and the reflectance is measured and the overall accuracy is inspected.

このようにして形成された反射面12の反射率は、上述
した(1)式からも求められて94.0%となる。
The reflectance of the reflective surface 12 thus formed is 94.0%, which is also determined from the above-mentioned equation (1).

なお、上述の実施例では一対の保護膜を形成させるよう
にしたが、二対以上の保護膜を形成させることによりさ
らに高反射率の反射面12が得られ、第5図の特性曲線
R1は二対の保護膜を形成した場合の反射率特性を示し
ている。また、第5図における特性曲線R2はアルミニ
ウム反射膜17の特性を示し、特性曲線R3は光学的膜
厚を2分割しないでSiOを蒸着した場合の特性を示し
ている。
In the above embodiment, a pair of protective films were formed, but by forming two or more pairs of protective films, a reflective surface 12 with even higher reflectance can be obtained, and the characteristic curve R1 in FIG. It shows the reflectance characteristics when two pairs of protective films are formed. Further, a characteristic curve R2 in FIG. 5 shows the characteristics of the aluminum reflective film 17, and a characteristic curve R3 shows the characteristics when SiO is deposited without dividing the optical film thickness into two.

これにより、従来のよ・うな単層の保護膜の場合はアル
ミニウム反射膜17の反射率(たとえば633ナノメー
タの波長λ0で90%弱)を超える反射面が得られない
が、この発明のように複数層の保護膜を形成することに
より反射膜17より大幅に高い反射率(特性曲線R1に
示すように波長λ0で96.1%)の反射面12が得ら
れる。因みに、(1)式から三対の保護膜を形成した場
合には97.4%の高反射率の反射面12が得られる。
As a result, in the case of a conventional single-layer protective film, it is not possible to obtain a reflective surface that exceeds the reflectance of the aluminum reflective film 17 (for example, a little less than 90% at a wavelength λ0 of 633 nanometers). By forming a plurality of protective films, a reflective surface 12 having a significantly higher reflectance than the reflective film 17 (96.1% at wavelength λ0, as shown by characteristic curve R1) can be obtained. Incidentally, from equation (1), when three pairs of protective films are formed, a reflective surface 12 with a high reflectance of 97.4% can be obtained.

なお、薄膜を形成させるにはこの実施例におけるように
真空蒸着法を用いるほかイオンブレーティング法、スパ
ッタリ゛ング法等の各種蒸着手段によっても良い。
In addition to using the vacuum evaporation method as in this embodiment, the thin film may be formed by various evaporation methods such as ion blating method and sputtering method.

以上説明したように、この発明によれば同一の蒸着源で
蒸着条件を変えることにより異なる屈折率を有する保護
膜を反射膜の表面に形成させるようにしたので、低コス
トでしかも高反射率を有する多面鏡の提供が実現で゛き
る。なお、この発明を一般の反射鏡の製造に適用するこ
とも勿論差し支えないものである。
As explained above, according to the present invention, protective films having different refractive indexes are formed on the surface of the reflective film by changing the deposition conditions using the same deposition source, so that high reflectance can be achieved at low cost. It is possible to provide a polygon mirror with Note that it is of course possible to apply this invention to the manufacture of general reflecting mirrors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の製造方法による多面鏡が適用される
レーザプリンタの要部を示す斜視図、第2図はこの発明
の製造方法を説明する工程図、第3図(a)、(b)は
多面鏡を説明する図であり、第3図(a)は一部破断乎
面図、第3図(b)はその縦断面図、第4図は反射面の
拡大模式図、第5図は反射面の分光反射率特性図である
。 7・・・多面鏡、11・・・円板体、12・・・反射面
、13・・・平滑面、17・・・反射膜、18・・・第
1の保護膜、19・・・第2の保護膜。 第1図 第2図 第3図 (a)       (b) 第4図 +2 第5図 (つ λ。波長(ナノメータ)
FIG. 1 is a perspective view showing the main parts of a laser printer to which a polygon mirror according to the manufacturing method of the present invention is applied, FIG. 2 is a process diagram explaining the manufacturing method of the present invention, and FIGS. 3(a) and (b) ) are diagrams for explaining a polygon mirror, in which FIG. 3(a) is a partially cutaway view, FIG. 3(b) is a vertical sectional view, FIG. 4 is an enlarged schematic diagram of the reflecting surface, and FIG. The figure is a spectral reflectance characteristic diagram of a reflective surface. 7... Polygon mirror, 11... Disc body, 12... Reflective surface, 13... Smooth surface, 17... Reflective film, 18... First protective film, 19... Second protective film. Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 +2 Figure 5 (λ. Wavelength (nanometer)

Claims (1)

【特許請求の範囲】[Claims] 金属素材の外周を切削して反射面となるべき複数個の平
滑面を形成し、該番手滑面に合金物質から成るメッキ層
形成し、該メッキ層を研磨して鏡面に仕上げた後蒸着法
により金属反射膜を形成し、次いで該金属反射膜の表面
に同一の金属酸化物から成る第1および第2の保護膜を
蒸着条件を変えて交互に4分の1波長相当の光学的膜厚
に形成し、前記第1の保護膜の後に蒸着される第2の保
護膜の屈折率を第1の保護膜の屈折率より大きくするこ
とを特徴とする多面鏡の製造方法。
A vapor deposition method in which the outer periphery of a metal material is cut to form a plurality of smooth surfaces to serve as reflective surfaces, a plating layer made of an alloy material is formed on the smooth surfaces, and the plating layer is polished to a mirror finish, followed by vapor deposition. to form a metal reflective film, and then, on the surface of the metal reflective film, first and second protective films made of the same metal oxide are alternately deposited under different deposition conditions to an optical film thickness equivalent to a quarter wavelength. A method for manufacturing a polygon mirror, characterized in that the refractive index of a second protective film deposited after the first protective film is larger than that of the first protective film.
JP10554382A 1982-06-21 1982-06-21 Production of polygonal mirror Pending JPS58223101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10554382A JPS58223101A (en) 1982-06-21 1982-06-21 Production of polygonal mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10554382A JPS58223101A (en) 1982-06-21 1982-06-21 Production of polygonal mirror

Publications (1)

Publication Number Publication Date
JPS58223101A true JPS58223101A (en) 1983-12-24

Family

ID=14410494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10554382A Pending JPS58223101A (en) 1982-06-21 1982-06-21 Production of polygonal mirror

Country Status (1)

Country Link
JP (1) JPS58223101A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191619A (en) * 1984-10-11 1986-05-09 Hitachi Ltd Rotary polygonal mirror
JPS61231501A (en) * 1985-04-05 1986-10-15 Toa Shinku Kogyo Kk Reflecting plate
JPH02281202A (en) * 1989-04-24 1990-11-16 Sekinosu Kk Nonpolarizing half mirror with plastic substrate
JPH06265805A (en) * 1991-09-18 1994-09-22 Hitachi Ltd Deflection scanning device
EP0706066A1 (en) * 1994-10-04 1996-04-10 Canon Kabushiki Kaisha Metal mirror and method of manufacturing the same
JP2013195841A (en) * 2012-03-21 2013-09-30 Casio Comput Co Ltd Reflector, light source device and projector
JP2018159750A (en) * 2017-03-22 2018-10-11 東洋アルミニウム株式会社 Reflection member and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191619A (en) * 1984-10-11 1986-05-09 Hitachi Ltd Rotary polygonal mirror
JPS61231501A (en) * 1985-04-05 1986-10-15 Toa Shinku Kogyo Kk Reflecting plate
JPH02281202A (en) * 1989-04-24 1990-11-16 Sekinosu Kk Nonpolarizing half mirror with plastic substrate
JPH06265805A (en) * 1991-09-18 1994-09-22 Hitachi Ltd Deflection scanning device
EP0706066A1 (en) * 1994-10-04 1996-04-10 Canon Kabushiki Kaisha Metal mirror and method of manufacturing the same
US5692287A (en) * 1994-10-04 1997-12-02 Canon Kabushiki Kaisha Method of manufacturing a metal polygon mirror
JP2013195841A (en) * 2012-03-21 2013-09-30 Casio Comput Co Ltd Reflector, light source device and projector
JP2018159750A (en) * 2017-03-22 2018-10-11 東洋アルミニウム株式会社 Reflection member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4756602A (en) Narrowband optical filter with partitioned cavity
US2519722A (en) Metallic mirror and method of making same
EP1597614B1 (en) High precision mirror, and a method of making it
EP0916973A1 (en) Multilayer thin film dielectric bandpass filter
JPH0238924B2 (en)
JPS58217901A (en) Laminate vapor-deposited on both sides
US4327129A (en) Method of making laser beam optical decoupling element for an astable laser resonator
EP0120240A2 (en) Light-beam scanning apparatus
JPS58223101A (en) Production of polygonal mirror
US6522471B2 (en) System of beam narrowing for resolution enhancement and method therefor
JPH06167389A (en) Coating for laser-detector etalon
JPS62226047A (en) Multi-layered film reflecting mirror and its production
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
EP0093921B1 (en) Polygonal mirror and method of manufacturing the same
US5745286A (en) Forming aspheric optics by controlled deposition
JPH06186403A (en) Multilayer film optical member
JP3064630B2 (en) Multilayer reflector
JPS6126768A (en) Reflection mirror in optical apparatus
JP2005173029A (en) Optical device having antireflection film and method for designing antireflection film
JP3267000B2 (en) Aspherical mirror manufacturing method
JPH05180993A (en) X-ray reflecting mirror
JPS6361202A (en) Optical thin film for infrared ray
JPH07280999A (en) Multilayer film x-ray reflector
JP3344022B2 (en) Optical device and optical pickup
JPS58132701A (en) Manufacture of polyhedral mirror