JPS6326295A - Corrision-and wear-resistant alloy and composite cylinder thereof - Google Patents

Corrision-and wear-resistant alloy and composite cylinder thereof

Info

Publication number
JPS6326295A
JPS6326295A JP16945886A JP16945886A JPS6326295A JP S6326295 A JPS6326295 A JP S6326295A JP 16945886 A JP16945886 A JP 16945886A JP 16945886 A JP16945886 A JP 16945886A JP S6326295 A JPS6326295 A JP S6326295A
Authority
JP
Japan
Prior art keywords
resistant
wear
corrosion
alloy
composite cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16945886A
Other languages
Japanese (ja)
Inventor
Kenji Maruta
丸田 健司
Toshio Okuno
奥野 利夫
Atsushi Kumagai
敦 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16945886A priority Critical patent/JPS6326295A/en
Publication of JPS6326295A publication Critical patent/JPS6326295A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Abstract

PURPOSE:To obtain an alloy having excellent resistance to corrosion and wear and the composite cylinder thereof by welding a mixture composed of specifically composed alloy powder and hard particles onto a base metal by powder build-up welding. CONSTITUTION:This corrosion-and wear-resistant alloy is formed by mixing the hard particles with the powder of the alloy consisting, by weight, of 5.0-20.0% Cr, 1.0-5.0% B, <=10.0% Fe, 0.5-5.O% Si, <=1.5% C and the balance Ni and unavoidable impurities and depositing the same onto the surface of the base metal by powder build-up welding. The hard particles consist of 1 or >=2 kinds among the carbides of the groups IVA, VA, VIA of periodic table and are the hard particles having 10-300mum grain size. Such hard particles are mixed with the above-mentioned alloy powder at 5-40% by volume after mixing and the mixture is deposited onto the surface of the base metal by the powder build-up welding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐食性及び耐摩耗性にすぐれた合金に関し、特
にプラスチックの射出成形機や押出成形機等のシリンダ
の耐食性及び耐摩耗性を高めるのに適当な合金及びその
複合シリンダに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an alloy with excellent corrosion resistance and wear resistance, and particularly to an alloy that is used to improve the corrosion resistance and wear resistance of cylinders of plastic injection molding machines, extrusion molding machines, etc. The present invention relates to alloys suitable for use in and composite cylinders thereof.

[従来の技vj] プラスチック成形砂用シリンダは樹脂又は樹脂中の添加
剤による腐蝕の防止のために、耐摩耗性のほかに耐食性
に優れていることが要求される。
[Prior Art] Cylinders for plastic molding sand are required to have excellent corrosion resistance in addition to wear resistance in order to prevent corrosion due to resin or additives in the resin.

しかし従来から知られている耐摩耗合金、たとえば鉄系
の特殊鋼では・耐食性が必ずしも十分ではない。また従
来合金には一般に耐食性が良ければ耐摩耗性が劣るとい
う欠点があり、シリンダ等のライニングとして用いた場
合に、寿命の点で問題があった。しかも近年充填材入り
の樹脂、特にプラスチックマグネット、ゴムマグネット
等の摩耗作用の激しい樹脂やセラミック等の材料が射出
成形されるようになり、従来の特殊鋼ではますます要求
を満足できなくなってきた。
However, conventionally known wear-resistant alloys such as iron-based special steels do not necessarily have sufficient corrosion resistance. In addition, conventional alloys generally have the disadvantage that although they have good corrosion resistance, they have poor wear resistance, and when used as linings for cylinders, etc., there have been problems in terms of service life. Moreover, in recent years, resins containing fillers, especially materials such as plastic magnets, rubber magnets, etc., which have strong abrasive effects, and materials such as ceramics have come to be injection molded, making it increasingly difficult for conventional special steels to meet the requirements.

同様の用途の合金は例えば特公昭56−53626号公
報に開示されている。
Alloys for similar uses are disclosed, for example, in Japanese Patent Publication No. 56-53626.

[発明が解決しようとする問題点] しかしながら上記合金でも十分な耐摩耗性と耐食性を有
していないという問題がある。
[Problems to be Solved by the Invention] However, even the above alloys have a problem in that they do not have sufficient wear resistance and corrosion resistance.

従って、本発明の目的は従来合金の欠点のない耐食耐摩
耗合金を提供することである。
It is therefore an object of the present invention to provide a corrosion- and wear-resistant alloy that does not have the drawbacks of conventional alloys.

さらに本発明の目的はかかる耐食耐摩耗合金をライナー
として有する複合シリンダを提供することである。
A further object of the present invention is to provide a composite cylinder having such a corrosion-resistant and wear-resistant alloy as a liner.

[問題点を解決するための手段] 上記目的に鑑み鋭意研究の結果、本発明者等は特定の組
成の合金粉末と硬質粒子との混合物を母材上に粉体肉盛
溶接することにより、耐食性及び耐摩耗性に優れた合金
及びその複合シリンダを得ることができた。
[Means for Solving the Problems] In view of the above objectives, as a result of intensive research, the present inventors have solved the problem by powder overlay welding a mixture of alloy powder and hard particles having a specific composition onto a base material. An alloy with excellent corrosion resistance and wear resistance and a composite cylinder thereof could be obtained.

すなわち本発明の耐食耐摩耗合金は、重量でCr5.0
〜20.0%、81.0〜5.0%、Fe10.0%以
下、Si0.5〜5.0%、C1゜5%以下及び残部が
Ni及び不可避的不純物よりなる合金の粉末に、周期律
表の第1VA、MA、VIA族の炭化物の1種または2
種以上からなる粒径が10〜300μmの硬質粒子を混
合後の体積%で5〜40%混合し、母材の表面に粉体肉
盛溶接してなることを特徴とする。
That is, the corrosion-resistant and wear-resistant alloy of the present invention has a weight of Cr5.0.
~20.0%, 81.0~5.0%, Fe 10.0% or less, Si 0.5~5.0%, C1° 5% or less, and the balance is Ni and inevitable impurities, One or two carbides of Group 1 VA, MA, VIA of the periodic table
It is characterized in that hard particles having a particle size of 10 to 300 μm made of seeds or more are mixed in an amount of 5 to 40% by volume after mixing, and powder overlay welding is performed on the surface of the base material.

また本発明の耐食耐摩耗複合シリンダは重量でCr5.
0〜20.0%、81.0〜5.0%、Fe10.0%
以下、Si0.5〜5.0%、C1,5%以下及び残部
がNi及び不可避的不純物よりなる合金の粉末に、周期
律表の第1VA、VA。
Furthermore, the corrosion-resistant and wear-resistant composite cylinder of the present invention has a weight of Cr5.
0-20.0%, 81.0-5.0%, Fe10.0%
Hereinafter, the powder of an alloy consisting of 0.5 to 5.0% Si, 1.5% or less of C, and the balance being Ni and unavoidable impurities is the first VA and VA of the periodic table.

VIA族の元素の炭化物の1種または2種以上からなる
粒径が10〜300μmの硬質粒子を混合後の体積%で
5〜40%混合分散させ、シリンダの母材表面に粉体肉
盛溶接してなることを′#徴とする。
Hard particles with a particle size of 10 to 300 μm made of one or more carbides of Group VIA elements are mixed and dispersed in a volume percentage of 5 to 40% after mixing, and powder overlay welding is performed on the surface of the base material of the cylinder. The sign is that it happens.

本発明における肉成層の基地を形成する合金の成分の限
定理由は、以下の通りである。
The reasons for limiting the components of the alloy forming the base of the meat layering in the present invention are as follows.

Cr:Ni基地中に固溶し、基地の硬さの向上に有効で
あり、またCと結合して炭化物を形成し、耐摩耗性を高
める。しかし5.0重量%未満では、耐摩耗性及び耐食
性が不十分であり、20.0重量%を越えると脆性を増
すので、その含有量は5゜0〜20.0重量%である。
Cr: Cr dissolves in the Ni base and is effective in improving the hardness of the base, and also combines with C to form carbide to improve wear resistance. However, if it is less than 5.0% by weight, wear resistance and corrosion resistance will be insufficient, and if it exceeds 20.0% by weight, brittleness will increase, so the content should be 5.0 to 20.0% by weight.

好ましい範囲は10。The preferred range is 10.

O〜18.0重量%である。O~18.0% by weight.

8 :組織中に高硬度の硼化物を析出させるので合金の
硬さを高め、また耐摩耗性を向上させるのに効果があり
、さらに溶融点を下げる効果がある。しかし、1重量%
未満では十分な硬さが得られず、溶融点も高く、肉盛後
の肉盛層の収縮代が大きくなるためシリンダの変形や肉
盛層への拍張応力の作用が大きくなる等の問題がある。
8: Highly hard boride is precipitated in the structure, which is effective in increasing the hardness of the alloy and improving wear resistance, as well as lowering the melting point. However, 1% by weight
If it is less than that, sufficient hardness cannot be obtained, the melting point is high, and the shrinkage margin of the build-up layer after build-up becomes large, resulting in problems such as cylinder deformation and the effect of tensile stress on the build-up layer. There is.

また5゜0重量%を超えると合金は脆くなり、肉盛層に
冷却時クラックを生じやすくなる。従ってBの範囲は1
.0〜5.0重量%である。好ましい範囲は2.4〜4
.0重量%である。
Moreover, if it exceeds 5.0% by weight, the alloy becomes brittle and cracks are likely to occur in the overlay layer upon cooling. Therefore, the range of B is 1
.. It is 0 to 5.0% by weight. The preferred range is 2.4-4
.. It is 0% by weight.

Fe:基地の靭性向上に有効であるが、10゜0重量%
を超えると基地の硬さを低下させ、また耐食性も低下さ
せる。従ってその上限は10.0重量%である。好まし
い範囲は3〜6重示重量ある。
Fe: Effective for improving the toughness of the base, 10°0% by weight
Exceeding this decreases the hardness of the base and also reduces the corrosion resistance. Therefore, its upper limit is 10.0% by weight. The preferred range is 3 to 6 weights.

Sl:基地の高硬度化に有効で、またIK!酸元木元素
ても必要である。しかし0.5重量%未満の添加では、
十分な硬さが得られず、また5、0重量%を超えると靭
性を悪化させるので、その範囲は0.5〜5.0重量%
である。好ましい範囲は2.0〜4,0重量%である。
Sl: Effective for increasing the hardness of the base, and also IK! Acid base wood elements are also required. However, if less than 0.5% by weight is added,
Sufficient hardness cannot be obtained, and if it exceeds 5.0% by weight, toughness deteriorates, so the range is 0.5 to 5.0% by weight.
It is. The preferred range is 2.0 to 4.0% by weight.

C:Niに固溶して強度を高めるとともに、合金元素と
結合して炭化物を形成し、耐摩耗性を向上させる。しか
し、1.50重量%を超えると靭性を低下させるので、
1.50重量%以下の添加量である。好ましい添加量は
0.4〜1.0重量%である。
C: It dissolves in Ni to increase strength, and also combines with alloying elements to form carbides to improve wear resistance. However, if it exceeds 1.50% by weight, the toughness decreases, so
The amount added is 1.50% by weight or less. The preferred amount added is 0.4 to 1.0% by weight.

なおNiは基地を構成する主要元素であり、フッ素系ガ
ス雰囲気をはじめ各種雰囲気に対する耐食性が高い。ま
た8と結合して硼化物を析出し、基地の硬さを高めると
ともに硼化物を分散させ、耐摩耗性を高める。Niは不
可避的不純物を除き上記添加元素以外の残部を占める。
Note that Ni is a main element constituting the base, and has high corrosion resistance against various atmospheres including fluorine gas atmospheres. It also combines with 8 to precipitate boride, increasing the hardness of the base and dispersing the boride to improve wear resistance. Ni occupies the balance other than the above-mentioned additive elements excluding unavoidable impurities.

本発明では耐摩耗性を向上させるために周期律表の第J
VA、VA、VIA族の元素の炭化物の1種又は2種以
上からなる硬質粒子を合金中に分散させる。好ましい炭
化物はWC,NbC,T i C及びVCである。
In the present invention, in order to improve wear resistance,
Hard particles made of one or more carbides of elements in groups VA, VA, and VIA are dispersed in the alloy. Preferred carbides are WC, NbC, TiC and VC.

硬質粒子の吊は肉盛層の5〜40体槓%を占める。硬質
粒子が5体積%未満だと所期の耐摩耗性向上効果が得ら
れず、40体積%を超えると肉盛層にクラックが生じや
すくなる。
The suspension of hard particles accounts for 5 to 40% of the build-up layer. If the amount of hard particles is less than 5% by volume, the desired effect of improving wear resistance cannot be obtained, and if it exceeds 40% by volume, cracks are likely to occur in the built-up layer.

また硬質粒子の粒径は10〜300μmである。Moreover, the particle size of the hard particles is 10 to 300 μm.

粒径が300μmを超えると肉盛層にクラックが生じや
すく、10μm未満では肉盛中に基地合金中への固溶が
過度に進行する。またこれらの粒子は母合金との比重の
相違が大きいので、粉体肉盛溶接中における粒子の偏在
を防止するために、粒径が10〜100μmの範囲にあ
るのが好ましい。
When the grain size exceeds 300 μm, cracks tend to occur in the build-up layer, and when the grain size is less than 10 μm, solid solution into the base alloy progresses excessively during build-up. Further, since these particles have a large difference in specific gravity from the mother alloy, it is preferable that the particle size is in the range of 10 to 100 μm in order to prevent uneven distribution of particles during powder overlay welding.

肉盛層の厚さは、肉盛後の冷却時の収縮によるクラック
の発生を防止するために、比較的小さくするのが有利で
ある。このため本発明においては肉i層の厚さは加工前
の状態で101R#1以下が好ましい。
It is advantageous for the thickness of the build-up layer to be relatively small in order to prevent the occurrence of cracks due to shrinkage during cooling after build-up. Therefore, in the present invention, the thickness of the meat i layer is preferably 101R#1 or less before processing.

本発明の耐食耐摩耗合金の肉盛層は溶接により形成され
るので、拡散層を介して母材と強固に結合し、耐剥離性
が大きい。
Since the built-up layer of the corrosion-resistant and wear-resistant alloy of the present invention is formed by welding, it is firmly bonded to the base material via the diffusion layer and has high peeling resistance.

次に、本発明のシリンダ母材について述べる。Next, the cylinder base material of the present invention will be described.

本発明の肉盛層は脆くてクラックが発生しやすい材質で
ある。母材に粉体内盛溶接された後は母材に比べて高温
状態から冷却されるので冷却にともなう収縮mtfi母
材よりも大きくなって、引張応力によるクラックが発生
しやすい。この傾向は硬質粒子の混合量が別人づるほと
顕著になる。そこで特に硬質粒子の混合量の多い肉盛材
料を使用する場合には、熱膨張(収縮)係数が大きいオ
ーステナイト系材料を肉盛用母材として使用するのが、
肉盛層のクラック防止の観点から有利である。即ち、母
材は熱膨張(収縮)係数が大きいため、肉盛後は大きく
収縮して肉盛層の収縮量に追従し得るものとなる。さら
に、冷却時には変態が起こらずオーステナイト状態のま
まであるので塑性変形能も高い。ただし、母材は硬さが
低すぎると母材として必要とされる強さが不足するので
、硬さはH8121以上程度は必要である。
The build-up layer of the present invention is a brittle material that easily cracks. After powder overlay welding is performed on the base material, it is cooled from a high temperature state compared to the base material, so the shrinkage due to cooling becomes larger than the MTFI base material, and cracks are likely to occur due to tensile stress. This tendency becomes more pronounced as the amount of hard particles mixed increases. Therefore, especially when using a build-up material with a large mixed amount of hard particles, it is recommended to use an austenitic material with a large coefficient of thermal expansion (contraction) as the base material for build-up.
This is advantageous from the viewpoint of preventing cracks in the built-up layer. That is, since the base material has a large coefficient of thermal expansion (contraction), it will shrink significantly after the build-up and can follow the amount of shrinkage of the build-up layer. Furthermore, since no transformation occurs during cooling and the austenitic state remains, the plastic deformability is high. However, if the hardness of the base material is too low, the strength required for the base material will be insufficient, so the hardness must be approximately H8121 or higher.

母材はまたCrMOM、Ni  Cr  Mo鋼又は構
造用炭素鋼等により形成することもできる。
The base material can also be formed from CrMOM, Ni Cr Mo steel, structural carbon steel, or the like.

この種の材料を使用する場合、前記オーステナイト系母
材に比べて熱膨張(収縮ン係数が小さく、かつ変形能も
小さいので、肉盛層に高い引張応力が発生し、クラック
が生じるおそれがある。そのため肉盛用合金中の硬質粒
子は5〜20体積%とし、また肉盛による全体の昇温を
少なくして絶対収縮量を少なくする必要があるので、肉
盛厚さは加工前の状態で5 tntn以下とするのが好
ましい。
When using this type of material, it has a smaller coefficient of thermal expansion (shrinkage) and smaller deformability than the austenitic base material, so there is a risk that high tensile stress will occur in the overlay layer and cracks may occur. Therefore, the hard particles in the overlay alloy should be 5 to 20% by volume, and it is necessary to reduce the overall temperature rise due to overlay and reduce the absolute shrinkage, so the overlay thickness should be the same as the state before processing. is preferably 5 tntn or less.

Cr−Mo鋼又はNi−Cr−MOJIIとして好まし
い組成範囲は、重量でG0.2〜0.55%、5iO0
1〜0.6%、Mn0.2〜1.2%、Cr0.7〜1
.2%、Mob、05〜0.5%、NiO又は2.0%
以下及び残部Fe及び不可避的不純物である。
The preferred composition range for Cr-Mo steel or Ni-Cr-MOJII is G0.2-0.55% by weight, 5iO0
1-0.6%, Mn0.2-1.2%, Cr0.7-1
.. 2%, Mob, 05-0.5%, NiO or 2.0%
The following and the remainder are Fe and unavoidable impurities.

[実施例1 本発明をさらに以下の実施例により詳細に説明する。[Example 1 The present invention will be further explained in detail by the following examples.

実施例1 表1に示す各種の合金粉末及び粒径50μmの硬質粒子
を用い、5IJS304の内径100m#I、外径15
0aa及び長さ800zのシリンダの内面に粉体肉盛溶
接を行った。得られた肉盛層を仕上加工し、硬さ、摩耗
減量及び各種薬品に対重る耐食性について試験した。ま
た比較のために従来材として5KDI 1 (1,52
0−0,28i−0゜43Mn−12,2Cr−0,9
5Mo−0,31Vl)を用い、同様に肉盛層を形成し
て耐摩耗性及び耐食性の試験を行った。結果を表2に示
す。
Example 1 Using various alloy powders shown in Table 1 and hard particles with a particle size of 50 μm, 5IJS304 with an inner diameter of 100 m and an outer diameter of 15
Powder overlay welding was performed on the inner surface of a cylinder with a length of 0aa and a length of 800z. The resulting built-up layer was finished and tested for hardness, wear loss, and corrosion resistance against various chemicals. For comparison, 5KDI 1 (1,52
0-0,28i-0゜43Mn-12,2Cr-0,9
5Mo-0, 31Vl), a build-up layer was formed in the same manner, and the abrasion resistance and corrosion resistance tests were conducted. The results are shown in Table 2.

なお表2中において、摩耗減量は従来材(SKD”11
)の摩耗量を100とし、その他の肉盛材については割
合(指数)で示す。
In Table 2, the wear loss is for the conventional material (SKD”11
) is assumed to be 100, and other overlay materials are expressed as percentages (indexes).

表   1 表   2 SKDl 1 (N0.8>(7)11合t100とし
た。
Table 1 Table 2 SKDl 1 (N0.8>(7) 11 go t100.

表2に示す結果から、本発明の合金は優れた耐摩耗性及
び耐食性を有することが分かる。
The results shown in Table 2 show that the alloy of the present invention has excellent wear resistance and corrosion resistance.

実施例2 実施例1の各種合金を用い、表3に示す各種シリンダ(
オーステナイト鋼、Cr−MO鋼、Ni−Cr−Mo鋼
、構造用炭素wI>に同様の粉体肉盛溶接を行った。得
られた肉盛層の状況を表3に示す。
Example 2 Using the various alloys of Example 1, various cylinders shown in Table 3 (
Similar powder overlay welding was performed on austenitic steel, Cr-MO steel, Ni-Cr-Mo steel, and structural carbon wI>. Table 3 shows the condition of the obtained build-up layer.

表3から明らかな通り、肉盛用母材として5US304
を使用した場合は肉盛厚さが151mになるとクラック
が発生する(NO,D)。従って肉盛厚みは加工前の状
態で10mmまでとするのが好ましい。また肉盛用母材
としてSC〜1440.SN0M431及び545Gを
使用した場合、硬質粒子の割合が30体積%のN0. 
7を用いたときに肉盛層にクラックが生じた。そこでこ
れらの材質の母材の場合には硬質粒子は最高20体積%
とするのがよい。
As is clear from Table 3, 5US304 is used as the base material for overlay.
When using, cracks occur when the build-up thickness reaches 151 m (NO, D). Therefore, it is preferable that the build-up thickness is up to 10 mm before processing. Also, as a base material for overlaying, SC~1440. When using SN0M431 and 545G, the proportion of hard particles was 30% by volume.
When No. 7 was used, cracks occurred in the overlay layer. Therefore, in the case of base materials of these materials, the hard particles should be at most 20% by volume.
It is better to

[発明の効果1 以上の通り本発明の合金は耐食性及び耐磨耗性に優れて
いるので、プラスチック成形機等のシリンダに使用する
と従来のものに比較して著しく優れた性能を発揮する。
[Effect of the Invention 1 As described above, the alloy of the present invention has excellent corrosion resistance and abrasion resistance, so when used in cylinders of plastic molding machines, etc., it exhibits significantly superior performance compared to conventional ones.

特に本発明合金の内張層を有する複合シリンダは腐食、
摩耗が著しく小さく、寿命が長い。
In particular, composite cylinders with a lining layer made of the alloy of the present invention are free from corrosion.
Extremely low wear and long life.

Claims (11)

【特許請求の範囲】[Claims] (1)重量でCr5.0〜20.0%、B1.0〜5.
0%、Fe10.0%以下、Si0.5〜5.0%、C
1.5%以下及び残部がNi及び不可避的不純物よりな
る合金の粉末に、周期律表の第IVA、VA、VIA族の炭
化物の1種または2種以上からなる粒径が10〜300
μmの硬質粒子を混合後の体積%で5〜40%混合し、
母材の表面に粉体肉盛溶接してなることを特徴とする耐
食耐摩耗合金。
(1) Cr5.0-20.0% by weight, B1.0-5.
0%, Fe10.0% or less, Si0.5-5.0%, C
An alloy powder consisting of 1.5% or less and the balance consisting of Ni and unavoidable impurities has a particle size of 10 to 300, consisting of one or more carbides of groups IVA, VA, and VIA of the periodic table.
Mixing 5 to 40% of μm hard particles in terms of volume % after mixing,
A corrosion-resistant and wear-resistant alloy that is made by powder overlay welding on the surface of the base metal.
(2)特許請求の範囲第1項に記載の方法において、前
記炭化物がWC、NbC、TiC及びVCであることを
特徴とする耐食耐摩耗合金。
(2) A corrosion-resistant and wear-resistant alloy according to the method according to claim 1, wherein the carbide is WC, NbC, TiC, and VC.
(3)特許請求の範囲第1項または第2項に記載の方法
において、前記炭化物の粒径が10〜100μmである
ことを特徴とする耐食耐摩耗合金。
(3) A corrosion-resistant and wear-resistant alloy according to the method according to claim 1 or 2, wherein the grain size of the carbide is 10 to 100 μm.
(4)重量でCr5.0〜20.0%、B1.0〜5.
0%、Fe10.0%以下、Si0.5〜5.0%、C
1.5%以下及び残部がNi及び不可避的不純物よりな
る合金の粉体に、周期律表の第IVA、VA、VIA族の元
素の炭化物の1種又は2種以上からなる粒径が10〜3
00μmの硬質粒子を混合後の体積%で5〜40%混合
分散させ、シリンダの母材表面に粉体肉盛溶接してなる
ことを特徴とする耐食耐摩耗複合シリンダ。
(4) Cr5.0-20.0% by weight, B1.0-5.
0%, Fe10.0% or less, Si0.5-5.0%, C
An alloy powder consisting of 1.5% or less and the balance consisting of Ni and unavoidable impurities has a particle size of 10 to 10% and is composed of one or more carbides of elements in groups IVA, VA, and VIA of the periodic table. 3
1. A corrosion-resistant and wear-resistant composite cylinder, characterized in that hard particles of 0.00 μm are mixed and dispersed in a volume percentage of 5 to 40% after mixing, and powder overlay welding is performed on the surface of a base material of the cylinder.
(5)特許請求の範囲第4項に記載の耐食耐摩耗複合シ
リンダにおいて、前記炭化物がWC、NbC、TiC及
びVCであることを特徴とする耐食耐摩耗複合シリンダ
(5) The corrosion-resistant and wear-resistant composite cylinder according to claim 4, wherein the carbide is WC, NbC, TiC, and VC.
(6)特許請求の範囲第4項又は第5項に記載の耐食耐
摩耗複合シリンダにおいて、前記炭化物の粒径が10〜
100μmであることを特徴とする耐食耐摩耗複合シリ
ンダ。
(6) In the corrosion-resistant and wear-resistant composite cylinder according to claim 4 or 5, the grain size of the carbide is 10 to 10.
A corrosion-resistant and wear-resistant composite cylinder characterized by a thickness of 100 μm.
(7)特許請求の範囲第4項乃至第6項のいずれかに記
載の耐食耐摩耗複合シリンダにおいて、前記シリンダ母
材がオーステナイト系鋼からなることを特徴とする耐食
耐摩耗複合シリンダ。
(7) The corrosion-resistant and wear-resistant composite cylinder according to any one of claims 4 to 6, wherein the cylinder base material is made of austenitic steel.
(8)特許請求の範囲第4項乃至第7項のいずれかに記
載の耐食耐摩耗複合シリンダにおいて、前記耐食耐摩耗
合金の粉体肉盛溶接層が加工前の状態で10mm以下の
厚さを有することを特徴とする耐食耐摩耗複合シリンダ
(8) In the corrosion-resistant and wear-resistant composite cylinder according to any one of claims 4 to 7, the powder overlay weld layer of the corrosion-resistant and wear-resistant alloy has a thickness of 10 mm or less before processing. A corrosion-resistant and wear-resistant composite cylinder characterized by having.
(9)特許請求の範囲第4項乃至第6項いずれかに記載
の耐食耐摩耗複合シリンダにおいて、前記シリンダ母材
はCr−Mo鋼又はNi−Cr−Mo鋼であり、重量で
C0.20〜0.55%、Si0.1〜0.6%、Mn
0.2〜1.2%、Cr0.7〜1.2%、Mo0.0
5〜0.5%、NiO又は2.0%以下及び残部がFe
及び不可避的不純物からなる組成を有することを特徴と
する耐食耐摩耗複合シリンダ。
(9) In the corrosion-resistant and wear-resistant composite cylinder according to any one of claims 4 to 6, the cylinder base material is Cr-Mo steel or Ni-Cr-Mo steel, and has a weight of C0.20. ~0.55%, Si0.1~0.6%, Mn
0.2-1.2%, Cr0.7-1.2%, Mo0.0
5-0.5%, NiO or 2.0% or less and the balance is Fe
A corrosion-resistant and wear-resistant composite cylinder characterized by having a composition comprising: and inevitable impurities.
(10)特許請求の範囲第4項乃至第6項のいずれかに
記載の耐食耐摩耗複合シリンダにおいて、前記シリンダ
母材が構造用炭素鋼からなることを特徴とする耐食耐摩
耗複合シリンダ。
(10) The corrosion-resistant and wear-resistant composite cylinder according to any one of claims 4 to 6, wherein the cylinder base material is made of structural carbon steel.
(11)特許請求の範囲第9項又は第10項に記載の耐
食耐摩耗複合シリンダにおいて、前記耐食耐摩耗合金の
粉体肉盛溶接層が加工前の状態で5mm以下の厚さを有
することを特徴とする耐食耐摩耗複合シリンダ。
(11) In the corrosion-resistant and wear-resistant composite cylinder according to claim 9 or 10, the powder overlay weld layer of the corrosion-resistant and wear-resistant alloy has a thickness of 5 mm or less before processing. A corrosion-resistant and wear-resistant composite cylinder featuring:
JP16945886A 1986-07-18 1986-07-18 Corrision-and wear-resistant alloy and composite cylinder thereof Pending JPS6326295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16945886A JPS6326295A (en) 1986-07-18 1986-07-18 Corrision-and wear-resistant alloy and composite cylinder thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16945886A JPS6326295A (en) 1986-07-18 1986-07-18 Corrision-and wear-resistant alloy and composite cylinder thereof

Publications (1)

Publication Number Publication Date
JPS6326295A true JPS6326295A (en) 1988-02-03

Family

ID=15886956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16945886A Pending JPS6326295A (en) 1986-07-18 1986-07-18 Corrision-and wear-resistant alloy and composite cylinder thereof

Country Status (1)

Country Link
JP (1) JPS6326295A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030519A (en) * 1990-04-24 1991-07-09 Amorphous Metals Technologies, Inc. Tungsten carbide-containing hard alloy that may be processed by melting
WO1991009980A1 (en) * 1989-12-27 1991-07-11 Toshiba Kikai Kabushiki Kaisha Production of anticorrosive and antiwearing alloy
JPH03295352A (en) * 1990-04-12 1991-12-26 Tokyo Electric Co Ltd Facsimile equipment
CN1331634C (en) * 2004-12-22 2007-08-15 攀钢集团攀枝花钢铁研究院 Nickel-base spraying smelting alloy powder and its preparation process
CN102650011A (en) * 2011-02-28 2012-08-29 孙晓冰 Heat, wear and hot corrosion-resistant silicide reinforced high wolframium-nickel-iron-based alloy
CN106541223A (en) * 2015-09-23 2017-03-29 天津职业技术师范大学 Cloth-like Nickel-based brazing material and its preparation method and application
CN113814601A (en) * 2021-09-24 2021-12-21 郑州机械研究所有限公司 Brazing sheet and brazing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555126A (en) * 1978-06-26 1980-01-16 Mitsubishi Heavy Ind Ltd Surface hardening build-up welding method
JPS5630181A (en) * 1979-08-20 1981-03-26 Sharp Kk Character information setting system
JPS58157944A (en) * 1982-03-01 1983-09-20 ウエツクスコ・コ−ポレ−シヨン Compound cylinder and casted alloy therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555126A (en) * 1978-06-26 1980-01-16 Mitsubishi Heavy Ind Ltd Surface hardening build-up welding method
JPS5630181A (en) * 1979-08-20 1981-03-26 Sharp Kk Character information setting system
JPS58157944A (en) * 1982-03-01 1983-09-20 ウエツクスコ・コ−ポレ−シヨン Compound cylinder and casted alloy therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009980A1 (en) * 1989-12-27 1991-07-11 Toshiba Kikai Kabushiki Kaisha Production of anticorrosive and antiwearing alloy
JPH03295352A (en) * 1990-04-12 1991-12-26 Tokyo Electric Co Ltd Facsimile equipment
US5030519A (en) * 1990-04-24 1991-07-09 Amorphous Metals Technologies, Inc. Tungsten carbide-containing hard alloy that may be processed by melting
CN1331634C (en) * 2004-12-22 2007-08-15 攀钢集团攀枝花钢铁研究院 Nickel-base spraying smelting alloy powder and its preparation process
CN102650011A (en) * 2011-02-28 2012-08-29 孙晓冰 Heat, wear and hot corrosion-resistant silicide reinforced high wolframium-nickel-iron-based alloy
CN106541223A (en) * 2015-09-23 2017-03-29 天津职业技术师范大学 Cloth-like Nickel-based brazing material and its preparation method and application
CN113814601A (en) * 2021-09-24 2021-12-21 郑州机械研究所有限公司 Brazing sheet and brazing method
CN113814601B (en) * 2021-09-24 2023-06-09 郑州机械研究所有限公司 Brazing sheet and brazing method

Similar Documents

Publication Publication Date Title
US20090123324A1 (en) Iron-Base Alloy Containing Chromium-Tungsten Carbide And a Method Of Producing It
JPWO2009122985A1 (en) Ferrous sintered alloy for valve seat and valve seat for internal combustion engine
CN109454202B (en) Casting infiltration agent, wear-resistant steel casting and preparation method thereof
JPS6326295A (en) Corrision-and wear-resistant alloy and composite cylinder thereof
US4427446A (en) Corrosion-resistant and abrasive wear-resistant composite material for centrifugally cast linings
US20140245863A1 (en) Corrosion-resistant and wear-resistant ni-based alloy
JP2001279369A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JP2800074B2 (en) Corrosion and wear resistant cobalt based alloy
JPS61143547A (en) Cylinder for plastic molding apparatus
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JP4381210B2 (en) High wear-resistant roll material and high wear-resistant composite roll
JPS63265617A (en) Abrasion resistant and corrosion resistant composite cylinder
JPH04337046A (en) Wear resistant composite material and formation of wear resistant lining layer
CN112962019B (en) High-wear-resistance steel-based composite material and preparation method thereof
JPS63157707A (en) Wear resistant composite roll
JP3563937B2 (en) High corrosion resistant carbide dispersion material
JPH01165779A (en) Hardening material for inside of cylinder
JPS63221025A (en) Composite cylinder with abrasion and corrosion resistance
JPH01294843A (en) Coating alloy having wear resistance and corrosion resistance and material for forming the same
JP2602029B2 (en) Method for producing abrasion resistant composite casting
JP3534885B2 (en) Carbide dispersed non-magnetic steel
JP2002275588A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JPH08319530A (en) Composite material with high wear resistance and corrosion resistance
JPS6152340A (en) Wear and corrosion resistant alloy
CN105624547A (en) Production technique of thermal composite hammer made of high-vanadium high-speed steel and low-alloy steel