JPS61143547A - Cylinder for plastic molding apparatus - Google Patents

Cylinder for plastic molding apparatus

Info

Publication number
JPS61143547A
JPS61143547A JP59264137A JP26413784A JPS61143547A JP S61143547 A JPS61143547 A JP S61143547A JP 59264137 A JP59264137 A JP 59264137A JP 26413784 A JP26413784 A JP 26413784A JP S61143547 A JPS61143547 A JP S61143547A
Authority
JP
Japan
Prior art keywords
cylinder
alloy
toughness
corrosion resistance
poor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59264137A
Other languages
Japanese (ja)
Other versions
JPH0124620B2 (en
Inventor
Nobuyasu Kawai
河合 伸泰
Hiroshi Takigawa
滝川 博
Seishi Furuta
誠矢 古田
Masaaki Kotakane
小高根 正昭
Keiichi Hayashida
林田 敬一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOSHUHA KOGYO KK
Nippon Koshuha Steel Co Ltd
Kobe Steel Ltd
Original Assignee
NIPPON KOSHUHA KOGYO KK
Nippon Koshuha Steel Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOSHUHA KOGYO KK, Nippon Koshuha Steel Co Ltd, Kobe Steel Ltd filed Critical NIPPON KOSHUHA KOGYO KK
Priority to JP59264137A priority Critical patent/JPS61143547A/en
Publication of JPS61143547A publication Critical patent/JPS61143547A/en
Publication of JPH0124620B2 publication Critical patent/JPH0124620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/62Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/6801Barrels or cylinders characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide superior corrosion resistance, wear resistance, and toughness by forming the inside peripheral surface of the cylinder by use of a corrosion-and wear-resisting alloy having specific chemical composition. CONSTITUTION:The inside peripheral surface of the cylinder for a plastic mold ing apparatus is formed of the corrosion-and wear-resisting alloy having the chemical composition consisting of, by weight, 0.5-1.5% C, 1-2% Si, 0.5-2.5% B, 10-20% Ni, 20-30% Cr, 10-20% W, 0.5-20% Cu, and the balance Co with inevitable impurities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエポキシ樹脂、ポリアセタール樹脂、ABS樹
脂、ポリアミド樹脂、ポリカーボネート、ふっ素樹脂等
のプラスチック材の射出酸形成は押出成形等に使用され
る、耐食性及び耐摩耗性の優れたシリンダに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to injection acid formation of plastic materials such as epoxy resins, polyacetal resins, ABS resins, polyamide resins, polycarbonates, and fluororesins, which are used in extrusion molding, etc. This invention relates to a cylinder with excellent corrosion resistance and wear resistance.

〔従来の技術〕[Conventional technology]

上記の様なグラスチック材の射出又は押出成形はかな〕
の高温条件下で行なわれる為、一部原料の熱分解は回避
しきれず多少の腐食性ガスが生成することは当然視され
ている向きもある。特に難燃化を期してハロゲン含有化
合物を配合した場合には大量のハロゲン含有ガスが発生
する。そp後シリンダ内部は常時腐゛食環境に曝らされ
ることとなシ、シリンダには高レベルの耐食性が要求さ
れる。しかし成形時に負荷される圧力は相当高く、且つ
強度向上の為に配合されることの多い無機質充填材は非
常に高強度である為、シリンダには高    。
Injection or extrusion molding of glass materials such as those mentioned above]
Since the process is carried out under high temperature conditions, some people think that it is natural that some raw materials will undergo thermal decomposition and some corrosive gas will be produced. In particular, when a halogen-containing compound is added for flame retardancy, a large amount of halogen-containing gas is generated. After that, the inside of the cylinder is constantly exposed to a corrosive environment, so the cylinder is required to have a high level of corrosion resistance. However, the pressure applied during molding is quite high, and the inorganic fillers that are often added to improve strength have extremely high strength, so cylinders require high pressure.

レベルの耐摩耗性も要求される。A certain level of abrasion resistance is also required.

この様な要求特性を一応備えたものとして従来はSAC
M+SCM等の窒化シリンダが汎用されてお)、この素
材は低摩で製造が容易であるといった特徴も有している
。しかしながら窒化による硬化層が0.1 mm程度と
極めて薄い為、必ずしも十分な耐食性及び耐摩耗性を発
揮しているとは言えない。そこで上記の様な苛酷な使用
条件に耐えるシリンダとして遠心鋳造によるパイメタリ
ックシリンダが開発され、これは従来のシリンダに比べ
て格段に優れた性能を有しているところから、需要が急
激に増大してきている。ところがこのパイメタリックシ
リンダにも問題点がない訳ではなく、下記の様な種々の
問題点が残されている。
Conventionally, SAC was used as a device that had these required characteristics.
Nitrided cylinders such as M+SCM are widely used), and this material also has the characteristics of low friction and easy manufacturing. However, since the nitrided hardened layer is extremely thin, about 0.1 mm, it cannot be said that it necessarily exhibits sufficient corrosion resistance and wear resistance. Therefore, a pie metallic cylinder made by centrifugal casting was developed as a cylinder that can withstand the harsh operating conditions mentioned above. Demand for this cylinder has increased rapidly as it has much superior performance compared to conventional cylinders. ing. However, this pie metallic cylinder is not without its problems, and various problems remain as described below.

■遠心鋳造法では製法上の制約からライニング合金の融
点に限界があ)、1000〜1100℃以下の融点を有
する成分系に限定される。
(2) In the centrifugal casting method, there is a limit to the melting point of the lining alloy due to manufacturing constraints, and the composition is limited to a component system having a melting point of 1000 to 1100°C or less.

■遠心鋳造法では耐摩耗性改善の為WC等の高硬度物質
を強化材として添加するが、これらの強化材はマトリッ
クス成分に比べて比重が大きい為ライニング層の内部へ
偏析し易く、摺動面となる内周表面側の存在量は極めて
僅かである。
■In the centrifugal casting method, high-hardness substances such as WC are added as reinforcing materials to improve wear resistance, but since these reinforcing materials have a higher specific gravity than the matrix components, they tend to segregate inside the lining layer, causing sliding problems. The amount present on the inner peripheral surface side, which becomes a surface, is extremely small.

■遠心鋳造工程で溶融した合金は当然のことながらバッ
クメタル(シリンダ本体を構成する鋼材)と接触するが
、合金層にはバックメタルから相当量の鉄分が混入して
くる為期待されるほどの耐食性は得られない。
■The alloy melted in the centrifugal casting process naturally comes into contact with the back metal (steel material that makes up the cylinder body), but a considerable amount of iron from the back metal mixes into the alloy layer, so it is not as expected. Corrosion resistance cannot be obtained.

■小径のシリンダでは十分な遠心力が得られない為、シ
リンダ本体に対するライニング材の接合性を十分に高め
ることができない。
■Since sufficient centrifugal force cannot be obtained with a small diameter cylinder, it is not possible to sufficiently improve the bonding of the lining material to the cylinder body.

■遠心鋳造工程では母材も1200℃程度の高温に加熱
される為、母材の機械的性質が損なわれることがある。
■In the centrifugal casting process, the base material is also heated to a high temperature of around 1200°C, which may damage the mechanical properties of the base material.

■遠心鋳造によ)形成されるライニング合金層は鋳造組
織である為成分偏析が著しく且つ金属間化合物はかな)
粗大化している。その為ライニング層の強度及び靭性は
良好とは言えず、耐食性や耐摩耗性も不均一である。
■The lining alloy layer formed by centrifugal casting has a cast structure, so there is significant component segregation and there are no intermetallic compounds.
It is becoming coarser. Therefore, the strength and toughness of the lining layer are not good, and the corrosion resistance and abrasion resistance are also uneven.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の様な事情に着目してなされたものであシ
、その目的は前述の如き苛酷な成形条件にも十分適合し
得る耐食性及び耐摩耗並びに靭性を備えたシリンダを提
供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a cylinder having corrosion resistance, wear resistance, and toughness that can be sufficiently adapted to the above-mentioned severe molding conditions. It is something.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明に係るプラスチック成形装置用シリンダの構成は
、少なくとも内周面を下記化学成分の耐食・耐摩耗性合
金で形成してなるとζろに要旨が存在する。
The structure of the cylinder for a plastic molding apparatus according to the present invention is advantageous if at least the inner circumferential surface is made of a corrosion-resistant and wear-resistant alloy having the following chemical components.

C:O,S〜1.5% Si:1.0〜λ0チ B:0.5〜2.5チ Ni:10〜20q6 Cr:20〜30% W :10〜20% Cu : 0.5〜2−0 % 残部:Co及び不可避不純物 〔作用〕 以下本発明における合金成分を定めた理由を明確、にす
ると共に、シリンダの具体的な作製法等について解説す
る。
C: O, S ~ 1.5% Si: 1.0 ~ λ0 Chi B: 0.5 ~ 2.5 Chi Ni: 10 ~ 20q6 Cr: 20 ~ 30% W: 10 ~ 20% Cu: 0.5 ~2-0% Remainder: Co and unavoidable impurities [Function] Below, the reasons for determining the alloy components in the present invention will be clarified, and the specific method of manufacturing the cylinder will be explained.

まずシリンダ内周面の合金組成を定めた理由は下記の通
シである。
First, the reason for determining the alloy composition of the inner circumferential surface of the cylinder is as follows.

C:O,S〜1.5% CはCr及びWと炭化物を形成し耐摩耗性を高めるうえ
で欠くことのできない元素であシ、0.5−未満では上
記の効果が有効に発揮されない。但しCが多過ぎると耐
食性及び靭性が乏しくなるので1.5%以下に抑えなけ
ればならない。Cのよシ好ましい含有率は0.8〜1.
2%である。
C: O, S ~ 1.5% C is an indispensable element for forming carbides with Cr and W and increasing wear resistance. If it is less than 0.5%, the above effects will not be effectively exhibited. . However, if there is too much C, corrosion resistance and toughness will be poor, so it must be kept at 1.5% or less. The preferred content of C is 0.8 to 1.
It is 2%.

S i : 1.0〜2.0 % 本発明に係るシリンダの作製は、例えば後述する如く所
定化学成分の合金溶湯からアトマイズ法によって合金粉
を得た後、熱間静水圧加圧法(HIP)等によシ所定の
寸法・形状に成形することによって行なわれるが、Si
はアトマイズ処理時における合金溶湯の流動性を高め粉
末粒径を均一化する為の必須元素であシ、1.0%未満
ではこうした効果が有効に発揮されない。しかし多過ぎ
ると靭性に顕著な悪影響を及ぼすので2.0−以下に抑
えなければならない、Siのよシ好ましb範囲は1.3
〜1.7チである。
Si: 1.0 to 2.0% The cylinder according to the present invention is manufactured by, for example, obtaining alloy powder from a molten alloy having a predetermined chemical composition by an atomization method, as described later, and then using a hot isostatic pressing method (HIP). This is done by molding it into a predetermined size and shape, etc., but Si
is an essential element for increasing the fluidity of the molten alloy during atomization and making the powder particle size uniform, and if it is less than 1.0%, these effects will not be effectively exhibited. However, if it is too large, it will have a significant negative effect on toughness, so it must be kept below 2.0.The preferable b range for Si is 1.3.
~1.7chi.

B:0.5〜2.5チ BはCrやWと硼化物を形成し耐食性及び耐摩耗性の向
上に寄与すると共にCOマトリックスの硬さを高める作
用があシ、これらの作用を有効に発揮させる為には0.
5%以上含有させなければならない。しかし2.5チを
超えると合金の靭性が低下するばかシでなく、合金の融
点が過度に低下レアトマイズ作業及びHIP作業が困難
になる。Bのよ)好ましい含有率は1.0〜2.0%で
ある。
B: 0.5 to 2.5 inches B forms boride with Cr and W and contributes to improving corrosion resistance and wear resistance, and also has the effect of increasing the hardness of the CO matrix, making these effects effective. 0.
The content must be 5% or more. However, if it exceeds 2.5 inches, the toughness of the alloy will not only decrease, but also the melting point of the alloy will drop excessively, making it difficult to perform the atomization and HIP operations. The preferable content of B) is 1.0 to 2.0%.

Ni:10〜20% NiはCoマトリックス中に固溶し耐食性及び靭性を高
める作用があシ、目的達成の為には1゜チ以上含有させ
なければならない。しかし20%を超えるとCoマトリ
ックスの硬度が低下し耐摩耗性が悪くなる他、耐硝酸腐
食性も乏しくなる。
Ni: 10-20% Ni is dissolved in the Co matrix and has the effect of increasing corrosion resistance and toughness, and must be contained in an amount of 1° or more in order to achieve the purpose. However, if it exceeds 20%, the hardness of the Co matrix decreases, resulting in poor wear resistance and poor nitric acid corrosion resistance.

Nfのより好ましい含有率は14〜18チである。A more preferable Nf content is 14 to 18 inches.

Cr:20〜30% CrはB及びCと硼化物及び炭化物を形成すると共にC
oマトリックス中罠固溶し、耐食性及び耐摩耗性を高め
るうえで不可欠の元素であシ、2゜チ未満ではこれらの
効果が有効に発揮されず、特忙耐硝酸腐食性が劣悪にな
る。しかし多過ぎると合金の靭性が低くなるので30%
以下に抑えなければならない。
Cr: 20-30% Cr forms borides and carbides with B and C, and also forms borides and carbides with C.
It is an essential element for improving corrosion resistance and abrasion resistance by forming a solid solution in the matrix.If the thickness is less than 2°, these effects will not be effectively exhibited and the special nitric acid corrosion resistance will be poor. However, if there is too much, the toughness of the alloy will decrease, so 30%
Must be kept below.

W:10〜20% WはB及びCと硼化物及び炭化物を形成し耐食性及び耐
摩耗性を高める作用があり、xoチ未満ではそれらの効
果が十分に発揮されない。しかし20条を超えると合金
が過度に硬質化し靭性が劣悪になる。
W: 10 to 20% W forms borides and carbides with B and C and has the effect of increasing corrosion resistance and wear resistance, and if it is less than xo, these effects will not be fully exhibited. However, if the number of threads exceeds 20, the alloy becomes excessively hard and its toughness deteriorates.

Cu : 0.5〜2.0 % CuはCoマトリックス中に固溶し、特に耐塩酸腐食性
の向上に寄与する。0.5−未満ではその効果が有効に
発揮されず、一方2.0チを超えると合金の靭性が劣悪
になる。
Cu: 0.5 to 2.0% Cu is dissolved in the Co matrix and particularly contributes to improving hydrochloric acid corrosion resistance. If it is less than 0.5, the effect will not be effectively exhibited, while if it exceeds 2.0, the toughness of the alloy will be poor.

残部成分=co及び不可避不純物 マトリックス成分として最低限の耐食性及び耐摩耗性を
確保する為、残部成分はCoとする。尚Co或は上記必
須合金成分の配合に伴ない不可避不純物としてPtS、
Fe、MntAl等が微量混入してくることがあるが、
これらは何れも不純物量(1,0%程度以下)である限
シ格別の悪影響を及ぼすことはない。
Remaining component = Co and inevitable impurities In order to ensure minimum corrosion resistance and wear resistance as a matrix component, the remaining component is Co. Incidentally, PtS,
Although trace amounts of Fe, MntAl, etc. may be mixed in,
None of these will have any particular adverse effect as long as the amount of impurities is (approximately 1.0% or less).

本発明においてはシリンダの少なくとも内周面側を上記
化学成分の合金で構成するもので、例えばシリンダ全体
を上記合金で形成することもできる。しかし該合金でシ
リンダ全体を作製しようとすると、 (a)射出時のシリンダ内圧は2000気圧にも及ぶこ
とがあシ、特に靭性不足となる恐れがある、 (b)例えば内径30mmφのシリンダでも外径は9゜
胴φ程度と極めて厚肉にしなければならない為、高価な
上記合金だけでシリンダを作製することは得策と言えな
い、 (c)上記合金は極めて高強度である為外面側の機械加
工が困難である、 等の難点があるので、最も好ましいのはSCM440 
、SNCM439,5US304,5US316等の高
強度鋼材をバックメタル(シリンダ本体)とし、その内
周面に前述の耐食・耐摩耗性合金層を形成するのがよい
In the present invention, at least the inner circumferential surface side of the cylinder is made of an alloy having the above-mentioned chemical components, and for example, the entire cylinder can be made of the above-mentioned alloy. However, if you try to make the entire cylinder from this alloy, (a) the internal pressure of the cylinder during injection can reach as high as 2,000 atmospheres, which may result in insufficient toughness; (b) for example, even if the cylinder has an inner diameter of 30 mmφ, the outer Since the diameter must be extremely thick, with a diameter of about 9° body φ, it is not a good idea to make the cylinder only from the expensive alloys mentioned above. (c) Since the above alloys have extremely high strength, the outer surface of the machine SCM440 is the most preferable because it has disadvantages such as being difficult to process.
, SNCM439, 5US304, 5US316 or the like is used as the back metal (cylinder body), and the above-mentioned corrosion-resistant and wear-resistant alloy layer is preferably formed on the inner peripheral surface of the back metal.

バックメタルの内周面に上記合金層を形成する方法も本
発明では特に限定されないが、最も一般的なのは粉末冶
金法を利用したHIP法であるので、この方法について
簡単に解説を加える。
The method for forming the alloy layer on the inner circumferential surface of the back metal is not particularly limited in the present invention, but the most common method is the HIP method using powder metallurgy, so a brief explanation of this method will be provided.

まず上記化学成分の合金を真空溶解炉等で溶解し、アト
マイズ装置(通常はArガス使用)を用いて微細な合金
粉末を得る。もつとも合金の粉末化はアトマイズ法に限
定されず、他の方法を採用することも勿論可能である。
First, an alloy having the above chemical components is melted in a vacuum melting furnace or the like, and a fine alloy powder is obtained using an atomizing device (usually using Ar gas). Of course, the method of pulverizing the alloy is not limited to the atomization method, and other methods can of course be used.

この合金粉末を分級(例えば100メツシユ以下に粒度
調整)し、例えば第1図に示す如く該粉末Pを鋼製バッ
クメタル1とカプセル20間に万偏なく充填し、適度の
温度(300℃前後)に加温しつつ真空脱気して内部の
ガスを完全に除去した後カプセルを真空密封する。次い
でHIP法を適用してバックメタル1の内周面に合金ラ
イニング層を形成する。この場合の好ましいHIP処理
条件は下記の通シである。
This alloy powder is classified (for example, the particle size is adjusted to 100 mesh or less), and the powder P is uniformly filled between the steel back metal 1 and the capsule 20 as shown in FIG. ) The capsule is vacuum-sealed after the internal gas is completely removed by vacuum degassing while heating. Next, an alloy lining layer is formed on the inner peripheral surface of the back metal 1 by applying the HIP method. Preferred HIP processing conditions in this case are as follows.

温  度:930〜1050℃ 圧  力=900〜1100気圧 保持時間:  1〜4時間 しかして温度が930℃未満では合金粉末充填層の圧密
化が不十分で且つ拡散接合状態が悪くなシ、合金層の靭
性劣化や剥離を生じ易くなる。一方1050℃を超える
とバックメタルの結晶粒−粗大化し機械的性質が悪化す
る傾向が生ずる。また圧力が930気圧未満では圧密化
が不十分となって合金層の靭性が乏しくな)、一方11
00気圧を超えても密度比はそれ以上向上しないので、
経済性を考えれば1100気圧以下に抑えるのがよい。
Temperature: 930 to 1050°C Pressure = 900 to 1100 atm Holding time: 1 to 4 hours However, if the temperature is less than 930°C, the compaction of the alloy powder packed bed will be insufficient and the diffusion bonding state will be poor. The toughness of the layer deteriorates and peeling tends to occur. On the other hand, if the temperature exceeds 1050°C, the crystal grains of the back metal tend to become coarser and the mechanical properties tend to deteriorate. In addition, if the pressure is less than 930 atmospheres, consolidation will be insufficient and the toughness of the alloy layer will be poor).
Even if it exceeds 00 atmospheres, the density ratio will not improve any further, so
Considering economic efficiency, it is better to keep the pressure below 1100 atm.

保持時間が1時間未満では圧密化が不十分で且つ拡散接
合状態も不十分となシ、合金層の靭性劣化及び剥離が生
じ易くなる。但し保持時間が長過ぎるとバックメタルの
結晶粒が粗大化して機械的性質に悪影響が現われてくる
ので4時間以内とすべきである。
If the holding time is less than 1 hour, the compaction will be insufficient and the diffusion bonding state will also be insufficient, making it easy for the alloy layer to deteriorate in toughness and peel off. However, if the holding time is too long, the crystal grains of the back metal will become coarse and the mechanical properties will be adversely affected, so the holding time should be within 4 hours.

〔実施例〕〔Example〕

実施例1 第1表に示す化学成分の合金を真空誘導溶解炉で溶製し
た後、Arガスイトマイズ法によって粉末(100メツ
シユ全通)とした。この合金粉末を用いて下記の条件で
HIPによる圧密化を行なつた後試験片を採取し、次の
性能試験に供した。
Example 1 An alloy having the chemical components shown in Table 1 was melted in a vacuum induction melting furnace, and then made into powder (100 meshes in total) by Ar gas itomization. This alloy powder was compacted by HIP under the following conditions, and then a test piece was taken and subjected to the following performance test.

(HIP条件〉 温  度:980℃ 圧  カニ 1000気圧 保持時間二 3時間 〈耐摩耗性試験〉 上記で得た各合金を用い下記の条件で大越式摩耗試験及
び硬度測定を行なった。結果を第2表に示す。
(HIP conditions) Temperature: 980°C Pressure Crab Holding time at 1000 atmospheres 2 to 3 hours <Abrasion resistance test> Using each alloy obtained above, Okoshi type abrasion test and hardness measurement were conducted under the following conditions.The results are as follows. It is shown in Table 2.

試験条件 固定試験片二合金NIIL1〜16 回転試験片:SUJ  2  (HRC45)摩擦速度
 : 0.63 m/seC 摩擦距離 : 400m 最終荷重 :6.3kg 測定雰囲気:室温、乾燥状態 第   2   表 〈耐食性試験〉 16mmφX20mm0試験片を50%塩酸、3゜チ硫
酸、10%硝酸の各50℃溶液に24時間浸漬し、腐食
による減量を測定した。
Test conditions Fixed test piece 2 alloys NIIL1 to 16 Rotating test piece: SUJ 2 (HRC45) Friction speed: 0.63 m/sec Friction distance: 400 m Final load: 6.3 kg Measurement atmosphere: Room temperature, dry state Table 2 (Corrosion resistance) Test> A 16 mmφ×20 mm0 test piece was immersed in 50° C. solutions of 50% hydrochloric acid, 3% sulfuric acid, and 10% nitric acid for 24 hours, and the weight loss due to corrosion was measured.

結果を第3表に示す。The results are shown in Table 3.

〈抗折特性試験〉 8mmφX100mmの試験片を使用して支点間距離8
0mmにて3点曲げ試験を行ない、破断荷重と最大たわ
み量を測定した。
<Bending characteristic test> Using a test piece of 8 mmφ x 100 mm, the distance between the supports was 8.
A three-point bending test was conducted at 0 mm, and the breaking load and maximum deflection amount were measured.

第1〜4表よシ次の様に考えることができる。Tables 1 to 4 can be considered as follows.

合金FJn14〜16は本発明の規定要件を充足する実
施例であシ、耐摩耗性、塩酸、硫酸、硝酸に対する耐食
性、抗折特性の何れにおいても良好な結果が得られてい
る。これに対し合金N11l〜13は規定要件の何れか
を欠く比較例であ〕、何れかの性能に問題がある。
Alloys FJn14 to FJn16 are examples that satisfy the specified requirements of the present invention, and good results are obtained in terms of wear resistance, corrosion resistance to hydrochloric acid, sulfuric acid, and nitric acid, and bending properties. On the other hand, alloys N111-13 are comparative examples that lack any of the specified requirements] and have problems in some of the performances.

ml:c量が不足する為耐摩耗性が極めて悪い。ml: Due to insufficient amount of c, wear resistance is extremely poor.

N12 : C量が多過ぎる為耐食性が悪く且つ靭性性
(最大たわみ量)も低い。
N12: Because the amount of C is too large, corrosion resistance is poor and toughness (maximum deflection) is also low.

Nn3:Si量が多過ぎる為抗折特性が低い。Nn3: Since the amount of Si is too large, the bending properties are low.

k4 : B量が不足する為耐食性、耐摩耗性共に低い
k4: Both corrosion resistance and wear resistance are low due to insufficient B amount.

m5:B量が多過ぎる為靭性が劣悪である。m5: Toughness is poor because the amount of B is too large.

11&16:Ni量が不足する為耐食性が悪く靭性もや
や乏しい。
11 & 16: Due to insufficient Ni content, corrosion resistance is poor and toughness is also somewhat poor.

Nn7:Ni量が多過ぎる為耐摩耗性が悪く、しかも耐
硝酸腐食性が劣悪である。
Nn7: Because the amount of Ni is too large, the wear resistance is poor, and the nitric acid corrosion resistance is also poor.

111I18:cr量が不足する為耐食性、耐摩耗性共
に劣悪である。
111I18: Due to insufficient cr content, both corrosion resistance and wear resistance are poor.

N11L9:cr量が多過ぎる為靭性が低い。N11L9: Toughness is low because the amount of Cr is too large.

’Nll0:W量が不足する為耐食性、耐摩耗性共に悪
い。
'Nll0: Both corrosion resistance and wear resistance are poor due to insufficient W amount.

FkLilS W量が多過ぎる為靭性が極めて悪い。FkLilS Because the amount of W is too large, the toughness is extremely poor.

Na12:Cu量が不足する為、特に耐塩酸腐食性が非
常に悪い。
Since the amount of Na12:Cu is insufficient, the hydrochloric acid corrosion resistance is particularly poor.

N113:Cu量が多過ぎる為靭性が低い。N113: Toughness is low because the amount of Cu is too large.

実施例2 C: 1.02tstsi:1.66ts、B:1−7
91*Ni:13.8%−Cr:2s、l*tw:11
−9%* Cu:0.99チ、残部COよシなる合金1
00kgを真空溶解炉で溶製し、1400℃で鋳型に鋳
込んで粉末製造用のメルティングストックとした。これ
を再び真空溶解炉で溶解し、Arガスアトマイズ装置を
用いて微細な合金粉末とした。
Example 2 C: 1.02tstsi: 1.66ts, B: 1-7
91*Ni:13.8%-Cr:2s, l*tw:11
-9%* Cu: 0.99% Alloy 1 with the balance being CO
00 kg was melted in a vacuum melting furnace and cast into a mold at 1400°C to obtain melting stock for powder production. This was melted again in a vacuum melting furnace and made into a fine alloy powder using an Ar gas atomizer.

この粉末を100メツシユ(147μm)以下に分級し
、第1図に示した様なパックメタル(S0M440)と
カプセル(軟鋼:2mmt)(寸法は第1図に示した通
シ)の間に充填し、300℃に加熱しなから10 To
rrで6時間真空脱気し、内部のガスを完全に除去した
後カプセルを真空密封した。
This powder was classified into 100 meshes (147 μm) or less and filled between a pack metal (S0M440) and a capsule (mild steel: 2 mmt) as shown in Figure 1 (dimensions are through hole as shown in Figure 1). , 10 To without heating to 300℃
After vacuum degassing at rr for 6 hours to completely remove the internal gas, the capsule was vacuum-sealed.

これを%0℃、1000気圧、3時間の条件でHIP成
形したところ、合金粉末は100%の密度に固まシ、バ
ックメタルに完全に拡散接合した。この内面をホーニン
グ仕上げに付してカプセルを除去し、また外径を機械加
工仕上げすることによシ、耐食性及び耐摩耗性並びに靭
性の何れにおいても優秀なプラスチック成形用の複合シ
リンダが得られた。
When this was HIP-formed under the conditions of 0°C, 1000 atm, and 3 hours, the alloy powder solidified to a density of 100% and was completely diffusion bonded to the back metal. By honing the inner surface to remove the capsule and machining the outer diameter, a composite cylinder for plastic molding with excellent corrosion resistance, wear resistance, and toughness was obtained. .

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されておシ、プラスチック材の
射出、押出成形における苛酷な条件にも十分に耐える耐
食性、耐摩耗性及び靭性を備えた複合シリンダを提供し
得゛ることになった。
The present invention is configured as described above and can provide a composite cylinder having corrosion resistance, wear resistance, and toughness sufficient to withstand severe conditions in injection molding and extrusion molding of plastic materials. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で採用した熱間静水圧加圧法による内面
ライニング法を示す概略縦断面説明図である。 P・・・合金粉末 1・・・パックメタル(シリンダ本体)2・・・カプセ
FIG. 1 is a schematic vertical cross-sectional explanatory view showing an inner lining method using a hot isostatic pressing method employed in the example. P... Alloy powder 1... Pack metal (cylinder body) 2... Capsule

Claims (1)

【特許請求の範囲】[Claims] (1)内周面を下記化学成分からなる耐食・耐摩耗性合
金で形成してなることを特徴とするプラスチック成形装
置用シリンダ。 C:0.5〜1.5%(重量%:以下同じ) Si:1.0〜2.0% B:0.5〜2.5% Ni:10〜20% Cr:20〜30% W:10〜20% Cu:0.5〜2.0% 残部:Co及び不可避不純物
(1) A cylinder for plastic molding equipment, characterized in that the inner peripheral surface is formed of a corrosion-resistant and wear-resistant alloy consisting of the following chemical components. C: 0.5-1.5% (weight %: same below) Si: 1.0-2.0% B: 0.5-2.5% Ni: 10-20% Cr: 20-30% W :10~20% Cu:0.5~2.0% Balance: Co and inevitable impurities
JP59264137A 1984-12-13 1984-12-13 Cylinder for plastic molding apparatus Granted JPS61143547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59264137A JPS61143547A (en) 1984-12-13 1984-12-13 Cylinder for plastic molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264137A JPS61143547A (en) 1984-12-13 1984-12-13 Cylinder for plastic molding apparatus

Publications (2)

Publication Number Publication Date
JPS61143547A true JPS61143547A (en) 1986-07-01
JPH0124620B2 JPH0124620B2 (en) 1989-05-12

Family

ID=17398970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264137A Granted JPS61143547A (en) 1984-12-13 1984-12-13 Cylinder for plastic molding apparatus

Country Status (1)

Country Link
JP (1) JPS61143547A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142705A (en) * 1985-12-18 1987-06-26 Kobe Steel Ltd Production of cylinder for plastic molding device
JPS6394813A (en) * 1986-10-09 1988-04-25 Kanegafuchi Chem Ind Co Ltd Magnetic field orientation extruder
EP0410425A2 (en) * 1989-07-25 1991-01-30 Mitsubishi Gas Chemical Company, Inc. Process for producing low-dust-level polycarbonate molded article
EP0652101A1 (en) * 1993-11-04 1995-05-10 Xaloy, Inc. Injection molding and extrusion barrels and alloy composition therefor
US6887322B2 (en) 2001-04-09 2005-05-03 Wexco Corporation High pressure cylinders including backing steel with tool steel lining
US7332228B2 (en) 2003-02-25 2008-02-19 A.L.M.T. Corporation Coated refractory metal plate having oxide surface layer, and setter which uses the same and which is used in sintering

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142705A (en) * 1985-12-18 1987-06-26 Kobe Steel Ltd Production of cylinder for plastic molding device
JPH0336881B2 (en) * 1985-12-18 1991-06-03 Kobe Steel Ltd
JPS6394813A (en) * 1986-10-09 1988-04-25 Kanegafuchi Chem Ind Co Ltd Magnetic field orientation extruder
EP0410425A2 (en) * 1989-07-25 1991-01-30 Mitsubishi Gas Chemical Company, Inc. Process for producing low-dust-level polycarbonate molded article
EP0652101A1 (en) * 1993-11-04 1995-05-10 Xaloy, Inc. Injection molding and extrusion barrels and alloy composition therefor
US5565277A (en) * 1993-11-04 1996-10-15 Xaloy, Inc. Injection molding and extrusion barrels and alloy compositions thereof
US6887322B2 (en) 2001-04-09 2005-05-03 Wexco Corporation High pressure cylinders including backing steel with tool steel lining
US7332228B2 (en) 2003-02-25 2008-02-19 A.L.M.T. Corporation Coated refractory metal plate having oxide surface layer, and setter which uses the same and which is used in sintering

Also Published As

Publication number Publication date
JPH0124620B2 (en) 1989-05-12

Similar Documents

Publication Publication Date Title
US4029000A (en) Injection pump for injecting molten metal
US4276096A (en) Method for producing hard metal bodies of increased wear resistance
JPH0587581B2 (en)
JPS61143547A (en) Cylinder for plastic molding apparatus
CN108620763B (en) A kind of high boron flux-cored wire of self-shield open arc
JP2800076B2 (en) Corrosion and wear resistant cobalt based alloy
JP3301441B2 (en) Composite cylinder for high-temperature and high-pressure molding
JPS62273820A (en) Composite cylinder for plastic molding apparatus
JPS6326295A (en) Corrision-and wear-resistant alloy and composite cylinder thereof
JPH11199906A (en) Manufacture of cylinder for plastic forming machine and cylinder therefor
JPH0336881B2 (en)
JPS6352747A (en) Mold for billet
JPH0569893B2 (en)
JP3301442B2 (en) Composite cylinder for high-temperature and high-pressure molding
JPH02173224A (en) Manufacture of sintered aluminum bronze alloy
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JP2995597B2 (en) Corrosion- and wear-resistant Ni-based alloy for plastic injection and extrusion machines
JPH05320796A (en) Corrosion resisting and wear resistant alloy
JPH0338328B2 (en)
JP3245338B2 (en) Hot chamber die casting machine for low aluminum zinc base alloy
JPH034601B2 (en)
KR101759825B1 (en) Preparing method of high-speed steel for wear resistance
JPS6152338A (en) Wear and corrosion resistant alloy
JP3055958B2 (en) Sintered member excellent in wear resistance and method for producing the same
JPH04185415A (en) Composite cylinder with lining layer composed of corrosion-resistant and wear-resistant alloy