JPS63255813A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPS63255813A
JPS63255813A JP9055987A JP9055987A JPS63255813A JP S63255813 A JPS63255813 A JP S63255813A JP 9055987 A JP9055987 A JP 9055987A JP 9055987 A JP9055987 A JP 9055987A JP S63255813 A JPS63255813 A JP S63255813A
Authority
JP
Japan
Prior art keywords
film
segregation
magnetic film
sputtering
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9055987A
Other languages
Japanese (ja)
Other versions
JP2508703B2 (en
Inventor
Haruko Masuya
春子 桝屋
Haruo Awano
晴夫 粟野
Sachiko Fukushima
福島 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9055987A priority Critical patent/JP2508703B2/en
Publication of JPS63255813A publication Critical patent/JPS63255813A/en
Application granted granted Critical
Publication of JP2508703B2 publication Critical patent/JP2508703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristics in a perpendicular direction by disposing segregation regions of Cr in the direction along the plane of a Co-Cr base magnetic film to the state in which the average disposition periods thereof are 30Angstrom -300Angstrom . CONSTITUTION:The Co-Cr base magnetic film is so constituted that the average distances of the respective disposition intervals of the Cr segregation regions 51 adjacent to each other in the equal directions with respect to the entire direction along the plane of said film, i.e., the average disposition periods of the segregation regions are in a 30Angstrom -300Angstrom region. The distribution mode of the Cr segregation regions 51 can be easily and surely controlled by addition of carbon C and selection of the amt. of the carbon to be added together with sputtering or vapor deposition conditions at the time of preparing the above- mentioned magnetic film. The perpendicular magnetic characteristics, more particularly perpendicular coercive force and saturation magnetization are thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、膜面に対し垂直方向の磁化によって情報記録
がなされる垂直磁気記録媒体、特にCo −Cr系磁性
膜による例えばオーディオ用、ビデオ用、コンピュータ
用の垂直磁気記録媒体に関わる。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to perpendicular magnetic recording media in which information is recorded by magnetization in a direction perpendicular to the film surface, particularly for use in audio, video, etc., using a Co-Cr magnetic film. Related to perpendicular magnetic recording media for computers.

〔発明の概要〕[Summary of the invention]

本発明は、膜面に沿う方向に関してのCrの偏析領域の
配置状態が、その平均配置周期が30Å〜300人をも
って形成されたGo−Cr系磁性膜を有して成り、垂直
方向の磁気特性、特に保磁力HIJの向上をはかる。
The present invention has a Go-Cr-based magnetic film in which the arrangement state of Cr segregation regions in the direction along the film surface has an average arrangement period of 30 Å to 300, and has magnetic properties in the perpendicular direction. In particular, the coercive force HIJ is improved.

〔従来の技術〕[Conventional technology]

Go−Cr系磁性膜による磁気記録媒体は、蒸着もしく
はスパッタリングによって6万晶形の柱状結晶粒が膜面
に対し垂直方向に配向して形成することができることか
ら垂直磁気特性にすぐれており、垂直磁気記録媒体とし
て脚光を浴びるに至ってし)る。
A magnetic recording medium using a Go-Cr magnetic film has excellent perpendicular magnetic properties because it can be formed by vapor deposition or sputtering with 60,000 crystal columnar crystal grains oriented perpendicularly to the film surface. It has come into the spotlight as a recording medium).

そして、このCo−Cr系垂直磁気記録媒体において、
より高い磁気特性、例えばより高し)垂直方向保磁力)
1cAを得るための研究開発がなお進められているとこ
ろである。しかしながら、このCo−Cr系磁性膜にお
ける磁気特性が、何に起因して変化するものであるかは
、未だ充分解明されていないところであり、一般には、
h、c、p、相のC軸配向、或いは柱状構造に関係する
と考えられてはいるものの、これだけでは充分に特性の
説明をなし得ない。
In this Co-Cr-based perpendicular magnetic recording medium,
Higher magnetic properties, e.g. higher vertical coercivity)
Research and development to obtain 1cA is still underway. However, it is still not fully understood what causes the magnetic properties of this Co-Cr magnetic film to change, and in general,
Although it is believed that this is related to the C-axis orientation of the h, c, p, phase, or the columnar structure, this alone cannot fully explain the characteristics.

近年、Crの偏析が垂直保磁力HCIや、実効的垂直磁
気異方性定数Hkeffを向上させるための重要な要因
であるとして注目されて来てはいるものの、このCrの
偏析は、通常Co−Cr柱状結晶の表面、すなわち結晶
磁界での偏析である0例えば特公昭61−53770号
公報に開示された垂直磁気記録媒体においても結晶粒表
面にCrを偏析させるものであって、この場合耐蝕性の
向上をはかっているものである。
In recent years, Cr segregation has attracted attention as an important factor for improving the perpendicular coercive force HCI and the effective perpendicular magnetic anisotropy constant Hkeff, but this Cr segregation is usually For example, in the perpendicular magnetic recording medium disclosed in Japanese Patent Publication No. 61-53770, Cr is segregated on the surface of the crystal grains, and in this case, corrosion resistance is The aim is to improve the

しかしながら、このように結晶粒の表面、すなわち結晶
粒界にCrの偏析を行わせる場合、垂直磁気特性の向上
がはかられるとはいうものの、未だ実際に望まれる程度
に高い磁気特性は得られていない。
However, although the perpendicular magnetic properties are improved when Cr is segregated on the surface of the crystal grains, that is, on the grain boundaries, it is still not possible to obtain magnetic properties as high as actually desired. Not yet.

一方、例えば特開昭59−129934号公報には、C
On the other hand, for example, in Japanese Patent Application Laid-open No. 59-129934, C.
.

−Cr系垂直磁化膜にカーボンを0.5%以上含有させ
てC軸配向を高めることの開示がある。
There is a disclosure that the C-axis orientation is enhanced by containing 0.5% or more of carbon in a -Cr-based perpendicularly magnetized film.

また、特開昭60−246016号公開公報には、Co
 −Cr系磁性膜の耐久性を向上する目的をもってカー
ボンCを0.01〜1.0重量%(0,05〜4原子%
)添加したCo −Cr系合金薄膜によって垂直磁気記
録膜を形成することの開示がある。しかしながら、この
場合、飽和磁化が減少するという現象が生じている。
Also, in Japanese Patent Application Laid-open No. 60-246016, Co
- Carbon C is added in an amount of 0.01 to 1.0% by weight (0.05 to 4 atomic%) for the purpose of improving the durability of the Cr-based magnetic film.
) There is a disclosure of forming a perpendicular magnetic recording film using a Co--Cr based alloy thin film added. However, in this case, a phenomenon occurs in which the saturation magnetization decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、Co−Cr系磁性膜を有する垂直磁気記録媒
体において、垂直磁気特性、特に垂直保磁力UC工の問
題、飽和磁化Msの問題の解決をはかる。
The present invention aims to solve the perpendicular magnetic properties, particularly the problems of perpendicular coercive force UC and saturation magnetization Ms, in a perpendicular magnetic recording medium having a Co--Cr magnetic film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、結晶粒界、すなわち結晶粒表面のみにおける
Crを多く含むCrの偏析領域の存在のみならず、好ま
しくは結晶粒内でのCrの偏析領域をも含めてその偏析
領域の特に膜面方向に関する間隔が垂直磁気特性、特に
垂直方向の保磁力Hc工に大きな影響を与えることの究
明に基づいてなされたものである。
The present invention is directed not only to the existence of Cr segregation regions containing a large amount of Cr at grain boundaries, that is, only on the grain surfaces, but also preferably to the presence of Cr segregation regions within the grains, particularly on film surfaces of the Cr segregation regions. This was done based on the investigation that the spacing in the direction has a great influence on the perpendicular magnetic properties, especially the coercive force Hc in the perpendicular direction.

すなわち、本発明においては、Co−Cr系磁性膜を有
する垂直磁気記録媒体を構成するものであるが、特にそ
のGo−Cr系磁性膜の膜面に沿う全方向に関してすな
わち等方的に隣り合うCr偏析領域の各配置間隔の平均
的距離つまり偏析領域の平均配置周期が、30Å〜30
0人の範囲となる構成とする。
That is, in the present invention, a perpendicular magnetic recording medium having a Co-Cr magnetic film is constructed, and in particular, in all directions along the film surface of the Go-Cr magnetic film, that is, isotropically adjacent The average distance between each arrangement interval of the Cr segregation regions, that is, the average arrangement period of the segregation regions is 30 Å to 30
The configuration will be within the range of 0 people.

つまり、Co−Cr磁性膜の、その膜面方向についての
断面におけるCo−Cr結晶粒表面に生じる或いは(及
び)結晶粒内に生じる膜面に沿う断面でのCrを多く含
むCr偏析領域が、同−結晶粒内或いは(及び)他の結
晶粒を含んで隣合うCr偏析領域との配置間隔の等方的
平均が30Å〜300人の範囲にあるように選定する。
In other words, the Cr-rich Cr-rich Cr-segregation region that occurs on the Co--Cr crystal grain surface and/or within the crystal grain in the cross-section along the film surface of the Co--Cr magnetic film is - Selection is made so that the isotropic average spacing between adjacent Cr segregation regions within the same crystal grain or (and) including other crystal grains is in the range of 30 Å to 300 Å.

尚、このようなCo−Cr膜の偏析構造、すなわちCr
偏析領域の分布態様は、その磁性膜の作製に当たっての
スパッタリング、もくしは蒸着条件と共に、カーボンC
の添加とその添加量の選定によって容易、確実に制御で
きるものであることが究明され、実際には、これら条件
の設定によって平均偏析周期を30Å〜300人に選定
する0例えば、スパッタリングによって目的とするCo
−Cr磁性膜を形成する場合にはCの添加量は、Co−
Cr1i全体の組成において0.1〜0.3原子%の範
囲とし、磁性膜作製のスパッタリングはスパッタリング
処理槽内の初期到達真空度Pi、すなわち、スパッタリ
ング処理槽内所定のアルゴン圧に設定する以前の槽内の
真空度をI X 10−7〜5 X 10−” Tor
rとする。また、その後に槽内にアルゴンArを供給し
て保持するAr圧PA工を3〜15mTorrとする。
It should be noted that the segregation structure of such a Co-Cr film, that is, Cr
The distribution mode of the segregation region is determined by the sputtering or evaporation conditions used to produce the magnetic film, as well as the carbon C
It has been found that this can be easily and reliably controlled by adding and selecting the amount of addition.Actually, by setting these conditions, the average segregation period can be selected from 30 Å to 300 Å.For example, sputtering can be used to Co
When forming a -Cr magnetic film, the amount of C added is Co-
The overall composition of Cr1i is in the range of 0.1 to 0.3 at. The degree of vacuum in the tank is I x 10-7~5 x 10-” Tor
Let it be r. Further, the Ar pressure PA process for supplying and maintaining argon into the tank after that is set to 3 to 15 mTorr.

更にスパッタリング時の基体温度Ts、すなわち磁性膜
を形成する被スパツタリング基体の温度Tsを120℃
〜180℃好ましくは140℃〜 160℃とする。
Furthermore, the substrate temperature Ts during sputtering, that is, the temperature Ts of the substrate to be sputtered on which the magnetic film is formed, is set to 120°C.
-180°C, preferably 140°C - 160°C.

〔作用〕[Effect]

上述したように、Co−Cr磁性膜において、特にその
膜面方向に関するCrの偏析領域の平均偏析周期を、3
0Å〜300人に選定するとき、第1図にその偏析領域
の平均配置周期と磁気特性、特に垂直方向の保磁力Oc
tと、飽和磁化Msの測定結果を示すように、 Hcよ
と1 kOeを得ることができると共にMsの増加がは
かられる。第1図において、曲線+11がそのttc↓
の測定結果を示すものであり、曲線(2)がCo−Cr
磁性膜の飽和磁化Msを、このCo −Cr磁性膜を構
成する磁性材全体と同組成の合金バルクの飽和磁化1’
lssに対する比MS/ MSBとして測定した結果を
示したものである。Crの偏析領域の平均配置周期が3
00人を越えるとHCIが1 koeより可成り小さく
なって垂直磁気記録媒体としての特徴の効果を発揮し得
ないが、平均配置周期が小さくなるほど、HCIとMs
の増加がはかられている。しかしながら、この周期が3
0人未満となると、超常磁性となることが原因と推定さ
るHC上の急激な低下が生じてくるという不都合がある
As mentioned above, in a Co-Cr magnetic film, the average segregation period of the Cr segregation region, especially in the direction of the film surface, is set to 3.
When selecting 0 to 300 people, Figure 1 shows the average arrangement period and magnetic properties of the segregation region, especially the perpendicular coercive force Oc.
As shown in the measurement results of t and saturation magnetization Ms, 1 kOe can be obtained with Hc and Ms can be increased. In Figure 1, the curve +11 is the ttc↓
The curve (2) shows the measurement results for Co-Cr.
The saturation magnetization Ms of the magnetic film is expressed as the saturation magnetization 1' of the alloy bulk having the same composition as the entire magnetic material constituting this Co-Cr magnetic film.
The results are shown as the ratio MS/MSB to lss. The average arrangement period of the Cr segregation region is 3
If the number exceeds 00, the HCI becomes considerably smaller than 1 koe, and the characteristics of a perpendicular magnetic recording medium cannot be exhibited. However, as the average arrangement period becomes smaller, the HCI and Ms
is expected to increase. However, this period is 3
If the number is less than 0, there will be a disadvantage that there will be a sudden drop in HC, which is presumed to be caused by superparamagnetism.

因みに前述した特開昭60−246016号公報に開示
された磁気記録媒体では、カーボンCを0.01〜1.
0重量%(0,05〜4原子%)添加するものではある
が、この場合、飽和磁化Msの増加がみられていないも
のであり、このことからもこの公開公報に開示の磁気記
録媒体ではCの添加にもかかわらず、本発明の構成が生
じていないものであること、つまりCの添加によってC
r偏析の促進がなされず、Cr偏析領域の平均配置周期
が30Å〜300人になっていないことがわかる。
Incidentally, in the magnetic recording medium disclosed in the above-mentioned Japanese Patent Application Laid-open No. 60-246016, carbon C is contained in an amount of 0.01 to 1.
0% by weight (0.05 to 4 atomic%) is added, but in this case no increase in saturation magnetization Ms is observed, and for this reason, the magnetic recording medium disclosed in this publication does not. Despite the addition of C, the structure of the present invention does not occur, that is, the addition of C
It can be seen that r segregation is not promoted and the average arrangement period of Cr segregation regions is not 30 Å to 300 Å.

更に、本発明による垂直磁気記録媒体を得るに当たって
スパッタ条件の選定と共にそのCの添加量をCo −C
r膜全全体しての組成において、0.1〜0.3原子%
に選定すれば良いものであるが、これは0.1原子%未
満ではCr偏析領域の配置周期が大きくなり過ぎ、0.
3原子%を超えると磁気特性の劣化が生じてくることを
認めたことに因る。第2図はそのカーボンCの添加量と
Msとの関係の測定結果を示したものである。
Furthermore, in obtaining the perpendicular magnetic recording medium according to the present invention, sputtering conditions are selected and the amount of C added is changed to Co-C.
0.1 to 0.3 atomic% in the overall composition of the r film
However, if it is less than 0.1 atomic %, the arrangement period of the Cr segregation region becomes too large;
This is because it was recognized that magnetic properties deteriorate when the content exceeds 3 atomic %. FIG. 2 shows the measurement results of the relationship between the amount of carbon C added and Ms.

また、Co−Cr磁性膜のスパッタ条件において、初期
到達真空度PiをI X 10” 〜5 X 1O−7
Torrとするのは、この値がこれより大きいと雰囲気
中の不純物混入が大となって最終的に得られたCo−C
r磁性膜の特性にばらつきや劣化を生じてくるものであ
ることを認めたことに因る。また、スパッタリング処理
槽内のAr圧を3〜15mTorrとするのは、3 s
+Torr未満では安定な放電が得られにくいなどの不
都合が生じ、15mTorrを超えると、Crの偏析が
生じにクク、偏析周期が大となり過ぎること、及びC軸
配向の低下、更に膜全体が多孔質になることを認めたこ
とに因る。更にまた、スパッタリングに際しての基体温
度Tsを120°C〜180℃、好ましくは140℃〜
160℃とするのは、基体温度Tsが低過ぎるとCrの
結晶粒子内での偏析が生じにくくなり、余り高くなると
表面荒れが生じてくることを認めたことに因る。
In addition, under the sputtering conditions for the Co-Cr magnetic film, the initial vacuum degree Pi is I x 10'' to 5 x 1O-7
Torr is used because if this value is larger than this, the amount of impurities in the atmosphere will increase and the final Co-C
This is due to the fact that it has been recognized that variations and deterioration occur in the characteristics of r-magnetic films. In addition, the Ar pressure in the sputtering treatment tank is set to 3 to 15 mTorr for 3 s.
If it is less than + Torr, there will be problems such as difficulty in obtaining stable discharge, and if it exceeds 15 mTorr, Cr segregation will occur, the segregation period will become too large, the C-axis orientation will decrease, and the entire film will become porous. This is due to the fact that it has been acknowledged that Furthermore, the substrate temperature Ts during sputtering is 120°C to 180°C, preferably 140°C to
The reason why the temperature is set at 160° C. is based on the recognition that if the substrate temperature Ts is too low, segregation of Cr within the crystal grains becomes difficult to occur, and if it is too high, surface roughness occurs.

〔実施例〕〔Example〕

板状、シート状、或いはテープ状等の磁気記録媒体を構
成する非磁性基体、例えばポリアミドフィルム、ポリイ
ミドフィルム等の上にスパッタリング或いは蒸着によっ
てCrが12〜29原子%含むC。
Carbon containing 12 to 29 atom % of Cr by sputtering or vapor deposition onto a nonmagnetic substrate constituting a magnetic recording medium such as a plate, sheet, or tape, such as a polyamide film or a polyimide film.

−Cr磁性膜を作製する。-Produce a Cr magnetic film.

実施例1 厚さ12μmのポリイミドフィルム基体上に、スパッタ
リングによってCo−Cr磁性膜を被着形成した。この
スパッタリングは、第3図にその路線的構成図を示すよ
うに、スパッタリング処理槽(1)内に、陽極(■2)
と、陰極すなわちターゲラ)(13)とが配置され、陽
極(12)側に被スパツタリング基体(14)が配置さ
れる。この基体(14)の配置部には、この基体(14
)を所要の温度に加熱する加熱手段(図示せず)が配置
される。槽(11には、排気口(15)が設けられ、こ
れが排気手段、すなわち真空ポンプに開閉弁(16)を
介して連結される。(17)はアルゴンの供給口で、開
閉弁(18)を介してアルゴン供給源に連結される。(
20)は例えば周波数13.56MHzの高周波電源で
両電極(12)及び(13)間に高周波を供給する。こ
の構成において、ターゲット(13)とし、Cr22重
量%、残部CoによるCo −Cr合金を用いて基体(
14)上に、C0−Cr磁性膜をスパッタリングによっ
て作製した。
Example 1 A Co--Cr magnetic film was formed by sputtering on a polyimide film substrate having a thickness of 12 μm. This sputtering is carried out by placing an anode (■2) in the sputtering treatment tank (1), as shown in the schematic diagram in Figure 3.
and a cathode (target layer) (13), and a substrate to be sputtered (14) is placed on the anode (12) side. This base body (14) is placed in the placement part of this base body (14).
) heating means (not shown) are arranged to heat the material to the required temperature. The tank (11) is provided with an exhaust port (15), which is connected to an exhaust means, that is, a vacuum pump, via an on-off valve (16). (17) is an argon supply port, and an on-off valve (18) connected to an argon source via
20) is a high frequency power supply with a frequency of 13.56 MHz, for example, which supplies high frequency between the electrodes (12) and (13). In this configuration, the target (13) is a Co-Cr alloy consisting of 22% by weight Cr and the balance Co.
14) A C0-Cr magnetic film was formed on top by sputtering.

この場合、メインスパッタリング時の高周波パワーは1
50Wとし、基体(14)とターゲット(13)との間
の距離dを6cmとし、初期到達真空度Piを2〜3 
X 10” Torrとし、メインスパッタリング中の
Ar圧PA?を4.1wTorrとし、基体温度Tsを
140℃及び160℃にそれぞれ選定してそれぞれ厚さ
約0.6μ僻のCo −Cr系磁性膜による試料A及び
Bを得た。ここに基体温度Tsはメインスパッタリング
の放電直後に測定した値である。これら膜中のCr量は
EDX  (エネルギー分散型X線分光値W)によって
測定したところ23原子%であった。
In this case, the high frequency power during main sputtering is 1
50 W, the distance d between the base (14) and the target (13) was 6 cm, and the initial vacuum degree Pi was 2 to 3.
X 10" Torr, the Ar pressure PA during main sputtering was 4.1 wTorr, and the substrate temperature Ts was selected to be 140°C and 160°C, respectively. Samples A and B were obtained.The substrate temperature Ts here is the value measured immediately after the discharge of main sputtering.The amount of Cr in these films was measured by EDX (energy dispersive X-ray spectroscopy W) and was 23 atoms. %Met.

比較例1 上記の実施例1と同様の方法によるがGo−Cr膜のス
パッタリングにおける基体温度Tsを90℃として磁性
膜の作製を行って試料Cを得た。
Comparative Example 1 Sample C was obtained by fabricating a magnetic film in the same manner as in Example 1 above, but with the substrate temperature Ts of 90° C. during sputtering of the Go-Cr film.

実施例2 実施例1と同様の方法によるも、スパッタリング時の基
体温度Tsを140℃とし、初期到達真空度Piを1.
5〜3.OX 1O−7Torrとし、メインスパッタ
リング時の高周波パワー 150Wとした。そして、こ
の条件下で、メインスパッタリング時のAr圧p^rを
それぞれ10mTorr及び4.lo+Torrとして
Go −Cr磁性膜の作製を行いそれぞれ試料り及びE
を得た。
Example 2 The same method as in Example 1 was used, but the substrate temperature Ts during sputtering was 140° C., and the initial vacuum degree Pi was 1.
5-3. OX was set at 1O-7 Torr, and the high frequency power during main sputtering was set at 150W. Under these conditions, the Ar pressure p^r during main sputtering was set to 10 mTorr and 4.0 mTorr, respectively. A Go-Cr magnetic film was prepared at lo+Torr, and samples were prepared and E
I got it.

比較例2 実施例2と同様の方法によるが、この場合Ar圧PA工
を30mTorrとして磁性膜の形成を行って試料Fを
得た。
Comparative Example 2 Sample F was obtained by forming a magnetic film in the same manner as in Example 2, except that the Ar pressure PA process was set at 30 mTorr.

実施例3 実施例1と同様の方法によって基体(14)上に、Co
−Cr系磁性膜の作製を行って試料Gを得た。この場合
基体温度Ts= 140℃及び120℃とし、ターゲッ
ト(13)としては、カーボンCのペレットを1及び3
面積%をもってCo−Cr系合金上に配置した。
Example 3 Co was deposited on the substrate (14) by the same method as in Example 1.
Sample G was obtained by fabricating a -Cr-based magnetic film. In this case, the substrate temperature Ts = 140°C and 120°C, and the target (13) is carbon C pellets 1 and 3.
It was arranged on the Co-Cr alloy with area%.

各実施例及び比較例によって得た各試料A−1の磁性膜
についてのHCAをVSM法(試料振動型磁力計)によ
って測定した結果と、EDX法(エネルギー分散型X線
分光)によって測定したCr量と、51MS法(2次イ
オン質量分析)によって測定したCの添加量と、更にC
r偏析領域の平均配置周期Fとを、スパッタリングの諸
条件と共に第4図の表に示す。また、各試料A−1にお
いて、その基体(14)を溶解除去し、アトムミリング
によって薄膜化し、王水の希釈液で5〜10分間いわゆ
るCo1Jソチ(rich)部をエツチングしてその偏
析構造をTE?I  (透過型電子顕微鏡)で観察した
。尚、この観察方法については、ジャパニーズ・ジャー
ナル・オブ・アプライド・フィジクスVOL25. N
o、8゜8月、  1986. pp、 L668−L
670に記録されているところである。そして、この観
察方法によって観察された各試料A−1のCr偏析の態
様を第5図A〜■に模式的に示す。第5図において斜線
を付して示した部分がCrの偏析領域(51)であり、
(52)は特に他部に比し、Coが富んだCoリッチ部
である。
The HCA of the magnetic film of each sample A-1 obtained in each example and comparative example was measured by the VSM method (sample vibrating magnetometer), and the Cr measured by the EDX method (energy dispersive X-ray spectroscopy). amount, the added amount of C measured by the 51MS method (secondary ion mass spectrometry), and the amount of C added.
The average arrangement period F of the r-segregation regions is shown in the table of FIG. 4 together with the sputtering conditions. In each sample A-1, the substrate (14) was dissolved and removed, made into a thin film by atom milling, and the so-called Co1J rich part was etched with a diluted aqua regia solution for 5 to 10 minutes to clarify its segregation structure. TE? I (transmission electron microscope). This observation method is described in Japanese Journal of Applied Physics VOL25. N
o, 8° August, 1986. pp, L668-L
670 is recorded here. The mode of Cr segregation in each sample A-1 observed by this observation method is schematically shown in FIGS. The shaded area in FIG. 5 is the Cr segregation region (51),
(52) is a Co-rich part that is particularly rich in Co compared to other parts.

また、第6図A〜■はそれぞれ試料A〜■の各試料の各
膜表面のTEM 10万倍写真図である。
Moreover, FIGS. 6A to 6 are 100,000x TEM photographs of the surfaces of the respective films of samples A to 6, respectively.

第7図は試料Bの同様の膜断面の写真図でこれによれば
柱状粒子が膜と垂直方向に良く配列していることが分か
る。
FIG. 7 is a photographic diagram of a similar cross-section of the membrane of sample B, and it can be seen that the columnar particles are well arranged in the direction perpendicular to the membrane.

尚、上述した例ではスパッタリングによってC0−Cr
系磁性膜の作製を行った場合であるが、成る場合は真空
蒸着法によってその形成を行うことができる。
In addition, in the above example, C0-Cr is
This is a case where a system magnetic film is produced, but if it is, it can be formed by vacuum evaporation method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、例えば試料A及びBを試料Cと比較す
ることによって明らかなように、Cr偏析領域の平均配
置周波数が、600人のものに比し、ocLが約50%
以上向上し、試料り及びEが試料Fに比し約45%向上
し、更にCoリッチ部が網目構造の試料Gのものは、C
r偏析部が中心部に存在する試料Fに比しそのfiat
は76%以上向上している。
According to the present invention, for example, as is clear by comparing samples A and B with sample C, the average arrangement frequency of the Cr segregation region is approximately 50% ocL compared to that of 600 people.
The sample G has improved by about 45% compared to sample F, and the Co-rich portion has a network structure.
Compared to sample F in which the r-segregation part is present in the center, its fiat
has improved by more than 76%.

このように本発明によれば、Cr偏析領域の平均配置周
波数の特定によって垂直磁気特性を効果的に向上させる
ことができたものである。
As described above, according to the present invention, the perpendicular magnetic properties can be effectively improved by specifying the average arrangement frequency of the Cr segregation region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr偏析領域の平均配置周期と磁気特性との関
係を測定した結果を示す図、第2図はカーボン添加量に
対する飽和磁化MSの測定結果を示す図、第3図は本発
明による垂直磁気記録媒体を得るスパッタリング装置の
構成図、第4図は本発明の実施例及び比較例の各試料の
特性測定結果等を示す表口、第5図A−1はそれぞれ各
試料のCr偏析状態を示す模式図、第6図A−1はそれ
ぞれ各試料の膜表面の顕微鏡写真図、第7図は1試料の
膜断面の顕微鏡写真図である。 (11)はスパッタリング処理、(14)は被スパツタ
リング基体である。
Figure 1 is a diagram showing the results of measuring the relationship between the average arrangement period of Cr segregation regions and magnetic properties, Figure 2 is a diagram showing the measurement results of saturation magnetization MS with respect to the amount of carbon added, and Figure 3 is a diagram according to the present invention. A block diagram of a sputtering apparatus for producing a perpendicular magnetic recording medium, FIG. 4 is a front page showing the measurement results of the characteristics of each sample of Examples and Comparative Examples of the present invention, and FIG. 5 A-1 shows the Cr segregation of each sample. A schematic diagram showing the state, FIG. 6 A-1 is a microscopic photograph of the membrane surface of each sample, and FIG. 7 is a microscopic photograph of the membrane cross section of one sample. (11) is a sputtering process, and (14) is a substrate to be sputtered.

Claims (1)

【特許請求の範囲】 Co−Cr系磁性膜を有し、 その膜面に沿う方向に関してのCrの偏析領域の平均配
置周期が30Å〜300Åとされたことを特徴とする垂
直磁気記録媒体。
[Scope of Claim] A perpendicular magnetic recording medium comprising a Co--Cr based magnetic film, characterized in that the average arrangement period of Cr segregation regions in the direction along the film surface is 30 Å to 300 Å.
JP9055987A 1987-04-13 1987-04-13 Perpendicular magnetic recording media Expired - Fee Related JP2508703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9055987A JP2508703B2 (en) 1987-04-13 1987-04-13 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9055987A JP2508703B2 (en) 1987-04-13 1987-04-13 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS63255813A true JPS63255813A (en) 1988-10-24
JP2508703B2 JP2508703B2 (en) 1996-06-19

Family

ID=14001771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9055987A Expired - Fee Related JP2508703B2 (en) 1987-04-13 1987-04-13 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JP2508703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352501A (en) * 1989-12-27 1994-10-04 Mitsubishi Kasei Corporation Longitudinal magnetic recording medium comprising a circumterentially textured disk substrate, chromium primer layer and a cobalt chromium magnetic alloy layer having a segregation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352501A (en) * 1989-12-27 1994-10-04 Mitsubishi Kasei Corporation Longitudinal magnetic recording medium comprising a circumterentially textured disk substrate, chromium primer layer and a cobalt chromium magnetic alloy layer having a segregation structure

Also Published As

Publication number Publication date
JP2508703B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JPH0773441A (en) Metallic thin-film type magnetic recording medium and its production
US9899050B2 (en) Multiple layer FePt structure
US20060280862A1 (en) Process for producing magnetic recording medium
JP2996442B2 (en) Magnetic thin film recording medium and method of manufacturing the same
JPS60157715A (en) Magnetic recording medium
JPH0533461B2 (en)
US5744256A (en) Magnetic recording medium and method of producing same
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
US4645690A (en) Method of manufacturing a magnetic media
JPS63255813A (en) Perpendicular magnetic recording medium
JPH0814889B2 (en) Perpendicular magnetic recording media
JP2710441B2 (en) Soft magnetic laminated film
JPS63106916A (en) Magnetic recording medium
JPH0817032A (en) Magnetic recording medium and its production
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JP2516064B2 (en) Magnetic recording medium and manufacturing method thereof
JPS61258331A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP2002133653A (en) Ru target material for magnetic recording medium and magnetic recording medium
JPS59198707A (en) Perpendicularly magnetic recording material and manufacture thereof
JPS61110328A (en) Vertical magnetic recording medium and its production
JPH10261520A (en) Magnetic recording medium and its manufacture
JPH0439905A (en) Magnetically soft alloy film
JPH04285153A (en) Multi-layer magnetic film and its formation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees