JPS63244562A - Battery - Google Patents

Battery

Info

Publication number
JPS63244562A
JPS63244562A JP62078496A JP7849687A JPS63244562A JP S63244562 A JPS63244562 A JP S63244562A JP 62078496 A JP62078496 A JP 62078496A JP 7849687 A JP7849687 A JP 7849687A JP S63244562 A JPS63244562 A JP S63244562A
Authority
JP
Japan
Prior art keywords
charge
battery
electrode
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078496A
Other languages
Japanese (ja)
Other versions
JP2617182B2 (en
Inventor
Motoo Mori
毛利 元男
Nobuhiro Yanagisawa
伸浩 柳沢
Yoshimitsu Tajima
善光 田島
Hideaki Tanaka
英明 田中
Takehito Mitachi
武仁 見立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62078496A priority Critical patent/JP2617182B2/en
Publication of JPS63244562A publication Critical patent/JPS63244562A/en
Application granted granted Critical
Publication of JP2617182B2 publication Critical patent/JP2617182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make it possible to use for a long time by doping an alkali metal or alkali earth metal in pyrolytic carbon serving as a negative power-generating element. CONSTITUTION:An electrode material deposited from vapor phase by thermal decomposition of hydrocarbon compound is used to form an electrode having good charge-discharge efficiency. This negative electrode 1 is combined with a positive electrode 3 having good charge-discharge efficiency to form a thin secondary battery. Although the thin secondary battery is weak against an increase in internal pressure, an increase in internal pressure is prevented even if charge-discharge is repeated. Therefore, the battery can be used for a long time.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄型二次電池に関し、特にリチウムやカリウム
等のアルカリ金属又はアルカリ土類金属をドーパント物
質とする電極を有する電池の構成に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a thin secondary battery, and particularly relates to a structure of a battery having an electrode containing an alkali metal or alkaline earth metal such as lithium or potassium as a dopant substance. be.

〈従来の技術〉 現在負極発電要素としてリチウム箔、正極発電要求とし
て二酸化マンガンを用い、これを正負極それぞれの端子
板の間に介在させ、それを枠状の絶縁封口体であるオレ
フィン系樹脂で熱溶着し、総厚で0,5薗程度のリチウ
ム−次電池が市販されている。
<Conventional technology> Currently, lithium foil is used as the negative electrode power generation element and manganese dioxide is used as the positive electrode power generation element, which is interposed between the terminal plates of the positive and negative electrodes, and then thermally welded with an olefin resin that is a frame-shaped insulating seal. However, lithium secondary batteries with a total thickness of about 0.5 mm are commercially available.

〈発明が解決しようとする問題点〉 しかし、従来のリチウム−次電池は放電後充電しようと
した場合、負極のリチウムがデンドライト状に析出し、
正極と電気的接触を起す。また、二酸化マンガンに取り
込まれたリチウムは充電しても完全に元の状態に戻らず
、充電電圧を上昇させる。その結果、電解液の分解によ
るガスが発生し、内圧が上昇して電池が破壊される。
<Problems to be solved by the invention> However, when attempting to charge a conventional lithium secondary battery after discharging, the lithium in the negative electrode precipitates in the form of a dendrite.
Makes electrical contact with the positive electrode. Furthermore, the lithium incorporated into manganese dioxide does not completely return to its original state even after charging, increasing the charging voltage. As a result, gas is generated due to the decomposition of the electrolyte, which increases the internal pressure and destroys the battery.

これを解決するために適正な正極材料及び負極材料の開
発が進められている。二次電池の電極材料として用いら
れるものは充電と放電時の電荷効率がよいものでなけれ
ばならない。なぜならば、放電時に得られた電荷量より
も充電時に要した電荷量が多ければ、これらは熱の発生
や溶媒の分解等につながり、溶媒の分解は内部のガス発
生となり、内圧を上昇させる。この場合、従来より用い
られているコイン型容器や円筒型容器の如く、内圧の上
昇に耐え得る構造を有するものは長期の充放電の繰り返
しにおいてわずかに内圧が上昇しても耐久性があるが、
薄型電池の如く内圧の上昇に対する耐圧性のないもので
は、長期の充放電でわずかに内圧が上昇しても封口部の
破壊を生ずる。
In order to solve this problem, development of appropriate positive electrode materials and negative electrode materials is underway. The materials used as electrode materials for secondary batteries must have good charge efficiency during charging and discharging. This is because if the amount of charge required during charging is greater than the amount of charge obtained during discharge, these will lead to generation of heat, decomposition of the solvent, etc., and the decomposition of the solvent results in the generation of internal gas, which increases the internal pressure. In this case, conventionally used coin-shaped containers and cylindrical containers that have a structure that can withstand increases in internal pressure are durable even if the internal pressure increases slightly after repeated charging and discharging over a long period of time. ,
If the battery does not have pressure resistance against increases in internal pressure, such as thin batteries, even a slight increase in internal pressure during long-term charging and discharging will cause the sealing portion to break.

又、充放電効率がよくても放電容量そのものが少ないも
のは実用的でない。現在、負極活物質として用いられて
いるものとしてリチウム(Li )金属があるが、これ
の充放電電荷効率は60%〜90%であり、効率を上げ
るだめに溶媒を駆使すると充電時の印加電圧で分解して
しまうものもある。またこれの改良としてLi−At合
金を用いる場合も充放電電荷効率は90%前後であり長
期の使用に耐えない。又Li−At合金も深く放電した
場合は充電時にデンドライト等の問題が発生し、これを
解決するためにはLi −Atの放電深度を軽減するた
めに正極材料がLi−A1合金の電位まで使用可能な材
料でなければならず、そのために電池全体の容量が減少
する。又、最近の高分子重合体を熱分解した粉末又は繊
維を負極に応用したものも開発されているが、これらも
初期のものは充放電電荷効率が60〜95%程度であり
またかさ密度が大きいため、薄型電池の電極としては使
用し難い。
Further, even if the charging/discharging efficiency is good, a device with a small discharge capacity itself is not practical. Currently, lithium (Li) metal is used as a negative electrode active material, but the charge/discharge efficiency of this is 60% to 90%, and if a solvent is used to increase the efficiency, the applied voltage during charging Some things break down. Further, even when a Li--At alloy is used as an improvement on this, the charge/discharge efficiency is around 90%, and it cannot withstand long-term use. In addition, if Li-At alloy is also deeply discharged, problems such as dendrites will occur during charging. material, which reduces the overall capacity of the battery. In addition, recently, negative electrodes using powders or fibers obtained by thermally decomposing high molecular weight polymers have been developed, but these early ones had a charge/discharge efficiency of about 60 to 95%, and a bulk density of Due to their large size, they are difficult to use as electrodes for thin batteries.

く問題点を解決するための手段〉 本発明は薄型二次電池の長期使用に不可欠な充放電電荷
効率の非常によい負極材料を開発し、充放電電荷効率が
非常によい正極と組み合わせることにより電池内部の圧
力上昇に弱い構造の薄型二次電池であってもその長期使
用を実現したものである。
Means for Solving the Problems> The present invention has developed a negative electrode material with extremely high charging/discharging charge efficiency, which is essential for the long-term use of thin secondary batteries, and combining it with a positive electrode having extremely high charging/discharging charge efficiency. This enables long-term use even for thin secondary batteries whose structure is susceptible to pressure increases inside the battery.

上記目的を達成するため、本発明の二次電池は炭化水素
化合物を熱分解により気相堆積した電極材を使用し、充
放電電荷効率が非常によい電極を形成している。これを
負極に用い、同様に充放電電荷率の良い正極材料と組み
合わせることによって、長期充放電サイクルまたは長時
間の充電に対しても破壊されない薄型二次電池が可能に
なった。
In order to achieve the above object, the secondary battery of the present invention uses an electrode material in which a hydrocarbon compound is vapor-phase deposited by thermal decomposition, and forms an electrode with very high charge/discharge charge efficiency. By using this as a negative electrode and combining it with a positive electrode material that also has a high charge/discharge rate, it has become possible to create a thin secondary battery that will not be destroyed even during long-term charge/discharge cycles or long-term charging.

また、負極材料は正極材料のもつ平衡電位まで貴にシフ
トしても特性を劣化させないため、正極材料を負極材料
の電位まで単にシフトすると劣化するような材料も、正
極と負極の容量バランスを正極が大きくなるようにとっ
ておけば使用可能となる。
In addition, the characteristics of the negative electrode material do not deteriorate even if the negative electrode material is shifted to the equilibrium potential of the positive electrode material. If you set it so that it becomes large, it can be used.

〈発明の効果〉 このように本発明による負極材料を用いた場合、従来不
可能であった繰り返し充放電しても長期間使用可能な実
用性の高い薄型二次電池の実現を可能にする。
<Effects of the Invention> As described above, when the negative electrode material according to the present invention is used, it is possible to realize a highly practical thin secondary battery that can be used for a long period of time even after repeated charging and discharging, which was previously impossible.

〈実施例〉 第1図は本発明の1実施例を示す薄型電池の構成断面図
であり、1は負極、2はセパレータ、3は正極、4は絶
縁封口体、5,6はそれぞれ負極及び正極端子板である
<Example> Fig. 1 is a cross-sectional view of the structure of a thin battery showing one example of the present invention, in which 1 is a negative electrode, 2 is a separator, 3 is a positive electrode, 4 is an insulating sealing body, 5 and 6 are a negative electrode and This is the positive terminal plate.

角極活物質は以下に説明する方法で作製する。The square polar active material is produced by the method described below.

第2図は本発明の1実施例の説明に供する炭素体生成装
置のブロック構成図である。
FIG. 2 is a block configuration diagram of a carbon body generating apparatus for explaining one embodiment of the present invention.

出発物質として使用される炭化水素化合物としては、芳
香族化合物または不飽和化合物が望ましく、これらは1
000℃前後またはそれ以下の温度で熱分解される。熱
分解炭素体が形成される下地基板としてはニッケル基材
及びセラミックペーパーを用いる。
The hydrocarbon compound used as a starting material is preferably an aromatic compound or an unsaturated compound;
It is thermally decomposed at temperatures around 000°C or lower. A nickel base material and ceramic paper are used as the base substrate on which the pyrolytic carbon body is formed.

反応管への原料供給方法は常圧バブラー法または減圧法
を用いる。いずれの方法でも、後述する様に、熱分解炭
素体を得ることができる。常圧バブラー法ではキャリア
ガスとして水素又はアルゴンガスを使用する。第2図は
常圧バブラー法を利用した装置構成を示しているが、こ
の装置で減圧CVD法を行なうこともできる。この場合
には炭素体の膜厚を常圧バブラー法に比べてより均一に
実現することが可能である。
A normal pressure bubbler method or a reduced pressure method is used to supply raw materials to the reaction tube. In either method, a pyrolytic carbon body can be obtained as described later. In the normal pressure bubbler method, hydrogen or argon gas is used as a carrier gas. Although FIG. 2 shows an apparatus configuration using the normal pressure bubbler method, this apparatus can also be used to perform the low pressure CVD method. In this case, it is possible to achieve a more uniform carbon film thickness than in the normal pressure bubbler method.

以下製造工程に従って説明する。The manufacturing process will be explained below.

真空蒸留による精製操作を行ったベンゼンが収納された
バブル容器7内にアルゴンガス制御系8よりアルゴンガ
スを供給してベンゼンをバブルさせ、パイレックスガラ
ス管9を介して石英反応管10ヘベンゼン分子を給送す
る。この際バブル容器7内の液体ベンゼンの温度を一定
に保持してアルゴンガス流量をパルプ11で調節し、ベ
ンゼン分子の反応管10内への供給量を毎時数ミリモル
に一定制御する。一方、希釈ライン12よりアルゴンを
流し、反応管10へ給送されるベンゼン分子数密度及び
流速を最適化する。反応管10には、前述した成長用基
板の載置された試料台13が設置されている。反応管1
0の外周囲には加熱炉14が設けられており、この加熱
炉14によって反応管10内の成長用基板は1000℃
前後またはそれ以下の温度に保持されている。
Argon gas is supplied from an argon gas control system 8 into a bubble container 7 containing benzene that has been purified by vacuum distillation to bubble the benzene, and benzene molecules are supplied to a quartz reaction tube 10 through a Pyrex glass tube 9. send At this time, the temperature of the liquid benzene in the bubble container 7 is kept constant, the argon gas flow rate is adjusted by the pulp 11, and the amount of benzene molecules supplied into the reaction tube 10 is controlled to be constant at several mmol per hour. On the other hand, argon is flowed through the dilution line 12 to optimize the benzene molecule number density and flow rate fed to the reaction tube 10. The reaction tube 10 is equipped with a sample stage 13 on which the growth substrate described above is placed. Reaction tube 1
A heating furnace 14 is provided around the outer periphery of the reaction tube 10, and the growth substrate inside the reaction tube 10 is heated to 1000°C by this heating furnace 14.
maintained at a temperature around or below.

反応管10内に導入されたベンゼン分子は1000℃前
後またはそれ以下の温度に加熱されて熱分解し、順次成
長用基板上に炭素体が成長形成される。残った混合ガス
は排気管15を介して排気ポンプ16により排気される
The benzene molecules introduced into the reaction tube 10 are heated to a temperature of around 1000° C. or lower and thermally decomposed, and carbon bodies are sequentially grown and formed on the growth substrate. The remaining mixed gas is exhausted by an exhaust pump 16 via an exhaust pipe 15.

成長用基板上に形成された熱分解炭素体の物性をX線回
折図形、レーザーラマンスペクトルより解析した結果、
ある程度の黒鉛化度をもった炭素体で黒鉛構造と乱層構
造の混在化したものであった。この炭素体は成長用基板
の金属の効果で比較的低温であっても電極として適した
ものとなる。
As a result of analyzing the physical properties of the pyrolytic carbon body formed on the growth substrate using X-ray diffraction patterns and laser Raman spectra,
It was a carbon body with a certain degree of graphitization, with a mixture of graphite structure and turbostratic structure. This carbon body becomes suitable as an electrode even at a relatively low temperature due to the effect of the metal of the growth substrate.

このようにして得られた電極体を1モル過塩素酸リチウ
ムが溶解されたプロピレンカーボネート中に入れ、リチ
ウムを対極として用い、リチウムイオンをドープさせる
。これを負極として用いる。
The electrode body thus obtained is placed in propylene carbonate in which 1 mole of lithium perchlorate is dissolved, and lithium ions are doped using lithium as a counter electrode. This is used as a negative electrode.

負極単独でリチウムに対し0Ve1.5Vの充放電を行
なった充放電電荷効率は99%であった。比較の為に、
リチウム箔を所定の大きさに切ったもの、Li−At合
金の粉末に少量のポリエチレンバインダーを混合した後
プレスしたもの及び高分子重合体であるポリフルオロア
クリロニトリルのフィルムをアルゴンガス雰囲気中30
0℃で焼成した後これをステンレスネットで挾持し、上
述した方法と同様な方法でリチウムをドープしたものを
作製しそれぞれ負極として用いた。各々についてセパレ
ータは0.1■のポリプロピレン不織布t−用い、封口
体は接着性オレフィン樹脂を用いた。また正極は充放電
電荷効率のよいクロム酸化物であるC r s Osを
X線回折で明瞭なピークを示さない微粒子にしたものを
用い、これに導電剤と結着剤を混ぜて作製した。正極材
料としてはこれ以外にもNi、Mn、導電性有機材等各
種材料が用いられる。
The charge/discharge efficiency when charging and discharging lithium at 0Ve1.5V was performed using the negative electrode alone was 99%. For comparison,
Lithium foil cut into predetermined sizes, Li-At alloy powder mixed with a small amount of polyethylene binder and then pressed, and a film of polyfluoroacrylonitrile, which is a high molecular polymer, were heated in an argon gas atmosphere for 30 minutes.
After firing at 0° C., this was sandwiched between stainless steel nets, and lithium-doped products were prepared in the same manner as described above, and each was used as a negative electrode. In each case, a 0.1-inch polypropylene nonwoven fabric was used as the separator, and an adhesive olefin resin was used as the sealant. The positive electrode was prepared by mixing C r s Os, a chromium oxide with good charge/discharge efficiency, into fine particles that do not show clear peaks in X-ray diffraction, and a conductive agent and a binder. In addition to these materials, various other materials such as Ni, Mn, and conductive organic materials can be used as the positive electrode material.

以上により各種の薄型二次電池を作製し、最初2.7V
まで定電流放電し、その時に要した時間を1回当りの充
電及び放電時間として定電流充放電テストを行なった。
Various thin secondary batteries were manufactured as described above, and the initial voltage was 2.7V.
A constant current charging/discharging test was performed by discharging at a constant current until the battery reached the point where the battery was discharged at a constant current, and using the time required at that time as the charging and discharging time per charge.

その結果を第1表にまとめる。The results are summarized in Table 1.

第1表 テスト結果 以上の結果から第1図に示す薄型二次電池は枠状の絶縁
封口体4を負極1と正極3の各端子板5゜6の間に介在
させかつ各端子板5.6及び絶縁封口体4で囲まれた空
間にセパレータ2を介して電池発電要素である上記リチ
ウムドープ炭素体から成る負極1と正極3を収納し、絶
縁封口体4により密封した薄型二次電池が実現可能とな
る。リチウムドープ炭素体から成る負極1は充放電繰り
返しに対してリチウムのデンドライト状析出が抑制され
かつ電荷効率も高いため電池自発熱や電解液の分解によ
るガス圧上昇という問題も生ずることなく電池としての
信頼性を飛躍的に改善する。尚、炭素体にドープする金
属としてはリチウム以外のアルカリ金属やアルカリ土類
金属を用いることが可能である。
Table 1 Test Results From the above results, the thin secondary battery shown in FIG. 6 and an insulating sealing body 4, a negative electrode 1 and a positive electrode 3 made of the above-mentioned lithium-doped carbon body, which are battery power generating elements, are housed via a separator 2, and the thin secondary battery is sealed with the insulating sealing body 4. It becomes realizable. The negative electrode 1 made of lithium-doped carbon material suppresses dendritic precipitation of lithium during repeated charging and discharging, and has high charge efficiency, so it can be used as a battery without causing problems such as self-heating of the battery or increase in gas pressure due to decomposition of the electrolyte. Dramatically improve reliability. Note that as the metal doped into the carbon body, it is possible to use an alkali metal or alkaline earth metal other than lithium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す薄型二次電池の模式断面
構成図である。 第2図は第1図の二次電池に用いる負極発電要素の製造
装置の構成図である。
FIG. 1 is a schematic cross-sectional configuration diagram of a thin secondary battery showing an embodiment of the present invention. FIG. 2 is a block diagram of an apparatus for manufacturing a negative electrode power generation element used in the secondary battery of FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 1、負極発電体要素が導電性基板上へ気相堆積された熱
分解炭素体から成りかつ該熱分解炭素体にはアルカリ金
属又はアルカリ土類金属がドープされていることを特徴
とする電池。
1. A battery characterized in that the negative electrode generator element consists of a pyrolytic carbon body deposited in vapor phase on a conductive substrate, and the pyrolytic carbon body is doped with an alkali metal or an alkaline earth metal.
JP62078496A 1987-03-30 1987-03-30 Rechargeable battery Expired - Fee Related JP2617182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078496A JP2617182B2 (en) 1987-03-30 1987-03-30 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078496A JP2617182B2 (en) 1987-03-30 1987-03-30 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPS63244562A true JPS63244562A (en) 1988-10-12
JP2617182B2 JP2617182B2 (en) 1997-06-04

Family

ID=13663578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078496A Expired - Fee Related JP2617182B2 (en) 1987-03-30 1987-03-30 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2617182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395857A (en) * 1989-09-06 1991-04-22 Sharp Corp Carbon electrode
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121261A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Organic electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121261A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Organic electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395857A (en) * 1989-09-06 1991-04-22 Sharp Corp Carbon electrode
JP2592143B2 (en) * 1989-09-06 1997-03-19 シャープ株式会社 Carbon electrode for non-aqueous lithium secondary battery and method for producing the same
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery

Also Published As

Publication number Publication date
JP2617182B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
EP0520667A1 (en) Carbon anode for secondary battery
CN108649190A (en) Vertical graphene with three-dimensional porous array structure/titanium niobium oxygen/sulphur carbon composite and its preparation method and application
US4835075A (en) Secondary battery using nonaqueous electrolytes
WO1992013367A1 (en) RECHARGEABLE BATTERY INCLUDING AN Li1+xMn2O4 CATHODE AND A CARBON ANODE
KR20000068369A (en) Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
EP0838096B1 (en) Lithium cobalt oxide cathodic active material and secondary battery using the same
JPH10188977A (en) Lithium secondary battery
JPS63244562A (en) Battery
US4900588A (en) Method for the production of a carbon electrode
JPH0665028B2 (en) Method for manufacturing battery electrode
CN109786733A (en) A kind of lithium ion battery negative material, preparation method and lithium ion battery
CN106025204B (en) A kind of negative material and preparation method thereof and sodium ion secondary battery
JPH01307157A (en) Manufacture of electrode for battery
KR20160051196A (en) Lithium electrode, method for the same and lithium battery compring the same
JPH03110765A (en) Organic electrolyte battery
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JP2514274B2 (en) Method for manufacturing hydrogen storage alloy material
JP3605220B2 (en) Lithium iron oxide, method for synthesizing the same, and lithium battery
ROTH et al. Thermal stability of electrodes in Lithium-ion cells
RU2133527C1 (en) Pyrolized carbon containing material for anode of lithium storage cell and method of its manufacture
Zhang et al. Silicon-Based Anodes for Long-Cycle-Life Lithium-ion Batteries
JPS63245858A (en) Nonaqueous secondary battery and process for the manufacture
JPH07282797A (en) Nonaqueous secondary battery
JPH03266358A (en) Manufacture of carbon electrode and nonaqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees