JPH03110765A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH03110765A
JPH03110765A JP1248483A JP24848389A JPH03110765A JP H03110765 A JPH03110765 A JP H03110765A JP 1248483 A JP1248483 A JP 1248483A JP 24848389 A JP24848389 A JP 24848389A JP H03110765 A JPH03110765 A JP H03110765A
Authority
JP
Japan
Prior art keywords
lithium
battery
electrolyte
negative electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1248483A
Other languages
Japanese (ja)
Other versions
JP2940015B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1248483A priority Critical patent/JP2940015B2/en
Publication of JPH03110765A publication Critical patent/JPH03110765A/en
Priority to JP10211887A priority patent/JPH1197062A/en
Application granted granted Critical
Publication of JP2940015B2 publication Critical patent/JP2940015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an excellent maintaining property of discharge capacity following the charge and discharge cycles by using a gamma-butyrolactone solution including lithium borofluoride as an electrolyte, for the electrolyte solution. CONSTITUTION:In an organic electrolyte battery in which lithiumcobolt complex oxide (LiCoO2) is used as a positive electrode active substance, and lithium or a lithium alloy is used as a negative electrode active substance, a gamma- butyrolactone solution including lithium borofluoride (LiBF4) as an electrolyte is used for the electrolyte solution. As a result, the lithium-cobolt complex oxide.lithium battery has a discharge voltage higher about 1V compared with a conventional manganese-lithium dioxide battery, and furthermore, by using an electrolyte of an excellent acidproof property, an excellent charge and discharge reversibility can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池に関する。[Detailed description of the invention] Industrial applications The present invention relates to an organic electrolyte battery.

従来の技術およびその課題 有機溶媒に電解質塩を溶解させた有機電解液は、水溶液
系電解液に比較して、安定な電位領域が広いので、水素
発生電位よりも卑な金属と酸素発生電位よりも責な金属
とを組み合わせて、きわめて高電圧を有する電池を構成
することができる。たとえば、負極活物質としては、原
子量が小さくてファラデー当りの重量が軽くて、しかも
、きわめて卑な電位を有する金属リチウム、または、リ
チウム合金が多く用いられる。また、正極活物質として
は、種々の活物質が用いられているが、中でも電位が高
くて、しかも、きわめて安価な二酸化マンガンが最も注
目されている。
Conventional technology and its problems An organic electrolyte in which an electrolyte salt is dissolved in an organic solvent has a wider stable potential range than an aqueous electrolyte. In combination with other metals, it is possible to construct batteries with extremely high voltages. For example, as the negative electrode active material, metallic lithium or a lithium alloy, which has a small atomic weight, a light weight per Faraday, and an extremely base potential, is often used. Various active materials have been used as the positive electrode active material, but manganese dioxide, which has a high potential and is extremely inexpensive, is attracting the most attention.

二酸化マンガン・リチウム電池は、放Tf、電圧が3v
と高く、その−次電池は、カメラ用などにすでに広く用
いられている。また、近年、その二次電池化が精力的に
進められている。この二酸化マンガン・リチウム電池に
は、電導度が高く、化学的および電気化学的な安定性に
優れた有機電解液として、電解質の過塩素酸リチウム(
LiCIOs)をプロピレンカーボネイト(pc)とジ
メトキシエタン(DME)との混合溶媒に溶解させたも
のが多く用いられている。
Manganese dioxide lithium battery has a discharge Tf and a voltage of 3V.
This battery is already widely used in cameras and other applications. In addition, in recent years, the development of secondary batteries has been vigorously promoted. This manganese dioxide lithium battery uses lithium perchlorate (lithium perchlorate) as an electrolyte, an organic electrolyte with high conductivity and excellent chemical and electrochemical stability.
LiCIOs) dissolved in a mixed solvent of propylene carbonate (pc) and dimethoxyethane (DME) is often used.

さて、発明者は、3V系の二酸化マンガン・リチウム電
池よりもさらに高電圧で高エネルギー密度のリチウム二
次電池を研究した。そして、正極活物質にリチウムコバ
ルト複合酸化物(LiCo02)を用いた4v系の有機
電解液電池について特に詳細に検討した。その結果、次
のよ“うな問題点を見いだした。すなわち、このような
高電圧の電池系では、従来、二酸化マンガン・リチウム
電池に用いられていたLiCO4/PC−DME電解液
を用いると、後の実施例に示すように、充放電サイクル
にともなって放電容量が急激に減少する。そして、この
原因は、きわめて責な電位を有するリチウムコバルト複
合酸化物正極によって、電解液が酸化分解された結果と
考えられる。したがって、リチウムコバルト複合酸化物
を正極活物質にもちいた4■系のリチウム二次電池を実
現するためには、電導塵が高くて耐酸化性に優れた新し
い電解液を開発する必要があることである。
Now, the inventor has researched a lithium secondary battery that has a higher voltage and higher energy density than a 3V-based manganese dioxide lithium battery. Then, a 4V organic electrolyte battery using lithium cobalt composite oxide (LiCo02) as a positive electrode active material was examined in detail. As a result, we discovered the following problems: In such high-voltage battery systems, when LiCO4/PC-DME electrolyte, which has been conventionally used in manganese dioxide lithium batteries, is used, As shown in this example, the discharge capacity rapidly decreases with charge/discharge cycles.This is due to the oxidative decomposition of the electrolyte by the lithium cobalt composite oxide positive electrode, which has an extremely high potential. Therefore, in order to realize a 4-type lithium secondary battery that uses lithium cobalt composite oxide as the positive electrode active material, a new electrolyte with high conductive dust and excellent oxidation resistance must be developed. It is necessary.

課題を解決するための技術的手段 本発明は、正極活物質にリチウム合金ル) fJf合酸
合物化物iCo02)を用いて、負極活物質にリチウム
、または、リチウム合金を用いた有機電解液電池におい
て、ホウフッ化リチウム(LiBF4)を電解質として
含むガンマブチロラクトン(γ−Butyr。
Technical Means for Solving the Problems The present invention provides an organic electrolyte battery using a lithium alloy compound iCo02) as a positive electrode active material and lithium or a lithium alloy as a negative electrode active material. , gamma-butyrolactone (γ-Butyr) containing lithium borofluoride (LiBF4) as an electrolyte.

1actone)溶液を電解液に用いた有機電解液電池
を提供して上記問題点を解決しようとするものである。
The present invention attempts to solve the above-mentioned problems by providing an organic electrolyte battery using a 1actone) solution as an electrolyte.

作用 本発明のリチウムコバルト複合酸化物・リチウム電池は
、充放電サイクルの進行にともなう放電容量の保持特性
が優れているという作用がある。
Function The lithium cobalt composite oxide/lithium battery of the present invention has an excellent function of maintaining discharge capacity as the charge/discharge cycle progresses.

これは、用いた電解液が正極による酸化分解を受けにく
いことに起°因するものと考えられる。
This is considered to be due to the fact that the electrolytic solution used is not susceptible to oxidative decomposition by the positive electrode.

実施例 以下、本発明を公的な実施例を用いて説明する。Example Hereinafter, the present invention will be explained using public examples.

正極活物質のリチウムコバルト複合酸化物(LiCOO
2)は、下記のように合成した。すなわち、炭酸リチウ
ムと炭酸コバルトとをリチウムとコバルトとの混合比が
、2: 1になるように混合して900度で20時間の
間、空気中で熱分解合成した。そして、熱分解生成物を
精製水で超音波水洗洗浄して、300度で6時間真空乾
燥した。
Lithium cobalt composite oxide (LiCOO) as a positive electrode active material
2) was synthesized as follows. That is, lithium carbonate and cobalt carbonate were mixed so that the mixing ratio of lithium to cobalt was 2:1, and thermal decomposition synthesis was carried out in air at 900 degrees Celsius for 20 hours. The thermal decomposition product was then ultrasonically washed with purified water and vacuum-dried at 300 degrees for 6 hours.

正極板を次のように製作した。前記の方法で得られたリ
チウム・コバルト複合酸化物100重量部にたいしてア
セチレンブラックを5重量部添加して、さらに、テフロ
ンディスバージョンの固形分を2重量部添加して、よく
混練したのち、300度で6時間真空乾燥した。そして
、この混合物を0.165gづつ秤量してニッケル金網
に包み込んで、径が15mmで、厚みが0.7mmのリ
チウム・コバルト複合酸化物正極板を製作した。
A positive electrode plate was manufactured as follows. To 100 parts by weight of the lithium-cobalt composite oxide obtained in the above method, 5 parts by weight of acetylene black was added, and further 2 parts by weight of solid content of Teflon dispersion were added, and after thorough kneading, the mixture was heated to 300 degrees Celsius. It was vacuum dried for 6 hours. Then, 0.165 g of this mixture was weighed and wrapped in a nickel wire mesh to produce a lithium-cobalt composite oxide positive electrode plate with a diameter of 15 mm and a thickness of 0.7 mm.

負極板は、つぎの三種類を製作した。いずれも、その形
状は、厚さが約0.4mmで、径が16mmである。ま
ず、金属リチウム板を打ち抜いて負極板(A)を製作し
た。また、リチウムを80重量部、アルミニウムを20
重量部含むリチウムアルミニウム合金板を打ち抜いて負
極板(B)を製作した。
The following three types of negative electrode plates were manufactured. Both have a thickness of about 0.4 mm and a diameter of 16 mm. First, a negative electrode plate (A) was produced by punching out a metal lithium plate. Also, 80 parts by weight of lithium and 20 parts by weight of aluminum
A negative electrode plate (B) was produced by punching out a lithium aluminum alloy plate containing parts by weight.

また、リチウムを80重量部、ボロンを20重量部含む
リチウムボロン合金粉末を金型をもちいて加圧成形して
負極板(C)を製作した。
Further, a negative electrode plate (C) was manufactured by pressure-molding a lithium-boron alloy powder containing 80 parts by weight of lithium and 20 parts by weight of boron using a mold.

本発明の実施例の電池を以下のように製作した。A battery according to an example of the present invention was manufactured as follows.

上記のリチウムコバルト複合酸化物正極板1枚に対して
負極板を1枚組み合わせた、外径が20mmで厚さが 
2.0mmの2020形ボタン電池を、負極板の種類に
応じて3種類製作した。電解液は、団LiBFa/y 
−Butyrolactone (以下では、γ−BL
と表記する)を正極板および後述のセパし・−ターに含
浸させるとともに、電池内に30マイクロリツター注液
して用いた。セパレーターは、ポリプロピレン製微孔膜
セパレータ(セラニーズ社製ジュラガード2400)を
負極板に密着させて用いて、さらにジュラガードと正極
との間にポリプロピレン不織布を配して用いて、゛適度
な圧迫が得られるようにした。これらの電池を、負極板
(A)、  (B)および(C)を用いたものそれぞれ
に応じて、本発明の実施例の電池(4)、  (b)お
よび(C)と呼ぶ。
The above lithium cobalt composite oxide positive electrode plate and one negative electrode plate are combined, and the outer diameter is 20 mm and the thickness is
Three types of 2.0 mm 2020 type button batteries were manufactured depending on the type of negative electrode plate. The electrolyte is a group LiBFa/y
-Butyrolactone (hereinafter, γ-BL
) was impregnated into the positive electrode plate and the separator described below, and 30 microliters of the liquid was injected into the battery. The separator uses a polypropylene microporous membrane separator (Duraguard 2400 manufactured by Celanese) in close contact with the negative electrode plate, and furthermore, a polypropylene nonwoven fabric is placed between the Duraguard and the positive electrode. I made it possible to obtain it. These batteries will be referred to as batteries (4), (b) and (C) according to the embodiments of the present invention, depending on whether negative electrode plates (A), (B) or (C) are used.

また、正極板に前記のリチウムコバルト複合酸化物正極
板を用いて、負極板に前記の金属リチウム負極板(A)
を用いた比較のための従来の電池(d)を製作した。セ
パレーターは、前記のジュラガード2400およびポリ
プロピレン不ta布を用いた。電解液には、二酸化マン
ガン・リチウム電池に標準的に用いられている IM 
LiCl0a/PC−DMEを用いた。
Further, the above lithium cobalt composite oxide positive electrode plate is used as the positive electrode plate, and the above metal lithium negative electrode plate (A) is used as the negative electrode plate.
A conventional battery (d) was manufactured for comparison. As the separator, the above-mentioned Duragard 2400 and polypropylene non-woven fabric were used. The electrolyte is IM, which is standardly used in manganese dioxide lithium batteries.
LiCl0a/PC-DME was used.

また、負極板に前記のリチウムアルミニウム合金(B)
またはりチウムボロン合金(C)を用いた以外は、電池
(d)と同様の構成を有する比較のための従来の電池(
e)、  (f)を試作した。
In addition, the above-mentioned lithium aluminum alloy (B) is used for the negative electrode plate.
A conventional battery (for comparison) having the same configuration as battery (d) except that lithium boron alloy (C) was used.
e) and (f) were prototyped.

以上の電池の正極の理論容量は、40mAhであり、負
極の理論容量は、 (A)が240mAh、 (B)。
The theoretical capacity of the positive electrode of the above battery is 40mAh, the theoretical capacity of the negative electrode is 240mAh for (A), and (B).

(C)が200mAhである。したがって、全ての電池
は、少なくとも初期では正極制限になっている。
(C) is 200mAh. Therefore, all batteries are positive limited, at least initially.

これらの電池を 1.8mAで4.2vまで充電して、
つづいて、1.8mAで3.0■まで放電する充放電サ
イクル寿命試験にかけた。その結果を、第一図にしめす
。図から、従来の比較のための電池(d)。
Charge these batteries to 4.2v at 1.8mA,
Subsequently, the battery was subjected to a charge/discharge cycle life test in which it was discharged to 3.0μ at 1.8 mA. The results are shown in Figure 1. From the figure, conventional battery for comparison (d).

(e)、および(f)は、充放電サイクルの進行にとも
なって急激に放電容量が低下しているのがわかる。これ
に比較して本発明の電池(4)、  (b)、および(
C)は、放電容量の保持特性が優れている。
In (e) and (f), it can be seen that the discharge capacity rapidly decreases as the charge/discharge cycle progresses. In comparison, batteries (4), (b), and (
C) has excellent discharge capacity retention characteristics.

このような、優れた容量の保持特性は、下記のように電
解液の耐酸化性が優れていることに起因するものと考え
られる。すなわち、グラッシーカーボン電極を作用極に
用いて銀極な参照極に用いてアルゴンドライボックス中
で、電解液に 団LiCIO4/PC−DMEまたはI
M LiBF4/γ−BLを用いて分極特性試験をおこ
なった結果、第二図に示すように、LiBFz/γ−B
L電解液(図中(1)でしめず)は、従来のしi CL
Oa / PC−DME電解液(図中(2)でしめす)
に比較して酸化電位がきわめて高いことがわかった。し
たがって、この電解液は、責な電位を示すコバルトリチ
ウム複合酸化物正極板を用いた場合に、アノード酸化を
受けにくいものと考えられる。
Such excellent capacity retention characteristics are considered to be due to the excellent oxidation resistance of the electrolytic solution as described below. That is, a glassy carbon electrode was used as a working electrode and a silver reference electrode was used as an electrolyte in an argon dry box.
As a result of the polarization characteristic test using M LiBF4/γ-BL, as shown in Figure 2, LiBFz/γ-B
The L electrolyte (not marked (1) in the figure) is the conventional I CL
Oa/PC-DME electrolyte (indicated by (2) in the diagram)
It was found that the oxidation potential was extremely high compared to that of . Therefore, this electrolytic solution is considered to be less susceptible to anodic oxidation when a cobalt lithium composite oxide positive electrode plate exhibiting a negative potential is used.

なお、電解液の電導度は、IM LiBFa/γ−Bし
が7mS/cm(20℃)であって、LM LiCl0
a/PC−DMEの12.5mS/cmに対してやや劣
っているが、電池特性に大きな影響をおよぼすほどの差
ではない。
The conductivity of the electrolyte is 7 mS/cm (20°C) for IM LiBFa/γ-B and 7 mS/cm (20°C) for LM LiCl0.
Although this is slightly inferior to the 12.5 mS/cm of a/PC-DME, the difference is not large enough to have a significant effect on battery characteristics.

電池(b)は、電池(4)よりも次の点で優れてい−る
。すなわち、負極活物質に用いているリチウムアルミニ
ウム合金は、金属リチウムよりも充放電サイクルの進行
にともなう利用率の低下が少ない。したがって、電池寿
命が負極利用率の低下により規制される条件下では、す
なわち低温高率放電サイクル試験などでは、電池(b)
は、電池(4)よりもサイクル寿命が長い。
Battery (b) is superior to battery (4) in the following points. That is, the lithium-aluminum alloy used as the negative electrode active material exhibits less decrease in utilization rate as the charge/discharge cycle progresses than metal lithium. Therefore, under conditions where the battery life is regulated by a decrease in the negative electrode utilization rate, such as in a low temperature high rate discharge cycle test, battery (b)
has a longer cycle life than battery (4).

また、 (C)の電池は、つぎの点で電池(4)、(b
)よりも優れている。すなわち、電池(4)の負極活物
質である金属リチウムは、融点が約180度ときわめて
低いので、電池を短絡したり、誤フて大電流で充電して
電池が異常発熱した場合に、負極が溶融して化学反応が
高速かつ連続的に起こるいわゆる熱逸走がおこり、電池
が爆発・燃焼することがある。電池(b)のリチウムア
ルミニウム合金もアルミニウムの含有量が20wtχと
少ないので、その融点は、金属リチウムとほとんど変わ
らない。したがって、同じ問題点を持フている。
In addition, battery (C) has the following points: battery (4), (b)
) is better than In other words, metallic lithium, which is the negative electrode active material of the battery (4), has an extremely low melting point of about 180 degrees, so if the battery is short-circuited or accidentally charged with a large current and the battery becomes abnormally hot, the negative electrode When the battery melts, chemical reactions occur rapidly and continuously, so-called heat escape, which can cause the battery to explode and burn. Since the lithium aluminum alloy of battery (b) also has a small aluminum content of 20 wtχ, its melting point is almost the same as that of metallic lithium. Therefore, they have the same problems.

これに対して、電池(c)の負極活物質は、融点が10
00℃以上のりチウムボロン合金なので、このような熱
逸走がおこりにくい。したがって、安全性の点で電池(
c)は、電池(4)、 (b)よりも優れている。
On the other hand, the negative electrode active material of battery (c) has a melting point of 10
Since it is a lithium boron alloy with a temperature of 00°C or higher, such heat loss is unlikely to occur. Therefore, in terms of safety, batteries (
c) is superior to batteries (4) and (b).

効果 以上のごとく、本発明のリチウムコバルト複合酸化物・
リチウム電池は、従来の二酸化マンガン・リチウム電池
に比較して放電電圧が約IVも高く、しかも、耐酸化性
の優れた電解液を用いることによって優れた充放電可逆
性を得ることができる。すなわち、本発明の電池は、高
電圧、高エネルギー密度のすぐれた有機電解液電池であ
る。
As described above, the lithium cobalt composite oxide of the present invention
Lithium batteries have a discharge voltage approximately IV higher than conventional manganese dioxide lithium batteries, and can also provide excellent charge/discharge reversibility by using an electrolyte with excellent oxidation resistance. That is, the battery of the present invention is an organic electrolyte battery with excellent high voltage and high energy density.

【図面の簡単な説明】[Brief explanation of drawings]

第一図は、本発明の電池および従来の電池の充放電サイ
クルの進行にともなう放電容量の保持特性をしめす。図
中記号は、それぞれ下記の内容をしめす。 (4)、  (b)、  (c):本発明の実施例の電
池(d)、  (e)、  (f):比較のための従来
の電池 第二図は、グラッシーカーボン電極を用いた電解液の分
極特性試験の結果をしめす。図中記号は、それぞれ以下
の内容を示す。 (1):電解液が、本発明の電池に用いる1M Li8Fn/γ−BL の場合 (2): 電解液が、 従来の電池に用いる 1M LiC1On/PC−DMε の場合 卒 閃 θ Q 0 0 0 O サ イ フ ル 散 (回)
FIG. 1 shows the discharge capacity retention characteristics of the battery of the present invention and the conventional battery as the charge/discharge cycle progresses. The symbols in the figure indicate the following contents. (4), (b), (c): Batteries according to the embodiments of the present invention (d), (e), (f): Conventional batteries for comparison Figure 2 shows electrolysis using glassy carbon electrodes. The results of the liquid polarization characteristic test are shown. The symbols in the figure indicate the following contents. (1): When the electrolyte is 1M Li8Fn/γ-BL used in the battery of the present invention (2): When the electrolyte is 1M LiC1On/PC-DMε used in the conventional battery O Saiful San (times)

Claims (1)

【特許請求の範囲】[Claims] 正極活物質にリチウムコバルト複合酸化物(LiCoO
_2)を用いて、負極活物質にリチウム、または、リチ
ウム合金を用いた有機電解液電池において、ホウフッ化
リチウム(LiBF_4)を電解質として含むガンマブ
チロラクトン(γ−Butyrolactone)溶液
を電解液に用いたことを特徴とする有機電解液電池。
Lithium cobalt composite oxide (LiCoO
_2), in an organic electrolyte battery using lithium or lithium alloy as the negative electrode active material, a gamma-butyrolactone solution containing lithium borofluoride (LiBF_4) as the electrolyte was used as the electrolyte. An organic electrolyte battery featuring:
JP1248483A 1989-09-25 1989-09-25 Organic electrolyte secondary battery Expired - Fee Related JP2940015B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1248483A JP2940015B2 (en) 1989-09-25 1989-09-25 Organic electrolyte secondary battery
JP10211887A JPH1197062A (en) 1989-09-25 1998-07-10 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248483A JP2940015B2 (en) 1989-09-25 1989-09-25 Organic electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10211887A Division JPH1197062A (en) 1989-09-25 1998-07-10 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03110765A true JPH03110765A (en) 1991-05-10
JP2940015B2 JP2940015B2 (en) 1999-08-25

Family

ID=17178830

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1248483A Expired - Fee Related JP2940015B2 (en) 1989-09-25 1989-09-25 Organic electrolyte secondary battery
JP10211887A Pending JPH1197062A (en) 1989-09-25 1998-07-10 Organic electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP10211887A Pending JPH1197062A (en) 1989-09-25 1998-07-10 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (2) JP2940015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200053584A (en) * 2017-10-17 2020-05-18 엔지케이 인슐레이터 엘티디 Method for manufacturing lithium secondary battery and battery embedded device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW431004B (en) 1998-10-29 2001-04-21 Toshiba Corp Nonaqueous electrolyte secondary battery
JP4565287B2 (en) * 1999-06-09 2010-10-20 株式会社豊田中央研究所 Non-aqueous electrolyte secondary battery
KR100390099B1 (en) 2000-09-28 2003-07-04 가부시끼가이샤 도시바 Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
US6861175B2 (en) 2000-09-28 2005-03-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR100444410B1 (en) 2001-01-29 2004-08-16 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
CN1204648C (en) 2001-02-28 2005-06-01 东芝株式会社 Non-aqueous electrolyte and non-aqoue electrolyte secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200053584A (en) * 2017-10-17 2020-05-18 엔지케이 인슐레이터 엘티디 Method for manufacturing lithium secondary battery and battery embedded device
EP3699999A4 (en) * 2017-10-17 2021-07-14 NGK Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device
US11757134B2 (en) 2017-10-17 2023-09-12 Ngk Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device

Also Published As

Publication number Publication date
JPH1197062A (en) 1999-04-09
JP2940015B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
CA1296766C (en) Secondary battery
CA2014438A1 (en) High energy and high power lithium storage batteries, and method for producing same
JPH0837025A (en) Nonaqueous electrolyte
JP2940015B2 (en) Organic electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP2007173150A (en) Nonaqueous electrolyte battery
JPH0381268B2 (en)
JPH09245798A (en) Lithium secondary battery
JP2004079311A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2002313320A (en) Nonaqueous secondary battery
JPH0359963A (en) Lithium secondary battery
JPS61116758A (en) Lithium battery
JPH0350385B2 (en)
JPS62176055A (en) Lithium battery
JPH10188976A (en) Lithium secondary battery
JPH0424829B2 (en)
JPH09293515A (en) Electrode material and lithium secondary battery
JPH03163764A (en) Organic electrolyte battery
JPH04242077A (en) Organic electrolyte secondary battery
JPH02267871A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees