JPS6323965A - Electrically conductive organic composition - Google Patents

Electrically conductive organic composition

Info

Publication number
JPS6323965A
JPS6323965A JP16857186A JP16857186A JPS6323965A JP S6323965 A JPS6323965 A JP S6323965A JP 16857186 A JP16857186 A JP 16857186A JP 16857186 A JP16857186 A JP 16857186A JP S6323965 A JPS6323965 A JP S6323965A
Authority
JP
Japan
Prior art keywords
particles
ratio
fine
particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16857186A
Other languages
Japanese (ja)
Other versions
JPH064719B2 (en
Inventor
Yoshinuki Maeda
前田 佳貫
Kazuhiko Tanaka
和彦 田中
Yoshiteru Matsuo
義輝 松尾
Masaji Asano
浅野 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61168571A priority Critical patent/JPH064719B2/en
Publication of JPS6323965A publication Critical patent/JPS6323965A/en
Publication of JPH064719B2 publication Critical patent/JPH064719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To form an electrically conductive org. compsn. which can exhibit an antistatic effect by virtue of sufficient electrical conductivity, by dispersing electrically conductive fine particles composed of fine titanium oxide particles or fine barium sulfate particles having a surface coated with a solid soln. of Sb2O3 and SnO2 and fine particles of a solid soln. of Sb2O3 and SnO2 in an org. matter. CONSTITUTION:A compsn. is formed by dispersing and incorporating the following particles A and B in a natural, reclaimed or synthetic org. matter in such a proportion that the amount of the particle B is O<=B<=100wt% and the amount of the particles A and/or B is 16-40vol%. Particle A is an electrically conductive fine particle having an average particle size of 0.01-0.3, obtd. by coating the surface of fine titanium oxide particle or fine barium sulfate particle with 5-50wt% solid soln. composed of Sb2O3 and SnO2 in a weight ratio of 99/1-80/20. Particle B is a fine particle of a solid soln. composed of Sb2O3 and SnO2 in a weight ratio of 99/1-80/20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明(ま導電性を有する有機組成物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organic composition having electrical conductivity.

(従来の技術) 有機の導電体はカーボンブラックや銀微粒子を練込んだ
ものが知らrし、マイクロエレクトロニクスの発展に伴
い急速にその需要が急速に高まっている。これらの用途
には例えば集積回路(IC1LSI等)用のトレーとか
、また作業服に織込み発生する静電気を除電するための
除電用合成m維など、多数が知ら几ている。
(Prior Art) Organic conductors incorporating carbon black or fine silver particles are well known, and the demand for them is rapidly increasing with the development of microelectronics. There are many known uses for these materials, such as trays for integrated circuits (IC1LSI, etc.), and synthetic m-fibers for eliminating static electricity that can be woven into work clothes to eliminate static electricity.

ところが用途によっては着色を要求されたり、被膜とし
ての透明性を要求されたり、また衣料として用いる場合
にはファツション性も要求ざτしてもするが、銀粒子で
は着色と高価格であり、ましてカーボンブラックを用い
れば真黒となってしまうので白色のものが切望さtして
きた。
However, depending on the application, coloring may be required, transparency as a film may be required, and when used as clothing, fashionability may also be required, but silver particles require coloring and are expensive. If carbon black were used, it would be pitch black, so a white product was desperately needed.

これに対し例えは特開昭53−92854号公報や特開
昭56−169816号公報等で酸化スズや、こtしを
酸化チタンにコートしたいわゆる白色(無色)微粒子を
用いることが提案ざtしている。しかし酸化スズ(5n
Ot )は本質的に導電性が不十分で、カリ。
In contrast, it has been proposed to use so-called white (colorless) fine particles coated with tin oxide or titanium oxide in Japanese Patent Application Laid-open Nos. 53-92854 and 1987-169816, etc. are doing. However, tin oxide (5n
Ot) is essentially a poor conductor and is a potash.

なおかつ前記公知例で開示される粒子の添加量は、a維
としたとぎに該繊維にいわゆる導電性繊維のレベルの制
電性を付与するには到底達し得ないことが実際上判明し
ているし、このことは粒子の添加量が微粒子の添加によ
る導電性付与のための理論必要型である15〜] 7 
vol%に達していない(例えば第23同高分子可能性
講座講演要旨集昭和50年3月)ことからもうなずける
ものである。
Furthermore, it has actually been found that the amount of particles added disclosed in the above-mentioned known examples cannot be applied to impart antistatic properties to the level of so-called conductive fibers after forming the fibers into A-fibers. However, this means that the amount of particles added is the theoretically necessary type for imparting conductivity by adding fine particles.
This is understandable since it has not reached vol% (for example, the 23rd Polymer Possibility Lecture Abstracts, March 1975).

(発明が解決しようとする問題点) 即ち、従来技術における酸化スズや、こtしを酸化チタ
ンにコーティングし友微粒子を用いる組成物においては
、微粒子が組成物に配色上の悪影響を与えない−いわゆ
る白色組成物が得らnるが、この成型物における実際上
の制電効果はほとんど認められず、いわゆる導電線維の
制電効果は、全く期待出来ないものである。
(Problems to be Solved by the Invention) That is, in conventional compositions in which tin oxide or titanium oxide is coated with fine particles, the fine particles do not have an adverse effect on the coloring of the composition. Although a so-called white composition is obtained, practically no antistatic effect is observed in this molded product, and the antistatic effect of the so-called conductive fibers cannot be expected at all.

従って本発明は酸化スズや−これを酸化チタンにコーテ
ィングした微粒子を用いるイ)のであるが−充分な導電
性による制電性効果が発揮出来る、いわば全く新しい微
粒子含有組成物を提供せんとするものである。
Therefore, the present invention aims to provide a completely new fine particle-containing composition that uses tin oxide or fine particles coated with titanium oxide and can exhibit an antistatic effect due to sufficient conductivity. It is.

(問題点を解決するための手段) 即ち本発明は、酸化アンチモン(Sb203)と酸化ス
ズ(SnO2 )との固溶体の微粒子、または該固溶体
を酸化チタンまたは硫酸バリウムにコートしたものを用
いるもので−より詳細には [1,酸化チタンまたは硫酸バリウムの微粒子表面に、
酸化アンチモン(8b203)と酸化スズ(SnO□)
との組成比が重量比でSnO2 / 5b203= 9
9 / I 〜80/20の固溶体を、5wt%以上、
50wt%以下コーティングした平均粒径0.01μ以
上、0.3μ以下の導電性微粒子(A)と− 酸化アンチモンと酸化スズとの組成比がMm比でSnO
2/5b203=99/1〜80/20の固溶体微粒子
fB)とが、 天然、再生または合成の有機体中に、 該[B)粒子の占める割合がO≦fB)≦xoowt%
であり、 かつfa1粒子あるいは(11粒子、または(A)粒子
および(B1m子の含有割合が16 vol%以上、4
0vol%以下となる様に分散含有されてなる有機導電
性組成物 2、酸化チタンまたは硫酸バリウムの微粒子表面に、酸
化アンチモン(Sb203)と酸化スズ(SnO2 )
との組成比が重量比でSnO2/8b203= 99/
1〜80/20の固溶体を、5wt%以上、50we%
以下コーティングした平均粒径o、01μ以上、0.3
μ以下の導電性微粒子(A)と、 酸化アンチモンと酸化スズとの組成比が重量比でSnO
2/ S b2o、〜99 / 1〜80 /20の固
溶体微粒子CB+とが。
(Means for Solving the Problems) That is, the present invention uses fine particles of a solid solution of antimony oxide (Sb203) and tin oxide (SnO2), or the solid solution coated with titanium oxide or barium sulfate. In more detail, [1. On the surface of fine particles of titanium oxide or barium sulfate,
Antimony oxide (8b203) and tin oxide (SnO□)
The composition ratio by weight is SnO2/5b203=9
9/I ~ 80/20 solid solution, 5 wt% or more,
Conductive fine particles (A) with an average particle diameter of 0.01μ or more and 0.3μ or less coated with 50wt% or less and - The composition ratio of antimony oxide and tin oxide is SnO in Mm ratio.
2/5b203=99/1 to 80/20 solid solution fine particles fB) are present in natural, regenerated or synthetic organisms, and the proportion of the [B) particles is O≦fB)≦xoowt%
and the content of fa1 particles or (11 particles, or (A) particles and (B1m particles) is 16 vol% or more, 4
Organic conductive composition 2, in which antimony oxide (Sb203) and tin oxide (SnO2) are dispersed and contained on the surface of fine particles of titanium oxide or barium sulfate at a concentration of 0 vol% or less.
The composition ratio by weight is SnO2/8b203=99/
1 to 80/20 solid solution, 5wt% or more, 50we%
The average particle size of the coated particles is o, 01 μ or more, 0.3
The composition ratio of conductive fine particles (A) of μ or less and antimony oxide and tin oxide is SnO
2/S b2o, ~99/1 to 80/20 solid solution fine particles CB+.

常温で液体の有機体中に混入されて。mixed into an organism that is liquid at room temperature.

天然、再生または合成の有機体中に、 該(B1粒子の占める割合が0≦(B)≦ioowt%
であり、 かつ(A1粒子あるいは(B1粒子、または(A)粒子
およびFB+粒子の含有割合が16 vol%以上、4
0vol%以下となる様に分散含有ざオームてなる有機
導電性組成物 3、合成の有機体が、溶融成形可能な合成重合体である
ことを特徴とする特許請求の範囲第1項または第2項記
載の¥CC機工電性組成物   」である。
In a natural, regenerated or synthetic organism, the proportion of B1 particles is 0≦(B)≦iowt%.
and the content ratio of (A1 particles or (B1 particles) or (A) particles and FB+ particles is 16 vol% or more, 4
Claim 1 or 2, characterized in that the organic conductive composition 3 contains a ohm dispersed therein at a content of 0 vol% or less, and the synthesized organic substance is a synthetic polymer that can be melt-molded. ¥CC Mechanical and Electrical Compositions as described in Section 1.

酸化スズ(正しくは酸化第二スズ)は−正に8nO,l
の形ではその電気伝導性は低いものである。
Tin oxide (properly stannic oxide) is - exactly 8nO,l
In the form of , its electrical conductivity is low.

8n’−)2−Xの形で、化学蔵論的な組成からすらし
7酸素欠陥を導入する事で昏よじめで10−4ΩGとい
う低い抵抗値が得られるのである。しかしながらこの酸
素欠陥の導入は正確を期すのは極めて困難であり。
By introducing 7 oxygen defects from the schemiochemical composition in the form of 8n'-)2-X, a low resistance value of 10-4 ΩG can be obtained. However, it is extremely difficult to ensure accuracy in introducing this oxygen defect.

従って抵抗値を低いレベルで制御することは実a的に不
可能である。
Therefore, it is practically impossible to control the resistance value at a low level.

一方酸化スズは、酸化ウランと約200=1の組成で固
溶体を作ると電気抵抗が下がる事が知られている。これ
は制御が簡単ではあるが、ウランを本発明1こ用い稚い
のは当然である。
On the other hand, it is known that when tin oxide forms a solid solution with uranium oxide at a composition of about 200=1, the electrical resistance decreases. Although this is easy to control, it is natural that it is difficult to use uranium in the present invention.

そこで鋭意研究の結果、酸化アンチモン(8b203)
との固溶体を形成させる事で一良好な導電性を持たせ得
る事を見出したのである。
As a result of intensive research, antimony oxide (8b203) was found.
They discovered that good conductivity could be achieved by forming a solid solution with.

微粒子化により見掛の抵抗値は高くなるが、酸化スズの
みの平均粒径0.1μの粒子では約1()3Ω・aの比
抵抗であり、酸化アンチモノとの固溶体(組成比811
(J2 / 5b203=99 / 1〜80 /2 
C1) 微粒子(平均粒径(1,1μ)では1〜10Ω
・1となるのである。
Although the apparent resistance value becomes higher due to finer particles, the specific resistance of tin oxide particles with an average particle size of 0.1μ is approximately 1()3Ω・a, and the resistivity is approximately 1()3Ω・a, which is a solid solution with antimonooxide (composition ratio 811μ).
(J2/5b203=99/1~80/2
C1) Fine particles (1 to 10Ω for average particle size (1.1 μ)
・It becomes 1.

酸化アンチモンと酸化スズとの組成比は11夕化アンチ
モンが1wt、%以上、2Qwl、%以下とするのがそ
の総合的な性能からいって必要である。i:た酸化チタ
ンまたは硫酸バリウムに該混合物をコートする量比とし
ては該混合物を5wt%以上−5Qwt%以下とするの
が良い。コートgが少いと導電性が不足(−1多過ぎる
と目的とする白変の改良が出来な(なってしまう。また
このコートにより該混合物の比重が6.6前後も95る
ものが4−5前後と軽くなり有機体に混合するに当り少
い本屋で目的とする体積分率とすることがでさるメリッ
トがある。
In view of its overall performance, the composition ratio of antimony oxide and tin oxide should be 1 wt.% or more and 2 Qwl.% or less of antimony oxide. i: The ratio of the amount of the mixture to be coated on titanium oxide or barium sulfate is preferably 5wt% or more and -5Qwt% or less. If the coat g is too small, the conductivity will be insufficient (-1) If it is too large, the desired white discoloration improvement will not be achieved. It has the advantage of being lighter, around 5%, and less likely to be mixed with organic matter, making it possible to achieve the desired volume fraction.

またこrしらの微粒子の平均粒径としては、f+、(J
lμ以上、0.3μ以下が必須である。(1,(11μ
以下では粒子の凝集が激しく有機体中に分散することが
困難となり、0.3μを越えると組成物の成形上例えば
紡糸工程でのトラブルの原因となる。また粒子の混合割
合Cよより白変を要求される分野ではコーティングした
粒子を用い、導電性をより要求される分野には酸化アン
チモン・酸化スズのみからなる粒子を用い得る。要する
にその分野での要求される性能に応じて0〜100%ま
での範囲で混合比を変えることができるのである。該粒
子の有機体への混合率は体積分率で16 vol%思上
が必要である。これより少いと導電性が不足し本発明の
目的を達することができない。また4 0vol%を越
えて添加すると有機組成物としてもろくなり、実用に耐
えなくなってしまうのである。
In addition, the average particle diameter of these fine particles is f+, (J
It is essential that it is 1μ or more and 0.3μ or less. (1, (11μ
If the particle size is less than 0.3 μm, the particles will aggregate so strongly that it will be difficult to disperse them in the organic body, and if the particle size exceeds 0.3 μm, it will cause trouble in forming the composition, for example, in the spinning process. Further, coated particles can be used in fields where white discoloration is required more than the mixture ratio C of particles, and particles made only of antimony oxide and tin oxide can be used in fields where conductivity is required more. In short, the mixing ratio can be varied within a range of 0 to 100% depending on the performance required in the field. The mixing ratio of the particles to the organic matter is estimated to be 16 vol% in terms of volume fraction. If the amount is less than this, the object of the present invention cannot be achieved due to insufficient conductivity. Moreover, if it is added in an amount exceeding 40 vol %, the organic composition becomes brittle and cannot be put into practical use.

また本発明に用いらγしる有機体は天然、再生、合成を
問わないが本質的にねばり強いものが好ましい。
Furthermore, the organism used in the present invention may be natural, regenerated, or synthetic, but it is preferably one that is essentially tenacious.

合成の有機体としては、溶融成形可能な合成重合体が発
明の目的上好ましく用いら几る。即ち。
As the synthetic organic material, melt-moldable synthetic polymers are preferably used for the purposes of the invention. That is.

溶融成形可能な合成重合体とは溶融紡糸又は溶融押出成
形により繊維又はフィルムを形成しうる合成重合体を油
味11、具体例としては、ナイロン6、ナイロン66等
のポリアミド−ポリエチレンテレフタレート、ポリブチ
レンテレフタレート等のポリエステル、ポリエチレン、
ポリプロピレン等のポリオレフィン等が挙げらnる。
Synthetic polymers that can be melt molded are synthetic polymers that can be formed into fibers or films by melt spinning or melt extrusion. Polyester such as terephthalate, polyethylene,
Examples include polyolefins such as polypropylene.

本発明による套機導電性組成物はそル自体または他の有
機体と複合する事により、静電気除去能または制電能を
有する繊維またはフィルムとする事ができる。また本質
的にほぼ白色であるため原着糸ま之は原着フィルムとす
ることも繊維化後+たは成形後適当な一般的な方法によ
り染色する事も可能である。
The conductive composition of the present invention can be made into a fiber or film having static electricity removal or antistatic ability by itself or by combining with other organic substances. Furthermore, since it is essentially white in color, the spun-dyed yarn can be made into a spun-dyed film, or it can be dyed by a suitable general method after fiberization or molding.

本発明においては一前記(A)粒子あるいはCB+粒子
、またはFA)粒子および(B)粒子を大域に含むマス
ターポリマーをつくり、こnを他の有機体にブレンドし
たものや一非制電性の有機体表面を本発明での組成物で
包んだものも含ま几る。
In the present invention, a master polymer containing a large area of the (A) particles or CB+ particles, or FA) particles and (B) particles is prepared, and this is blended with other organisms or non-antistatic polymers are prepared. It also includes those whose surfaces are covered with the composition of the present invention.

複合繊維とする場合には例えば同心円状、四ソ目状等任
意の複合形状にする小が可能であるが、有機導電性組成
物が繊維軸方向に実質的に連続している事が必要である
。また本発明者らは常温で液体の有機体でも目的によっ
ては有効に利用(〜得る事を認めた。即ち加熱せずに導
電層が流動し得る事が要求ざtLるような分野にも用い
得るのである。従来の例えばカーボンブランクを添加し
たもの等は、例えば塗料の如きものに用いらnても最終
的には固化し、流動させるには熱を加える事が必要だっ
たのである。この有効な利用方法としては、当該常温流
動性有機導電性組成物をIa維細軸方向連続する芯成分
と[7て有する静電気除去能ま友は制電能を有する有機
複合′ilA維をあげることかでざる。
In the case of composite fibers, it is possible to form them into any composite shape such as concentric circles or quarter-cut shapes, but it is necessary that the organic conductive composition is substantially continuous in the fiber axis direction. be. In addition, the present inventors have recognized that even organic materials that are liquid at room temperature can be used effectively for some purposes.In other words, they can also be used in fields where it is required that a conductive layer be able to flow without heating. Conventional products with carbon blank added, for example, even when used in paints, eventually solidify and require the addition of heat to make them fluid. An effective method of utilization is to combine the cold-flowable organic conductive composition with a core component that is continuous in the axial direction of the Ia fibers and an organic composite fiber having antistatic ability. No way.

即ち一常濡固体の有機体に該微粒子を混合した場合−そ
の流動性は極めて低下する。従ってこの様な導電性何機
体を芯成分または一部分に用いた複合繊維を得ようとす
る場合、紡糸後の延伸工程に於て、不用意な処理を行う
と導電部の線維軸方向の連続性か失われ導電能または制
電能が得られなくなる確率が高くなり、このため紡糸工
程、延伸工程に特別な工夫が必要となり、マ友種々の開
眼が加わることとなる。
That is, when the fine particles are mixed into a permanently wet solid organic substance, the fluidity thereof is extremely reduced. Therefore, when trying to obtain a composite fiber using such a conductive body as a core component or a part, careless processing in the drawing process after spinning may result in the continuity of the conductive part in the fiber axis direction. There is a high probability that conductivity or antistatic ability will be lost due to the loss of conductivity or antistatic ability, and therefore special measures will be required in the spinning and drawing processes, and various problems will arise.

しかしながら常温で流動可能7′j有機体に前記(A)
−iB)微粒子を混合し、これを常温固体の有機体例え
ば前記溶融成形可能な合成重合体中に分散含有させる事
により、延伸工程における導電部の切断というトラブル
は兄事に解消されトラブルなく白色内金灰色または任意
に着色1.た静電気除去能または制電能を有する有機線
維を得る事ができるのである。
However, the above-mentioned (A)
-iB) By mixing fine particles and dispersing them in an organic substance that is solid at room temperature, such as the aforementioned melt-formable synthetic polymer, the trouble of cutting the conductive part during the stretching process is solved, and the product can be white without any trouble. Inner gold gray or optionally colored 1. Therefore, it is possible to obtain an organic fiber having static electricity removal ability or antistatic ability.

このような常温での流動性を有する有機体とC,ヨ、例
えば低分子麓のポリエチレンやポリエチレングリコール
、ポリイソブチン−エチレンオキサイド−プロピレンオ
キサイド共重合物等があるが、こtしに限定されるイ、
のではない、ただ17この中でいわゆるシリコーンオイ
ルは、その(、のの絶縁性が高過ぎて用いるのに適当で
はない。
Examples of organic materials that have fluidity at room temperature include low-molecular polyethylene, polyethylene glycol, polyisobutyne-ethylene oxide-propylene oxide copolymers, etc., but the materials are limited to these. ,
However, among these, so-called silicone oil is not suitable for use because its insulating properties are too high.

以下実施例により本発明をざらに詳L <説明−「ろ。The present invention will be described in detail below with reference to Examples.

実施例−1 酸化アンチモン(Sb203)を1(1wt%含宜する
該酸化アンチモンと酸イヒスズ(5n(J2)との固溶
体を酸化チタンに4Qwt%コーティングした平均粒径
fJ、1μの微粒子を、ナイロン−6のチップにエクス
トルーダーにより25 vol%練り込んだところ、j
000Ω・口の比抵抗を宜していた。
Example-1 Titanium oxide was coated with 4Qwt% of a solid solution of antimony oxide (Sb203) containing 1 (1wt%) of antimony oxide and Ihistin acid (5n (J2)). -6 chips were kneaded with 25 vol% using an extruder, j
000Ω・The specific resistance of the mouth was adjusted.

こrしを芯成分とし鞘成分としてナイロン−6,6を用
いて芯/鞘比=】/9の同心円状複合繊維となる様複合
紡糸機により12 o OrrL/rninの紡糸速度
で紡糸し延伸温度150℃延伸速度I CI 0rrL
/m+nで延伸し、単繊維デニール20dの延伸系を得
た。この延伸系の抵抗値を測定したところ] X 10
9Ω/1であり色調はほぼ白色であった。
Using nylon-6,6 as the core component and nylon-6,6 as the sheath component, the fibers were spun and drawn using a composite spinning machine at a spinning speed of 12 o OrrL/rnin to obtain a concentric composite fiber with a core/sheath ratio of /9. Temperature 150°C Stretching speed I CI 0rrL
/m+n to obtain a drawn system with a single fiber denier of 20 d. When the resistance value of this stretching system was measured]
The resistance was 9Ω/1, and the color tone was almost white.

これを200デニール−30フイラメントのナイロン−
6の延伸糸と20本に1本の割合で編地に入るように筒
編地とし、産業安全研究所静電気安全指針にて20℃、
40%BHにおいて帯電々荷密度を測定したところ7.
0μC//771″と優nた制電性(除電性)を有して
いた。
This is 200 denier - 30 filament nylon -
The fabric was knitted into a tube so that one out of every 20 drawn yarns entered the knitted fabric.
When the charge density was measured at 40% BH, 7.
It had an excellent antistatic property (static eliminating property) of 0 μC//771″.

比較例−1 ナイロン−6のチップに、酸化チタンのl (JwC%
となる酸化スズをコーティングした平均粒径01μの酸
化チタン粒子2.7vol%(t o、owt、%)を
添加し一エクストルーダーで十分混合し、比抵抗を測定
したが1014Ω・個であり無添加のナイロン−6と同
一であった。
Comparative Example-1 Titanium oxide (JwC%) was applied to a nylon-6 chip.
2.7 vol% (t o, wt, %) of titanium oxide particles coated with tin oxide and having an average particle size of 01μ were added and thoroughly mixed in one extruder, and the specific resistance was measured, and it was 1014Ω・no particles. It was the same as the added nylon-6.

これを100%用い紡糸延伸(7て10()デニール・
36フイラメントの延伸系とし、筒編地として実施例−
1と同様にして評価し念ところl 2 ltC/dで全
(制電能を認めなかった。
Using this 100%, spinning and drawing (7 to 10 () denier)
Example of a tubular knitted fabric using a drawing system of 36 filaments.
Evaluation was made in the same manner as in 1, and no antistatic ability was observed at l 2 ltC/d.

実施例−2 酸化アンチモン15wt%含有する該醇化アンチモンと
酸化スズとの固溶体を酸化チタンに・同■′L%コーテ
ィングした平均粒径0.1μの微粒子と、酸化アンチモ
ン15wt%を含有する該酸化アンチモンと酸化スズと
の固溶体からなる平均粒径01μの微粒子が1:1の重
斌比となり、ポリエチレン中に微粒子の体積分率2 B
 vol%となる様にエクストルーダーにより混合1〜
たとこる570Ω・国の比抵抗であり、やや灰色がかっ
たチップとすることができた。
Example-2 Fine particles with an average particle size of 0.1μ coated with titanium oxide and a solid solution of antimony oxide and tin oxide containing 15 wt% of antimony oxide, and the oxidized antimony oxide containing 15 wt% of antimony oxide. Fine particles made of a solid solution of antimony and tin oxide with an average particle size of 01μ have a weight ratio of 1:1, and the volume fraction of fine particles in polyethylene is 2B.
Mix with an extruder so that the volume is 1~
The specific resistance was 570Ω, which was the national standard, and a slightly grayish chip could be obtained.

このチップを芯とし〜酸化チタン6,5wt%を含有す
るポリエチレンテレフタレートチソブ((1わゆるセミ
ダル)を用いて、断面が旧゛ン弓状となるような複合繊
維となる様に複合紡糸機により紡糸速度] 3007r
L/III Illで紡糸し、80℃の熱ローラーによ
り、延伸速度10 (+ 7rL/m+nで延伸して単
繊維デニール]5デニールの延伸糸を得た。この延伸糸
の白変は良好であった。
Using this chip as a core and using polyethylene terephthalate (so-called semi-dull) containing 6.5 wt% titanium oxide, a composite spinning machine was used to create a composite fiber with an arched cross section. Spinning speed] 3007r
L/III Ill was spun using a hot roller at 80°C to obtain a drawn yarn with a drawing speed of 10 (monofilament denier by stretching at +7rL/m+n) of 5 denier.The drawn yarn had good white discoloration. Ta.

こ才1.をポリエステルのタフタ織物にtcm間隔に縦
糸として織込み、20°C140%BtIにおいて実施
例−1と同様に評価したところ6.1μc/dと優れた
制電性(除電性)を示(−た。
Talented 1. was woven into a polyester taffeta fabric as warp yarns at intervals of tcm, and evaluated in the same manner as in Example 1 at 20°C and 140% BtI, showing excellent antistatic properties (static neutralization properties) of 6.1 μc/d (-).

比較例−2 酸化アンチモン15wt%を含有する該酸化アンチモン
酸化スズとの固溶体を振動ミルにより粉砕し、比表面積
を測定したところ平均粒径o、oosμの平均粒径であ
った。これを分子量1 (100のポリエチレングリコ
ール中に20vol%になる様に分散しようとし念が、
粒径が細か過ぎ、不均一分散物しか得られず不満足なも
のであった。
Comparative Example 2 A solid solution of antimony oxide and tin oxide containing 15 wt % of antimony oxide was pulverized using a vibration mill, and the specific surface area was measured, and the average particle diameter was o and oosμ. I tried to disperse this in polyethylene glycol with a molecular weight of 1 (100%) to a concentration of 20 vol%, but
The particle size was too small and only a non-uniform dispersion was obtained, which was unsatisfactory.

実施例−13 実施例−2で用いた導電性微粒子を同様の組成でそ几ぞ
れ常温で液状のポリエチレングリコール。
Example 13 The conductive fine particles used in Example 2 had the same composition as polyethylene glycol, which is liquid at room temperature.

低分子!ポリエチレンーポリイソブテン中に混合機によ
り27 vol%になるよう練込んだ。これを複合紡糸
機により酸化チタン2,5wt%を含有するポリエチレ
ンテレフタレートを鞘成分として円心周状複合比1/]
1の複合硼維に紡糸速度1500m/11団で紡糸し、
延伸温度80’C延伸速度30 (177L/T旧nで
延伸したところ1表−1に示す結果を得−また白変は極
めて良好であった。
Low molecules! The mixture was kneaded into polyethylene-polyisobutene using a mixer to a concentration of 27 vol%. This is processed using a composite spinning machine using polyethylene terephthalate containing 2.5 wt% titanium oxide as a sheath component, with a center-circumferential composite ratio of 1/]
1 composite fiber at a spinning speed of 1500 m/11 groups,
When the film was stretched at a stretching temperature of 80' and a stretching speed of 30 (177 L/T old n), the results shown in Table 1 were obtained - and the white discoloration was extremely good.

こrしを実施例−2と同様にし織地として制電性(除電
性)を評価したところ全て良好で1偽った。
The fabric was rubbed in the same manner as in Example 2, and the antistatic properties (static elimination properties) of the fabric were evaluated.

表−1 比較例−3 実施例−1で用いたえ4電性微粒子を45 vol%と
なるようにナイロン−6中に練込もうとしたが、いわゆ
る砂ダンゴ状となり、流動性が全く失オつれてしまい使
用できるものとはならなかった。
Table 1 Comparative Example 3 An attempt was made to knead the tetraelectric fine particles used in Example 1 into nylon-6 at a concentration of 45 vol%, but the resultant mixture became so-called sand-like and completely lost its fluidity. It was worn out and was no longer usable.

実施例−4 酸化スズ85wt%−酸化アンチモン15wt%の組成
よりなる平均粒径t1.2μの固溶体微粒子を、60%
の水ペーストとした。これをレーヨンの複合紡糸設備に
より、紡糸ノズル直前でビスコース中にインジェクショ
ンされる様にして紡糸し、30vol%の導電性徴粒子
含有レーヨン糸(200デニール−10フイラメント)
ヲ得fC0これを150デニール32フイラメントのポ
リエステル繊維と20本に1本の割合で編地に入るよう
にし、実施例−1と同様に評価したところ、6.8μC
/Iと優tした制電性(除電性)を示した。
Example-4 Solid solution fine particles having a composition of 85 wt% tin oxide and 15 wt% antimony oxide and having an average particle diameter of t1.2μ were mixed into 60%
It was made into a water paste. This was spun using a rayon composite spinning equipment so that it was injected into viscose just before the spinning nozzle, resulting in a rayon yarn containing 30 vol% conductive particles (200 denier - 10 filaments).
This was mixed with 150 denier 32 filament polyester fibers into a knitted fabric at a ratio of 1 in 20 fibers, and evaluated in the same manner as in Example 1. As a result, the result was 6.8 μC.
/I, which showed excellent antistatic properties (static elimination properties).

特肝出願人 株式会社 クラレSpecial liver applicant: Kuraray Co., Ltd.

Claims (1)

【特許請求の範囲】 1、酸化チタンまたは硫酸バリウムの微粒子表面に、酸
化アンチモン(Sb_2O_3)と酸化スズ(SnO_
2)との組成比が重量比でSnO_2/Sb_2O_3
=99/1〜80/20の固溶体を、5wt%以上、5
0wt%以下コーティングした平均粒径0.01μ以上
、0.3μ以下の導電性微粒子(A)と、 酸化アンチモンと酸化スズとの組成比が重量比でSnO
_2/Sb_2O_3=99/1〜80/20の固溶体
微粒子(B)とが、天然、再生または合成の有機体中に
、該(B)粒子の占める割合が0≦(B)≦100wt
%であり、 かつ(A)粒子あるいは(B)粒子、または(A)粒子
および(B)粒子の含有割合が16vol%以上、40
vol%以下となるように分散含有さにしてなる有機導
電性組成物 2、酸化チタンまたは硫酸バリウムの微粒子表面に、酸
化アンチモン(Sb_2O_3)と酸化スズ(SnO_
2)との組成比が重量比でSnO_2/Sb_2O_3
=99/1〜80/20の固溶体を、5wt%以上、5
0wt%以下コーティングした平均粒径0.01μ以上
、0.3μ以下の導電性微粒子(A)と、 酸化アンチモンと酸化スズとの組成比が重量比でSnO
_2/Sb_2O_3=99/1〜80/20の固溶体
微粒子(B)とが、 常温で液体の有機体中に混入されて、 天然、再生または合成の有機体中に、 該(B)粒子の占める割合が0≦(B)≦100wt%
であり、 かつ(A)粒子あるいは(B)粒子、または(A)粒子
および(B)粒子の含有割合が16vol%以上、40
vol%以下となる様に分散含有されてなる有機導電性
組成物 3、合成の有機体が、溶融成形可能な合成重合体である
ことを特徴とする特許請求の範囲第1項または第2項記
載の有機導電性組成物
[Claims] 1. Antimony oxide (Sb_2O_3) and tin oxide (SnO_3) are added to the surface of fine particles of titanium oxide or barium sulfate.
2), the composition ratio by weight is SnO_2/Sb_2O_3
= 99/1 to 80/20 solid solution, 5 wt% or more, 5
Conductive fine particles (A) with an average particle diameter of 0.01μ or more and 0.3μ or less coated with 0wt% or less, and a composition ratio of antimony oxide and tin oxide in a weight ratio of SnO
The solid solution fine particles (B) having a ratio of _2/Sb_2O_3 = 99/1 to 80/20 are present in natural, regenerated or synthetic organisms, such that the proportion of the (B) particles is 0≦(B)≦100wt.
%, and the content ratio of (A) particles or (B) particles, or (A) particles and (B) particles is 16 vol% or more, 40
Organic conductive composition 2 is prepared by dispersing and containing antimony oxide (Sb_2O_3) and tin oxide (SnO_
2), the composition ratio by weight is SnO_2/Sb_2O_3
= 99/1 to 80/20 solid solution, 5 wt% or more, 5
Conductive fine particles (A) with an average particle diameter of 0.01μ or more and 0.3μ or less coated with 0wt% or less, and a composition ratio of antimony oxide and tin oxide in a weight ratio of SnO
Solid solution fine particles (B) with a ratio of _2/Sb_2O_3 = 99/1 to 80/20 are mixed into an organic body that is liquid at room temperature, and the proportion of the (B) particles is mixed into a natural, regenerated or synthetic organism. The proportion is 0≦(B)≦100wt%
and the content ratio of (A) particles, (B) particles, or (A) particles and (B) particles is 16 vol% or more, 40
Claim 1 or 2, characterized in that the organic conductive composition 3 is dispersed and contained in an amount of vol% or less, and the synthetic organic substance is a synthetic polymer that can be melt-molded. The organic conductive composition described
JP61168571A 1986-07-16 1986-07-16 Organic conductive composition Expired - Lifetime JPH064719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168571A JPH064719B2 (en) 1986-07-16 1986-07-16 Organic conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168571A JPH064719B2 (en) 1986-07-16 1986-07-16 Organic conductive composition

Publications (2)

Publication Number Publication Date
JPS6323965A true JPS6323965A (en) 1988-02-01
JPH064719B2 JPH064719B2 (en) 1994-01-19

Family

ID=15870509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168571A Expired - Lifetime JPH064719B2 (en) 1986-07-16 1986-07-16 Organic conductive composition

Country Status (1)

Country Link
JP (1) JPH064719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property
JPH0578582A (en) * 1991-09-19 1993-03-30 Toshiba Silicone Co Ltd Conductive silicone rubber composition
JP2005171024A (en) * 2003-12-09 2005-06-30 Kansai Paint Co Ltd White conductive primer coating

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130006A (en) * 1980-03-14 1981-10-12 Mitsubishi Metal Corp Conductive composite powder
JPS5739213A (en) * 1980-08-13 1982-03-04 Kanebo Synthetic Fibers Ltd Electrically conductive composite fiber and its preparation
JPS57133454A (en) * 1981-02-13 1982-08-18 Kanzaki Paper Mfg Co Ltd Electrostatic recording material
JPS57191325A (en) * 1981-05-20 1982-11-25 Unitika Ltd Electrically conductive composite fiber
JPS5834842A (en) * 1981-08-25 1983-03-01 Mitsubishi Metal Corp Electrically conductive polyvinyl chloride plastisol composition
JPS5891777A (en) * 1981-11-25 1983-05-31 Mitsubishi Metal Corp Electrically conductive clear paint
JPS61141616A (en) * 1984-12-11 1986-06-28 Ishihara Sangyo Kaisha Ltd Electrically conductive titanium dioxide fine powder, and production thereof
JPS62181371A (en) * 1986-02-06 1987-08-08 Seiko Kasei Kk White electrically-conductive coating compound and white electrically-conductive film comprising same
JPH0533446A (en) * 1991-07-25 1993-02-09 Bunka Shutter Co Ltd Top rail fitting method for handrail pillar base fixture for wooden balcony or the like

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130006A (en) * 1980-03-14 1981-10-12 Mitsubishi Metal Corp Conductive composite powder
JPS5739213A (en) * 1980-08-13 1982-03-04 Kanebo Synthetic Fibers Ltd Electrically conductive composite fiber and its preparation
JPS57133454A (en) * 1981-02-13 1982-08-18 Kanzaki Paper Mfg Co Ltd Electrostatic recording material
JPS57191325A (en) * 1981-05-20 1982-11-25 Unitika Ltd Electrically conductive composite fiber
JPS5834842A (en) * 1981-08-25 1983-03-01 Mitsubishi Metal Corp Electrically conductive polyvinyl chloride plastisol composition
JPS5891777A (en) * 1981-11-25 1983-05-31 Mitsubishi Metal Corp Electrically conductive clear paint
JPS61141616A (en) * 1984-12-11 1986-06-28 Ishihara Sangyo Kaisha Ltd Electrically conductive titanium dioxide fine powder, and production thereof
JPS62181371A (en) * 1986-02-06 1987-08-08 Seiko Kasei Kk White electrically-conductive coating compound and white electrically-conductive film comprising same
JPH0533446A (en) * 1991-07-25 1993-02-09 Bunka Shutter Co Ltd Top rail fitting method for handrail pillar base fixture for wooden balcony or the like

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property
JPH0440456B2 (en) * 1988-06-10 1992-07-03 Unitika Ltd
JPH0578582A (en) * 1991-09-19 1993-03-30 Toshiba Silicone Co Ltd Conductive silicone rubber composition
JP2005171024A (en) * 2003-12-09 2005-06-30 Kansai Paint Co Ltd White conductive primer coating

Also Published As

Publication number Publication date
JPH064719B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
TWI393730B (en) Conductive masterbatches and conductive monofilaments
KR19990064112A (en) Conductive polymer composition
CN105002595A (en) Polymer composite function fibers containing partial graphene, and preparation method thereof
JPS5839175B2 (en) Antistatic synthetic polymer composition
DE1544814A1 (en) Molding compounds made from poly-alpha-olefins that can be tinted with disperse dyes
CN115028968A (en) Antibacterial functional master batch, preparation method thereof, antibacterial polyester fiber and fabric
CN1584141A (en) Composite electric conductive fibers coloreld at original liquid
JPS6323965A (en) Electrically conductive organic composition
KR890001835B1 (en) Anti-electric polyester fiber&#39;s making method
JPS61250034A (en) Production of integrally colored polyester pellets
KR940004693B1 (en) Method of preparing polyester fiber having an excellent dipersibility of particles and antibacterial ability
CN109503946A (en) A kind of plant source polypropylene fibre master batch and preparation method thereof
KR100510767B1 (en) Conductive polyester fiber
US3061576A (en) Filament comprising polypropylene and a caprolactam-coated pigment and method of making same
JP2721599B2 (en) Composite fiber
JPS6240444B2 (en)
JPS61201008A (en) Production of electrically conductive monofilament
JPS58201828A (en) Electrically condutive polymer composition
JPS60444B2 (en) conductive fiber
CN1033063A (en) Polypropylene antistatic mother material and manufacture method thereof
JPS61256A (en) Electrically conductive polyester composition
JP2633067B2 (en) Conductive composite fiber
KR920009003B1 (en) Conductivity polyester fiber
KR810000030B1 (en) Process for preparing thermo-plastic fiber having anti-static properties