JPS63231878A - Power generating method by fuel cell and its system - Google Patents

Power generating method by fuel cell and its system

Info

Publication number
JPS63231878A
JPS63231878A JP62062620A JP6262087A JPS63231878A JP S63231878 A JPS63231878 A JP S63231878A JP 62062620 A JP62062620 A JP 62062620A JP 6262087 A JP6262087 A JP 6262087A JP S63231878 A JPS63231878 A JP S63231878A
Authority
JP
Japan
Prior art keywords
fuel
hydrogen
gas
fuel cell
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62062620A
Other languages
Japanese (ja)
Other versions
JPH0797503B2 (en
Inventor
Hiroo Kodama
児玉 皓雄
Yoshinori Miyazaki
義憲 宮崎
Shigeo Tanase
繁雄 棚瀬
Keisuke Oguro
小黒 啓介
Hiroshi Nagasaka
浩志 長坂
Hideaki Sekiguchi
英明 関口
Naoki Tsuchiya
直樹 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP62062620A priority Critical patent/JPH0797503B2/en
Publication of JPS63231878A publication Critical patent/JPS63231878A/en
Publication of JPH0797503B2 publication Critical patent/JPH0797503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase a reforming rate of fuel by resupplying non-reformed gas in reformed hydrocarbon fuel to a fuel reformer. CONSTITUTION:Hydrocarbon fuel introduced into an indirect type fuel reformer built-in fuel cell system 1 is reformed in hydrogen-rich gas with a fuel reformer 6 and supplied to hydrogen storage units 2, 3 which utilize metal hydride or hydrogen storage alloy. Hydrogen gas is separated and recovered, and residual non-reformed gas is reformed again with a fuel reformer 10 of the system 1 through valves 18, 19, and the reformed gas is supplied to an anode 7 together with the recovered hydrogen. By multistep reformation, a reforming rate of hydrocarbon fuel to hydrogen is increased and power generating operation having high fuel utilization can be made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池による発電方法、及びその装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of generating electricity using a fuel cell and an apparatus thereof.

〔従来の技術〕[Conventional technology]

炭化水素類を水蒸気改質して得た炭酸ガス混在の水素を
負極活物質として使用する燃料電池としては、溶融炭酸
塩型燃料電池(溶融炭酸塩電解質燃料電池)、リン酸電
解質燃料電池などが知られている。
Examples of fuel cells that use hydrogen mixed with carbon dioxide obtained by steam reforming hydrocarbons as the negative electrode active material include molten carbonate fuel cells (molten carbonate electrolyte fuel cells) and phosphoric acid electrolyte fuel cells. Are known.

本発明は、このような燃料電池による発電方法、及びそ
の装置に係るものであるが、以下、溶融炭酸塩型燃料電
池を例に挙げて説明する。
The present invention relates to a power generation method using such a fuel cell and an apparatus thereof, and will be described below using a molten carbonate fuel cell as an example.

さて、溶融炭酸塩を電解質とする溶融炭酸塩型燃料電池
においては天然ガスなどの炭化水素系の燃料を水蒸気と
混合してこれを改質し、得られた水素を多量に含むガス
をアノードに供給し、この水素が電解質中の炭酸イオン
と反応して炭酸ガスと水と電子とになる。アノードとカ
ソードを負荷回路で接続すれば、アノードで作られた電
子は負荷回路を経てカソードに流れ、カソードにおいて
は空気中の酸素及び炭酸ガスと、カソード内の電子とが
結合して炭酸イオンになり、電解質である溶融炭酸塩の
中に入る。このようにして電子がアノードからカソード
に流れ、即ち、電流がカソードから負荷を経てアノード
へ流れて発電が行われる。
Now, in a molten carbonate fuel cell that uses molten carbonate as an electrolyte, a hydrocarbon fuel such as natural gas is mixed with steam and reformed, and the resulting hydrogen-rich gas is used as an anode. This hydrogen reacts with carbonate ions in the electrolyte to form carbon dioxide, water, and electrons. If the anode and cathode are connected through a load circuit, electrons created at the anode flow to the cathode via the load circuit, and at the cathode, oxygen and carbon dioxide gas in the air combine with the electrons inside the cathode to form carbonate ions. and enters the molten carbonate, which is an electrolyte. In this way, electrons flow from the anode to the cathode, that is, current flows from the cathode through the load to the anode, thereby generating electricity.

溶融炭酸塩型燃料電池装置により発電を行う場合、燃料
として天然ガスあるいはメタノールなどの炭化水素系燃
料を用いるときには、これらのガスを水素リッチなガス
に改質するための燃料改質器が必要である。一般に、水
蒸気による改質反応゛を行わせる方法には、燃料電池装
置系外に改質反応器を設置する外部改質方式と、高温作
動の電池を利用して燃料電池装置系内に改質反応器を設
置する内部改質方式とがある。
When generating electricity using a molten carbonate fuel cell device, when natural gas or hydrocarbon fuels such as methanol are used as fuel, a fuel reformer is required to reform these gases into hydrogen-rich gas. be. In general, there are two methods for carrying out a reforming reaction using water vapor: an external reforming method in which a reforming reactor is installed outside the fuel cell system, and a reforming method in which a reforming reactor is installed inside the fuel cell system using a high-temperature battery. There is an internal reforming method in which a reactor is installed.

炭化水素系燃料ガスの水蒸気改質反応には大きな吸熱を
伴う。例えばメタンの水蒸気改質は、(1)式で示され
る。
The steam reforming reaction of hydrocarbon fuel gas is accompanied by a large endothermic reaction. For example, steam reforming of methane is represented by equation (1).

CH4+2H20=CO□+4112     (11
この反応の反応熱は、39.44kca 7!/ mo
l必要である。一方、燃料電池では、化学エネルギーを
電気エネルギーに変換する場合のシステム効率が45〜
50%であり、残りは熱エネルギーとして発生する。こ
の電池内部で発生した熱を利用して改質反応を行わせる
前記内部改質方式では、55%以上の高い発電システム
効率が期待される。これに対して、前記外部改質方式で
は、外部よりバーナ等で加熱する必要がある。このこと
から、燃料改質器内蔵型燃料電池装置は、高効率の発電
装置として注目されている。
CH4+2H20=CO□+4112 (11
The reaction heat of this reaction is 39.44 kca 7! /mo
l is necessary. On the other hand, in fuel cells, the system efficiency when converting chemical energy into electrical energy is 45 ~
50%, and the rest is generated as thermal energy. In the internal reforming method, in which the reforming reaction is performed using heat generated inside the battery, a high power generation system efficiency of 55% or more is expected. On the other hand, in the external reforming method, it is necessary to heat from the outside with a burner or the like. For this reason, the fuel cell device with a built-in fuel reformer is attracting attention as a highly efficient power generation device.

従来から、燃料改質器内蔵型燃料電池装置には、改質反
応に必要な触媒の配置の仕方や燃料ガスの供給方法によ
っていくつかの方式がある。第4図(A)は、アノード
のガス供給路の一部に改質触媒を配置する直接方式の燃
料改質器内蔵型燃料電池装置の模式図を示す。第4図(
B)は、アノード室に隣接する反応室に改質触媒を配置
する間接方式の燃料改質器内蔵型燃料電池装置の模式図
を示す。これらの図において31a、3’lbは燃料改
質器内蔵型燃料電池装置、32a、32bは炭化水素系
燃料ガスと水蒸気の導入管、33a、33bは触媒燃焼
器、34a、34bは空気の導入管、35a。
Conventionally, there have been several types of fuel cell devices with a built-in fuel reformer, depending on the arrangement of catalysts required for the reforming reaction and the method of supplying fuel gas. FIG. 4(A) shows a schematic diagram of a fuel cell device with a built-in fuel reformer of a direct type in which a reforming catalyst is disposed in a part of the gas supply path of the anode. Figure 4 (
B) shows a schematic diagram of a fuel cell device with a built-in fuel reformer of an indirect type in which a reforming catalyst is arranged in a reaction chamber adjacent to an anode chamber. In these figures, 31a and 3'lb are fuel cell devices with a built-in fuel reformer, 32a and 32b are introduction pipes for hydrocarbon fuel gas and steam, 33a and 33b are catalytic combustors, and 34a and 34b are air introduction pipes. Tube, 35a.

35bは燃料改質反応装置、36a、36bはアノード
、37a、37bは電解質板、38a、38bはカソー
ドである。
35b is a fuel reforming reaction device, 36a and 36b are anodes, 37a and 37b are electrolyte plates, and 38a and 38b are cathodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来の燃料改質器内蔵型燃料電池装
置は前記直接方式、間接方式のいずれの場合でも、それ
ぞれに次のような欠点がある。
However, such conventional fuel cell devices with a built-in fuel reformer have the following drawbacks, regardless of whether they are of the direct type or indirect type.

すなわち、メタンの水蒸気改質反応の場合には、(1)
式以外に(2)式によっても反応する。
That is, in the case of methane steam reforming reaction, (1)
In addition to the formula, the reaction also occurs according to the formula (2).

CH4+1(20=CO+ 3H2(2)また、−酸化
炭素、水蒸気あるいは炭酸ガスと水素が共存することか
ら、(3)式の平衡関係が成立する。
CH4+1 (20=CO+ 3H2 (2) Furthermore, since -carbon oxide, water vapor, or carbon dioxide gas and hydrogen coexist, the equilibrium relationship of equation (3) is established.

CO+■、O=CO□+H2(31 前記直接方式では、改質反応によって生成した水素が直
ちに電池反応で消費されるので、(2)式と(3)式の
平衡関係が右側へ移行することに起因して、メタン等の
改質率が高くなる利点がある。しかし、この場合には、
腐食性の強い電解質蒸気にさらされるので触媒能力の低
下が生じる。そのために、長時間の安定した電池性能が
得られない欠点がある。
CO+■, O=CO□+H2 (31 In the direct method, the hydrogen produced by the reforming reaction is immediately consumed in the cell reaction, so the equilibrium relationship between equations (2) and (3) shifts to the right. This has the advantage of increasing the reforming rate of methane, etc. However, in this case,
Exposure to highly corrosive electrolyte vapor causes a decrease in catalytic performance. Therefore, there is a drawback that stable battery performance over a long period of time cannot be obtained.

一方、前記間接方式では、改質触媒が直接電解質の蒸気
にさらされることがないので特性の劣化は生じない。そ
のために通常の触媒を使用することが出来る。しかし、
この間接方式では、生成した水素が直ちに消費されない
ので、メタン等の改質率があまり上がらない欠点がある
On the other hand, in the indirect method, the reforming catalyst is not directly exposed to the electrolyte vapor, so no deterioration of characteristics occurs. Customary catalysts can be used for this purpose. but,
This indirect method has the disadvantage that the reforming rate of methane and the like cannot be increased very much because the generated hydrogen is not consumed immediately.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の問題点に鑑みてなされたもので、炭
化水素系燃料を改質して得た炭酸ガス混在の水素を負極
活物質として使用する燃料電池装置における炭化水素系
燃料の改質率を向上することを目的とするものである。
The present invention has been made in view of the above-mentioned conventional problems, and is aimed at reforming hydrocarbon fuel in a fuel cell device that uses hydrogen mixed with carbon dioxide gas obtained by reforming hydrocarbon fuel as a negative electrode active material. The purpose is to improve the rate.

すなわち本発明の発電方法は、天然ガスやメタノールな
どの炭化水素系燃料を水素リッチなガスに改質する燃料
改質反応装置と燃料電池装置を備えた発電装置において
炭化水素系燃料を燃料改質反応装置に供給して改質ガス
とし、この改質ガスを金属水素化物又は水素吸蔵合金を
利用した水素貯蔵装置に供給して改質ガス中の水素ガス
をこの水素貯蔵装置に分離回収し、この水素貯蔵装置か
ら出た未改質ガスを前記燃料改質反応装置へ返送供給す
るか、又はこの反応装置とは別に設けた燃料改質反応装
置へ供給して改質反応させ、この改質ガスを前記燃料電
池装置のアノードへ導入することを特徴とするものであ
る。
That is, the power generation method of the present invention involves reforming a hydrocarbon fuel such as natural gas or methanol into a hydrogen-rich gas in a power generation device equipped with a fuel reforming reaction device and a fuel cell device. Supplying the reformed gas to a reaction device to produce a reformed gas, supplying the reformed gas to a hydrogen storage device using a metal hydride or a hydrogen storage alloy, and separating and recovering hydrogen gas in the reformed gas to the hydrogen storage device; The unreformed gas discharged from this hydrogen storage device is returned to the fuel reforming reaction device, or is supplied to a fuel reforming reaction device installed separately from this reaction device for a reforming reaction. The present invention is characterized in that gas is introduced into the anode of the fuel cell device.

また本発明の発電装置は、天然ガスやメタノールなどの
炭化水素系燃料を水素リッチなガスに改質する燃料改質
反応装置と燃料電池装置を備えた発電装置において、前
記燃料電池装置を間接方式燃料改質器内蔵型のものとな
すと共に、前記燃料改質反応装置を複数互いに直列に設
け、さらにこれら互いに隣り合う反応装置を連絡する流
路に金属水素化物又は水素吸蔵合金を利用した水素貯蔵
装置を配備し、前記複数の燃料改質反応装置のうち改質
ガス流下流路の最下流側反応装置の改質ガス流出側を前
記燃料電池装置のアノードに連絡せしめたことを特徴と
するものである。
Further, the power generation device of the present invention is a power generation device equipped with a fuel reforming reaction device for reforming hydrocarbon fuel such as natural gas or methanol into hydrogen-rich gas, and a fuel cell device, in which the fuel cell device is installed in an indirect method. In addition to having a built-in fuel reformer, a plurality of the fuel reforming reaction devices are arranged in series, and a metal hydride or a hydrogen storage alloy is used in the flow path connecting the adjacent reaction devices for hydrogen storage. A device is provided, and the reformed gas outflow side of the most downstream reaction device in the reformed gas flow path among the plurality of fuel reforming reaction devices is connected to the anode of the fuel cell device. It is.

C実施例〕 本発明の実施例を、図面に基づいて説明する。C Example] Embodiments of the present invention will be described based on the drawings.

第1図は溶融炭酸塩型燃料電池装置を備えた発電装置の
模式図を示し、図中の1は多数の単位セルおよび燃料改
質器を配置した間接方式燃料改質器内蔵型燃料電池装置
、2.3は金属水素化物(LaNis)16+ FeT
iHzなど)を利用した水素貯蔵装置、4は触媒燃焼器
、5は水素ボンベ、6.10は燃料改質反応装置(燃料
改質器)、7はアノード、8は炭酸塩の電解質板、9は
カソード、11.12は熱交換器、13は天然ガスと水
蒸気の導入管、14は空気の導入管、15′〜22はバ
ルブである。
Figure 1 shows a schematic diagram of a power generation device equipped with a molten carbonate fuel cell device, and 1 in the figure is a fuel cell device with a built-in indirect fuel reformer in which a large number of unit cells and a fuel reformer are arranged. , 2.3 is metal hydride (LaNis) 16+ FeT
4 is a catalytic combustor, 5 is a hydrogen cylinder, 6.10 is a fuel reforming reaction device (fuel reformer), 7 is an anode, 8 is a carbonate electrolyte plate, 9 is a cathode, 11.12 is a heat exchanger, 13 is a natural gas and steam introduction pipe, 14 is an air introduction pipe, and 15' to 22 are valves.

このように、この実施例では2基の燃料改質反応装置6
.10は互いに直列に配備されていると共に、これらを
連絡する管路には2基の水素貯蔵装置2,3が互いに並
列に設けられ、これらの水素貯蔵装置を切替えて使用で
きるように管路にバルブが配設されている。
In this way, in this embodiment, there are two fuel reforming reactors 6.
.. 10 are arranged in series with each other, and two hydrogen storage devices 2 and 3 are installed in parallel with each other in a pipe connecting these, and a pipe is installed in the pipe so that these hydrogen storage devices can be switched and used. A valve is installed.

次に、この発電装置の運転操作手順について説明すると
、前記燃料電池装置lの始動時の昇温に際しバルブ16
.17,19.21を閉めて、バルブ20.22を開き
水素ボンベ5内の水素を、金属水素化物を利用した水素
貯蔵袋W3にいれる。
Next, to explain the operation procedure of this power generation device, when the temperature rises at the time of starting the fuel cell device 1, the valve 16
.. 17, 19.21 are closed, valve 20.22 is opened, and the hydrogen in the hydrogen cylinder 5 is poured into the hydrogen storage bag W3 using metal hydride.

これにより水素吸蔵反応によって発熱するので、この熱
を熱交換器12に循環する熱媒体でこの反応系外へ送り
出し、電池装置lを昇温させる手段とする。次にバルブ
15.1B、20.21を開きバルブ16.17.19
.22を閉じる。これにより天然ガスと水蒸気は、導入
管13より前記燃料電池装置1に内蔵された燃料改質反
応装置6に供給されて改質される。この改質ガス中の水
素ガスは、前記水素貯蔵装置2に導入されて、この装置
内に分離回収され貯蔵される。金属水素化物の水素吸蔵
反応は発熱反応であるために、水素貯蔵装置2内から出
る排熱は、熱交換器11を循環する熱媒体で水素貯蔵装
置2の反応系外へ送り出し、有効利用する。前記水素貯
蔵装置2から出た未改質ガスを、再度燃料電池装置1内
の燃料改質      ・反応装置10へ導入し、充分
に改質反応させてからアノード7へ供給する。
As a result, heat is generated by the hydrogen storage reaction, and this heat is sent out of the reaction system by a heat medium circulating in the heat exchanger 12, thereby serving as a means for raising the temperature of the battery device 1. Next, open valves 15.1B and 20.21 and valves 16.17.19
.. Close 22. Thereby, the natural gas and steam are supplied through the introduction pipe 13 to the fuel reforming reaction device 6 built into the fuel cell device 1 and reformed. Hydrogen gas in this reformed gas is introduced into the hydrogen storage device 2, where it is separated, recovered, and stored. Since the hydrogen storage reaction of metal hydrides is an exothermic reaction, the exhaust heat emitted from inside the hydrogen storage device 2 is sent out of the reaction system of the hydrogen storage device 2 by a heat medium circulating in the heat exchanger 11 and used effectively. . The unreformed gas discharged from the hydrogen storage device 2 is again introduced into the fuel reforming/reacting device 10 in the fuel cell device 1, subjected to a sufficient reforming reaction, and then supplied to the anode 7.

一方、あらかじめ水素が吸蔵されていた、金属水素化物
を利用した水素貯蔵装置3からは、前記燃料電池装置1
の排熱等を利用し熱交換器12を昇温させて、水素を放
出させる。この放出された水素ガスは、バルブ20.2
1を通過させてアノ−ドアへ供給する。この場合、前記
水素貯蔵装置3から放出される水素ガスの流量は、燃料
電池装置1に要求される負荷の変動に応じて、熱交換器
12の温度を制御することで調節される。
On the other hand, from the hydrogen storage device 3 using a metal hydride in which hydrogen has been stored in advance, the fuel cell device 1
The temperature of the heat exchanger 12 is raised using the exhaust heat, etc., and hydrogen is released. This released hydrogen gas is transferred to the valve 20.2.
1 is passed through and supplied to the anorode. In this case, the flow rate of hydrogen gas released from the hydrogen storage device 3 is adjusted by controlling the temperature of the heat exchanger 12 in accordance with changes in the load required of the fuel cell device 1.

アノード7で電池反応に関与しない未反応ガスは、空気
の導入管14から供給される過剰の空気と混合し、触媒
燃焼器4を経てカソード9へ供給する。ここで、前記水
素貯蔵装置2内に水素が充分に吸蔵あるいは前記水素貯
蔵装置3内の水素が充分に放出された場合には、バルブ
15.1B。
Unreacted gas that does not participate in the cell reaction at the anode 7 mixes with excess air supplied from the air introduction pipe 14 and is supplied to the cathode 9 via the catalytic combustor 4. Here, when hydrogen is sufficiently occluded in the hydrogen storage device 2 or hydrogen in the hydrogen storage device 3 is sufficiently released, the valve 15.1B.

20.22を閉じてバルブ16,17.19を開ける。Close valves 20 and 22 and open valves 16 and 17 and 19.

この場合には上記と反対に水素貯蔵装置3内に水素が分
離回収されて貯蔵され、水素貯蔵装置2内から水素が放
出される。以下の操作は、上記の操作手順と同様にして
行う。
In this case, contrary to the above, hydrogen is separated and recovered in the hydrogen storage device 3 and stored, and hydrogen is released from the hydrogen storage device 2. The following operations are performed in the same manner as the above operating procedure.

なお、いわゆる水素吸蔵合金(T i −N i系合金
、Ti−Cu系などの合金)も前記金属水素化物と同様
に水素吸蔵機能を有し、その昇温により水素ガスを放出
する性質があるので、この水素吸蔵合金を水素貯蔵装置
に適用することができる。
In addition, so-called hydrogen storage alloys (Ti-Ni-based alloys, Ti-Cu-based alloys, etc.) also have a hydrogen storage function similar to the metal hydride, and have the property of releasing hydrogen gas when heated. Therefore, this hydrogen storage alloy can be applied to a hydrogen storage device.

以上のように、この実施例では、上記の操作を交互に繰
り返すことで、改質ガス中の水素ガスのみを連続して分
離回収することができ、炭化水素系燃料の改質率を高め
ることが可能である。
As described above, in this example, by repeating the above operations alternately, only the hydrogen gas in the reformed gas can be continuously separated and recovered, thereby increasing the reforming rate of hydrocarbon fuel. is possible.

なお本発明は、上記実施例に係る間接方式燃料改質器内
蔵型燃料電池装置を備えた発電装置に限らず、直接方式
燃料改質器内蔵型燃料電池装置を備えた発電装置のほか
、前記外部改質方式の改質反応器を備えた発電装置につ
いても適用できるものである。また、本発明は、溶融炭
酸塩型燃料電池に限らずリン酸電解質燃料電池など、炭
化水素系燃料を改質して得られる、炭酸ガス混在の水素
を負極活物質として使用する燃料電池に広く適用できる
ものであり、いずれの場合も炭化水素系燃料の改質率を
向上させ、該燃料の使用効率が高い発電操作を行うこと
ができる利点がある。
Note that the present invention is not limited to a power generation device equipped with a fuel cell device with a built-in indirect type fuel reformer according to the above embodiment, but also includes a power generation device equipped with a fuel cell device with a built-in direct type fuel reformer. The present invention can also be applied to a power generation device equipped with an external reforming type reforming reactor. Furthermore, the present invention is applicable not only to molten carbonate fuel cells but also to fuel cells such as phosphoric acid electrolyte fuel cells that use hydrogen mixed with carbon dioxide gas obtained by reforming hydrocarbon fuel as a negative electrode active material. In either case, there is an advantage that the reforming rate of the hydrocarbon fuel can be improved and power generation operation can be performed with high efficiency in using the fuel.

本発明は、上記のように改質ガス中の水素を水素貯蔵装
置に回収すると共に、該装置から流出する未改質ガスを
再び燃料改質反応装置に供給することを骨子とするもの
であるが、上記実施例のように燃料改質反応装置を2基
(又は3基以上)互いに直列に配備した発電装置に限ら
ず、該反応装置を1基設け、該反応装置からの流出ガス
をその流入側に返送するための返送流路を設けると共に
、この返送流路に水素貯蔵装置を配備することによって
も本発明の目的を達成することができる。
The main feature of the present invention is to recover the hydrogen in the reformed gas to the hydrogen storage device as described above, and to supply the unreformed gas flowing out from the device to the fuel reforming reaction device again. However, this is not limited to a power generation device in which two (or three or more) fuel reforming reaction devices are arranged in series as in the above example, but one such reaction device is provided and the outflow gas from the reaction device is The object of the present invention can also be achieved by providing a return flow path for returning hydrogen to the inflow side and providing a hydrogen storage device in this return flow path.

次に、本発明に係る溶融炭酸塩型燃料電池装置における
、メタンの改質率と金属水素化物を利用した水素貯蔵装
置の水素回収率との関係を調べる。
Next, the relationship between the methane reforming rate and the hydrogen recovery rate of the hydrogen storage device using metal hydride in the molten carbonate fuel cell device according to the present invention will be investigated.

前出の式(2+、 T3+の反応において、反応温度が
、前記燃料電池装置の作動温度(600〜700℃)の
範囲内で一定であるとし式(2)、 (3)の平衡関係
が成立するものとする。いま、反応条件として、反応温
度が648℃、メタンと水蒸気の混合比(モル比)が1
F2.5であると仮定し式(21,(31の平衡定数か
らメタンの改質率を数値計算する。
In the reaction of the above equation (2+, T3+), assuming that the reaction temperature is constant within the operating temperature range of the fuel cell device (600 to 700°C), the equilibrium relationships of equations (2) and (3) are established. Now, the reaction conditions are that the reaction temperature is 648°C, and the mixing ratio (molar ratio) of methane and steam is 1.
Assuming that F2.5, the methane reforming rate is calculated numerically from the equilibrium constants of equations (21 and (31).

第2図は、計算から求めたメタン改質率と水素回収率と
の関係を示す。ここで、メタンの改質率は、式(4)で
求めた。
FIG. 2 shows the relationship between the methane reforming rate and the hydrogen recovery rate determined from calculation. Here, the methane reforming rate was determined using equation (4).

メタンの改質率(%) −(1−(CHa、)  /  ((Co) +(CO
2)  +(CH4,)  )  )  X100 (
41また、金属水素化物を利用した水素貯蔵装置内に吸
蔵された水素の回収率は、式(5)で求めた。
Methane reforming rate (%) −(1−(CHa,) / ((Co) +(CO
2) +(CH4,) ) ) X100 (
41 Furthermore, the recovery rate of hydrogen stored in a hydrogen storage device using a metal hydride was determined using equation (5).

水素の回収率(%)−((金属水素化物を利用した水素
貯蔵装置内に吸蔵された 水素回収量)/(初めの改質ガ ス中の水素量))X100(51 第2図から、メタンの改質率は水素の回収率の増大と共
にほぼ直線的に増大することがわかる。
Hydrogen recovery rate (%) - ((Amount of hydrogen recovered stored in the hydrogen storage device using metal hydride) / (Amount of hydrogen in the initial reformed gas)) x 100 (51 From Figure 2, methane It can be seen that the reforming rate increases almost linearly as the hydrogen recovery rate increases.

一方、第3図は、従来の間接方式燃料改質器内蔵型燃料
電池装置を備えた発電装置と、本発明の前記実施例に係
る発電装置について、圧力とメタン改質率との関係を比
較して示したものである。
On the other hand, FIG. 3 compares the relationship between pressure and methane reforming rate for a power generation device equipped with a conventional fuel cell device with a built-in indirect fuel reformer and a power generation device according to the embodiment of the present invention. This is what was shown.

第3図から、本発明の発電方法によればメタンの改質率
が従来の発電方法に比べ大幅に向上することがわかる。
From FIG. 3, it can be seen that according to the power generation method of the present invention, the reforming rate of methane is significantly improved compared to the conventional power generation method.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、燃料改質反応装置から出た
改質ガス中の水素ガスを所定の水素貯蔵装置に分離回収
し、残余のガスを再び燃料改質反応装置へ供給して改質
ガスとし、これを燃料電池装置へ導入するものであるか
ら、発電装置における炭化水素系燃料の水素への改質率
が向上し、該燃料の使用効率が高い発電操作を行うこと
ができる効果がある。
As described above, the present invention separates and recovers the hydrogen gas in the reformed gas discharged from the fuel reforming reaction device into a predetermined hydrogen storage device, and supplies the remaining gas to the fuel reforming reaction device again for reforming. Since this gas is introduced into the fuel cell device, the reforming rate of hydrocarbon fuel to hydrogen in the power generation device is improved, and power generation operations can be performed with high efficiency in using the fuel. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る溶融炭酸塩型燃料電池装置を備え
た発電装置、すなわち間接方式燃料改質器内蔵型燃料電
池装置を備えた発電装置の模式図、第2図はメタンの改
質率と金属水素化物を利用した水素貯蔵装置内の水素回
収率との関係を示すグラフ、第3図は第1図の発電装置
と従来の間接方式燃料改質器内蔵型燃料電池装置につい
て圧力とメタン改質率との関係を比較して示すグラフで
ある。 第4図(AL (B)は従来の燃料改質器内蔵型燃料電
池装置の模式図であって、同図(A)はアノードのガス
供給路の一部に改質触媒を配置する直接方式のものを、
同図CB)はアノード室に隣接する反応室に改質触媒を
配置する間接方式のものを、それぞれ示す。 1・・・間接方式燃料改質器内蔵型燃料電池装置、2.
3・・・水素貯蔵装置、4・・・触媒燃焼器、5・・・
水素ボンベ、6・・・燃料改質反応装置、7・・・7ノ
ード、8・・・電解質板、9・・・カソード、10・・
・燃料改質反応装置、11.12・・・熱交換器、13
.14・・・導入管、15〜22・・・バルブ、31a
、31b・・・燃料改質器内蔵型燃料電池装置、 32a、32b−導入管、33 a、’ 33 b・・
・触媒燃焼器、34a、34b・・・導入管、35a、
35b・・・燃料改質反応装置、35a、36b−アノ
ード、37a、37b−電解質板、38a、38b・・
・カソード。 特許出願人     工業 技 術 院 長特許出願人
     株式会社 荏原製作所(olo)奉話η?ω
乙6に 圧  力(atm)
Figure 1 is a schematic diagram of a power generation device equipped with a molten carbonate fuel cell device according to the present invention, that is, a power generation device equipped with a fuel cell device with a built-in indirect fuel reformer, and Figure 2 is a schematic diagram of a power generation device equipped with a fuel cell device with a built-in indirect fuel reformer. Figure 3 is a graph showing the relationship between the hydrogen recovery rate and the hydrogen recovery rate in a hydrogen storage device using metal hydrides. It is a graph showing the relationship with the methane reformation rate in comparison. Figure 4 (AL) (B) is a schematic diagram of a conventional fuel cell device with a built-in fuel reformer, and Figure (A) is a direct type in which a reforming catalyst is placed in a part of the gas supply path of the anode. The things of
Figure CB) shows an indirect method in which the reforming catalyst is placed in the reaction chamber adjacent to the anode chamber. 1...Fuel cell device with built-in indirect fuel reformer, 2.
3...Hydrogen storage device, 4...Catalytic combustor, 5...
Hydrogen cylinder, 6... Fuel reforming reaction device, 7... 7 node, 8... Electrolyte plate, 9... Cathode, 10...
・Fuel reforming reaction device, 11.12...Heat exchanger, 13
.. 14...Introduction pipe, 15-22...Valve, 31a
, 31b...Fuel cell device with built-in fuel reformer, 32a, 32b-introduction pipe, 33a,' 33b...
-Catalytic combustor, 34a, 34b...introduction pipe, 35a,
35b...Fuel reforming reaction device, 35a, 36b-anode, 37a, 37b-electrolyte plate, 38a, 38b...
・Cathode. Patent applicant: Director of the Institute of Industrial Technology Patent applicant: Ebara Corporation (OLO) Fenghuan η? ω
Pressure on Otsu 6 (ATM)

Claims (3)

【特許請求の範囲】[Claims] (1)天然ガスやメタノールなどの炭化水素系燃料を水
素リッチなガスに改質する燃料改質反応装置と燃料電池
装置を備えた発電装置において炭化水素系燃料を燃料改
質反応装置に供給して改質ガスとし、この改質ガスを金
属水素化物又は水素吸蔵合金を利用した水素貯蔵装置に
供給して改質ガス中の水素ガスをこの水素貯蔵装置に分
離回収し、この水素貯蔵装置から出た未改質ガスを前記
燃料改質反応装置へ返送供給するか、又はこの反応装置
とは別に設けた燃料改質反応装置へ供給して改質反応さ
せ、この改質ガスを前記燃料電池装置のアノードへ導入
することを特徴とする、燃料電池による発電方法。
(1) In a power generation device equipped with a fuel reforming reaction device and a fuel cell device that reform hydrocarbon fuel such as natural gas or methanol into hydrogen-rich gas, hydrocarbon fuel is supplied to the fuel reforming reaction device. This reformed gas is supplied to a hydrogen storage device using a metal hydride or a hydrogen storage alloy, and the hydrogen gas in the reformed gas is separated and recovered to this hydrogen storage device. The emitted unreformed gas is returned to the fuel reforming reaction device, or is supplied to a fuel reforming reaction device provided separately from this reaction device for a reforming reaction, and this reformed gas is sent to the fuel cell. A power generation method using a fuel cell, characterized by introducing the fuel cell into an anode of a device.
(2)天然ガスやメタノールなどの炭化水素系燃料を水
素リッチなガスに改質する燃料改質反応装置と燃料電池
装置を備えた発電装置において、前記燃料電池装置を間
接方式燃料改質器内蔵型のものとなすと共に、前記燃料
改質反応装置を複数互いに直列に設け、さらにこれら互
いに隣り合う反応装置を連絡する流路に金属水素化物又
は水素吸蔵合金を利用した水素貯蔵装置を配備し、前記
複数の燃料改質反応装置のうち改質ガス流下流路の最下
流側反応装置の改質ガス流出側を前記燃料電池装置のア
ノードに連絡せしめたことを特徴とする発電装置。
(2) In a power generation device equipped with a fuel reforming reaction device and a fuel cell device that reform hydrocarbon fuel such as natural gas or methanol into hydrogen-rich gas, the fuel cell device is built into an indirect fuel reformer. type, a plurality of the fuel reforming reaction devices are arranged in series, and a hydrogen storage device using a metal hydride or a hydrogen storage alloy is provided in a flow path connecting these mutually adjacent reaction devices, A power generating device characterized in that a reformed gas outflow side of the most downstream reactor in the reformed gas flow path among the plurality of fuel reforming reactors is connected to an anode of the fuel cell device.
(3)前記互いに隣り合う燃料改質反応装置を連絡する
流路に、前記水素貯蔵装置を互いに並列に配備した特許
請求の範囲第2項記載の発電装置。
(3) The power generation device according to claim 2, wherein the hydrogen storage devices are arranged in parallel with each other in a flow path that connects the fuel reforming reaction devices that are adjacent to each other.
JP62062620A 1987-03-19 1987-03-19 Molten carbonate fuel cell power generator Expired - Lifetime JPH0797503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062620A JPH0797503B2 (en) 1987-03-19 1987-03-19 Molten carbonate fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062620A JPH0797503B2 (en) 1987-03-19 1987-03-19 Molten carbonate fuel cell power generator

Publications (2)

Publication Number Publication Date
JPS63231878A true JPS63231878A (en) 1988-09-27
JPH0797503B2 JPH0797503B2 (en) 1995-10-18

Family

ID=13205541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062620A Expired - Lifetime JPH0797503B2 (en) 1987-03-19 1987-03-19 Molten carbonate fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0797503B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933242A (en) * 1989-02-28 1990-06-12 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system with use of fuel cell
GB2355577A (en) * 1999-10-19 2001-04-25 Ford Global Tech Inc Fuel cell power generation system and method for powering an electric vehicle
CN103588169A (en) * 2008-05-14 2014-02-19 吉坤日矿日石能源株式会社 Reforming system and fuel cell system
WO2021177398A1 (en) * 2020-03-06 2021-09-10 日本フイルコン株式会社 Hydrogen power generation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933242A (en) * 1989-02-28 1990-06-12 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system with use of fuel cell
JPH02226667A (en) * 1989-02-28 1990-09-10 Ishikawajima Harima Heavy Ind Co Ltd Power generation device using fuel cell
GB2355577A (en) * 1999-10-19 2001-04-25 Ford Global Tech Inc Fuel cell power generation system and method for powering an electric vehicle
US6368735B1 (en) 1999-10-19 2002-04-09 Ford Global Technologies, Inc. Fuel cell power generation system and method for powering an electric vehicle
GB2355577B (en) * 1999-10-19 2003-10-15 Ford Global Tech Inc Fuel cell power generation system and method for powering an electric vehicle
CN103588169A (en) * 2008-05-14 2014-02-19 吉坤日矿日石能源株式会社 Reforming system and fuel cell system
WO2021177398A1 (en) * 2020-03-06 2021-09-10 日本フイルコン株式会社 Hydrogen power generation system

Also Published As

Publication number Publication date
JPH0797503B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US6531243B2 (en) Solid oxide fuel operating with an excess of fuel
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
JP3092670B2 (en) Method of generating electricity in fuel cell and fuel cell
JP3781942B2 (en) Solid oxide fuel cell system
JP5061450B2 (en) Fuel cell
JP2007523443A (en) Fuel cells for hydrogen production, power generation, and co-production
JP4956946B2 (en) Fuel cell
TWI385845B (en) Solid oxide fuel cell (sofc) system and its operation method
JP2003086223A (en) Combined system of solid electrolyte type fuel cell and thermoelectric power generator
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JPS63231878A (en) Power generating method by fuel cell and its system
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
JP2940972B2 (en) Fuel cell power generation system and fuel gas supply method
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP2009176659A (en) Fuel cell generation system and its control method
JP3257604B2 (en) Fuel cell generator
AU2021441489B2 (en) Temperature control system for solid oxide cells and method of its use
JPH05225990A (en) Fuel cell system
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP3886887B2 (en) Fuel cell power generation system
KR20240055618A (en) Solid oxide fuel cell receiving pure o2 and co2
JP3240785B2 (en) Internal reforming fuel cell
JP2001210343A (en) Hot water storage/hot water supply system
KR20070040249A (en) Fuel cell system having cooling apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term