JP2001210343A - Hot water storage/hot water supply system - Google Patents

Hot water storage/hot water supply system

Info

Publication number
JP2001210343A
JP2001210343A JP2000022294A JP2000022294A JP2001210343A JP 2001210343 A JP2001210343 A JP 2001210343A JP 2000022294 A JP2000022294 A JP 2000022294A JP 2000022294 A JP2000022294 A JP 2000022294A JP 2001210343 A JP2001210343 A JP 2001210343A
Authority
JP
Japan
Prior art keywords
hot water
supplied
temperature
water storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000022294A
Other languages
Japanese (ja)
Inventor
Osamu Tajima
収 田島
Akira Fujio
昭 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000022294A priority Critical patent/JP2001210343A/en
Publication of JP2001210343A publication Critical patent/JP2001210343A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery system of a solid polymer type fuel cell which can decrease a tank capacity to store hot water and supply the hot water all the time. SOLUTION: The constitution of an exhaust heat recovery system collecting the waste-heat when a solid polymer type fuel cell 6 is used to generate power has the first hot water storage part 112A and the second hot water storage part 112B. At the first hot water storage part 112A, the waste-water is collected by the power generation of the day and the hot water is stored, and the temperature of the stored hot water is raised by the midnight power which uses commercial power supply, and hot water is supplied in the daytime of the next day. At the second hot water storage part 112B, when the hot water of the first hot water storage part 112A is supplied, the waste-heat by the power generation is recovered and the hot water is stored, and the midnight power using commercial power supply raises the temperature of the stored hot water, and the hot water is supplied in the daytime of the next day.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池発電シス
テムを用いて発電をおこなう際に発生する排熱を回収し
て貯湯し、給湯する貯湯・給湯システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water storage / hot water supply system for collecting and storing waste heat generated when generating electricity using a fuel cell power generation system.

【0002】[0002]

【従来の技術】近年、燃焼装置で常時加熱した状態で、
天然ガス、都市ガス、メタノール等の燃料ガスを化学反
応させて水素に改質する改質器と、一酸化炭素を変成す
るCO変成器と、一酸化炭素を除去するCO除去器と、
上記水素によって発電する燃料電池とを備えた固体高分
子型燃料電池発電システムが提案されている。この種の
ものでは、エネルギの有効利用を図るため、固体高分子
型燃料電池を用いて発電をおこなう際に発生する排熱を
回収した貯湯・給湯システムが考えられる。
2. Description of the Related Art In recent years, in a state of being constantly heated by a combustion device,
A reformer for chemically reacting fuel gas such as natural gas, city gas, methanol, etc. to reform hydrogen, a CO converter for converting carbon monoxide, and a CO remover for removing carbon monoxide,
There has been proposed a polymer electrolyte fuel cell power generation system including the above-described fuel cell that generates power using hydrogen. In this type, a hot water storage / hot water supply system that recovers waste heat generated when power is generated using a polymer electrolyte fuel cell in order to effectively use energy is considered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
貯湯・給湯システムでは、固体高分子型燃料電池の排熱
回収時間帯と給湯使用時間帯とが重なり合って、温水を
必要とするときに温水が不足して、給湯できないといっ
た問題が発生するおそれがある。
However, in the conventional hot water storage / hot water supply system, when the exhaust heat recovery time zone of the polymer electrolyte fuel cell overlaps with the hot water supply use time zone, when hot water is required, the hot water is not supplied. There is a possibility that a problem that hot water cannot be supplied due to a shortage may occur.

【0004】そこで、本発明の目的は、上述した従来の
技術が有する課題を解消し、給湯を常に可能にした貯湯
・給湯システムを提供することにある。
[0004] Therefore, an object of the present invention is to provide a hot water storage / hot water supply system which can solve the above-mentioned problems of the prior art and always enables hot water supply.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
水供給管を通じて貯湯タンクに水を供給し、この貯湯タ
ンクに供給された水を、燃料電池発電システムの排熱を
回収して昇温し、この昇温された温水を温水供給管を通
じて外部に給湯する貯湯・給湯システムにおいて、前記
水供給管と温水供給管との間に貯湯タンクをバイパスし
て温水を流すための追焚き器を接続すると共に、貯湯タ
ンクに温度センサを付設し、この温度センサの検出温度
が所定温度以下になった場合、追焚き器を動作させて、
貯湯タンクをバイパスして当該追焚き器で生成した温水
を外部に給湯する構成としたことを特徴とするものであ
る。
According to the first aspect of the present invention,
Water is supplied to the hot water storage tank through the water supply pipe, and the water supplied to the hot water storage tank is recovered by collecting the exhaust heat of the fuel cell power generation system, and the temperature is increased. In a hot water storage / hot water supply system for supplying hot water, a reheater for bypassing the hot water tank and flowing hot water is connected between the water supply pipe and the hot water supply pipe, and a temperature sensor is attached to the hot water storage tank. When the temperature detected by the sensor falls below the predetermined temperature, operate the reheating unit,
The hot water generated by the reheating device is supplied to the outside by bypassing the hot water storage tank.

【0006】請求項2記載の発明は、水供給管を通じて
貯湯タンクに水を供給し、この貯湯タンクに供給された
水を、燃料電池発電システムの排熱を回収して昇温し、
この昇温された温水を温水供給管を通じて外部に給湯す
る貯湯・給湯システムにおいて、前記水供給管と温水供
給管との間に貯湯タンクをバイパスして温水を流すため
の追焚き器を接続すると共に、貯湯タンクに高水位温度
センサと低水位温度センサとを付設し、高水位温度セン
サの検出温度が所定温度以下になった場合、追焚き器を
動作させて、貯湯タンクをバイパスして当該追焚き器で
生成した温水を外部に給湯し、高水位温度センサの検出
温度が所定温度以上の場合、低水位温度センサの検出温
度が所定温度以上であれば、貯湯タンクに貯湯された温
水を外部に給湯し、低水位温度センサの検出温度が所定
温度以下であれば、貯湯タンクに貯湯された温水を外部
に給湯しているとき、当該貯湯タンクに貯湯された温水
を給湯し、追焚き器で生成した温水を外部に給湯してい
るとき、当該追焚き器で生成した温水を給湯するように
現状態を維持する構成としたことを特徴とするものであ
る。
According to a second aspect of the present invention, water is supplied to a hot water storage tank through a water supply pipe, and the temperature of the water supplied to the hot water storage tank is increased by recovering exhaust heat of the fuel cell power generation system.
In the hot water storage / hot water supply system for supplying the heated hot water to the outside through a hot water supply pipe, a reheating unit for flowing hot water is connected between the water supply pipe and the hot water supply pipe by bypassing the hot water storage tank. At the same time, a high water temperature sensor and a low water temperature sensor are attached to the hot water storage tank, and when the detected temperature of the high water temperature sensor falls below a predetermined temperature, the reheater is operated to bypass the hot water storage tank and Hot water generated by the reheater is supplied to the outside, and when the detection temperature of the high water temperature sensor is equal to or higher than a predetermined temperature, and when the detection temperature of the low water temperature sensor is equal to or higher than the predetermined temperature, the hot water stored in the hot water storage tank is discharged If hot water is supplied to the outside and the detected temperature of the low water level temperature sensor is equal to or lower than a predetermined temperature, when hot water stored in the hot water storage tank is supplied to the outside, the hot water stored in the hot water storage tank is supplied and additional heating is performed. In case that hot water and the resulting hot water to the outside, is characterized in that it has a configuration that maintains the current state to the hot water supply hot water generated in the additional heating device.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0008】図1において、符号100は建家を示して
おり、この建家100には低圧電灯線101、電力量計
102、および分電盤103を経て、商用電源が供給さ
れている。この商用電源は、細線で示した第1のケーブ
ル104を経て、エアコン105、テレビジョン106
等に供給されている。
In FIG. 1, reference numeral 100 denotes a building. Commercial power is supplied to the building 100 via a low-voltage lamp 101, a watt-hour meter 102, and a distribution board 103. This commercial power is supplied to the air conditioner 105 and the television 106 via the first cable 104 shown by a thin line.
And so on.

【0009】一方、本実施形態では、家庭用小型電源シ
ステムを構成する固体高分子型燃料電池発電システム
(ポリマ・エレクトロライト・フューエル・セル:PE
FC装置)Sが、建家100の外に設置されている。
On the other hand, in this embodiment, a polymer electrolyte fuel cell power generation system (polymer electrolite fuel cell: PE) constituting a small household power supply system
FC device) S is installed outside the house 100.

【0010】この家庭用小型電源システムSは、図2に
示すように、PEFC装置のほかに熱回収装置を含んで
いる。この熱回収装置は、貯湯タンク112とイオン交
換樹脂125とを有し、このイオン交換樹脂125には
水道管を通じて市水が供給される。この市水はイオン交
換樹脂125で純水にされて、後述する水タンク21
(図3)に供給される。PEFC装置は、燃料供給装置
(脱硫器、改質器、CO変成器、CO除去器)121を
有している。
As shown in FIG. 2, the small household power supply system S includes a heat recovery device in addition to the PEFC device. This heat recovery device has a hot water storage tank 112 and an ion exchange resin 125, and city water is supplied to the ion exchange resin 125 through a water pipe. This city water is made into pure water by the ion-exchange resin 125, and is supplied to a water tank 21 described later.
(FIG. 3). The PEFC device has a fuel supply device (desulfurizer, reformer, CO shift converter, CO remover) 121.

【0011】この燃料供給装置121には天然ガス、都
市ガス、メタノール、LPG、ブタン等の燃料ガスが供
給され、ここにはさらに後述する水タンク21(図3)
からの水が供給されて、水素が生成される。この水素は
燃料電池6に供給されて、ここで水素と空気中の酸素と
を化学反応させて発電が行われる。123は発電制御を
司る制御装置である。
The fuel supply device 121 is supplied with a fuel gas such as natural gas, city gas, methanol, LPG, butane, etc., and further includes a water tank 21 described later (FIG. 3).
Is supplied to produce hydrogen. This hydrogen is supplied to the fuel cell 6, where the hydrogen is chemically reacted with oxygen in the air to generate power. Reference numeral 123 denotes a control device that controls power generation.

【0012】この電力はDC/DCコンバータ124を
経て、180Vにまで昇圧され、系統連系インバータ1
11に送られ、ここから、図1に太線で示した第2のケ
ーブル107を通じて、パソコン108、照明109、
冷蔵庫110等に供給されている。この燃料電池発電シ
ステムSは、系統連系インバータ111を介して商用電
源に接続されている。
This power is boosted to 180 V via a DC / DC converter 124, and
11 and from there, through a second cable 107 shown in bold lines in FIG.
It is supplied to the refrigerator 110 and the like. This fuel cell power generation system S is connected to a commercial power supply via a system interconnection inverter 111.

【0013】この小型電源システムSでは、発電の過程
で熱が発生するので、この熱を利用して市水から温水を
生成し、この温水を、図2に示すように、貯湯槽112
に蓄える。この温水は、図1に示すように、風呂11
3、キッチン114等に供給される。この貯湯槽112
は、建家100の外に設置される。
In this small power supply system S, heat is generated in the process of power generation, and this heat is used to generate hot water from city water, and this hot water is stored in a hot water storage tank 112 as shown in FIG.
To store. This hot water is supplied to a bath 11 as shown in FIG.
3. It is supplied to the kitchen 114 and the like. This hot water tank 112
Is installed outside the house 100.

【0014】つぎに、本実施形態に係る固体高分子型燃
料電池発電システム(家庭用小型電源システム)Sにつ
いて、図3を参照して説明する。
Next, a solid polymer fuel cell power generation system (small household power supply system) S according to this embodiment will be described with reference to FIG.

【0015】この家庭用小型電源システムSでは、天然
ガス、都市ガス、メタノール、LPG、ブタン等の燃料
ガス1が脱硫器2に供給され、ここで燃料ガスから硫黄
成分が除去される。この脱硫器2を経た燃料ガスは、昇
圧ポンプ10で昇圧されて改質器3に供給される。この
改質器3では、水素、二酸化炭素、および一酸化炭素を
含む改質ガスが生成される。この改質器3を経たガス
は、CO変成器4に供給され、ここでは改質ガスに含ま
れる一酸化炭素が二酸化炭素に変成される。
In this small household power supply system S, a fuel gas 1 such as natural gas, city gas, methanol, LPG, or butane is supplied to a desulfurizer 2, where sulfur components are removed from the fuel gas. The fuel gas that has passed through the desulfurizer 2 is boosted in pressure by the booster pump 10 and supplied to the reformer 3. In this reformer 3, a reformed gas containing hydrogen, carbon dioxide, and carbon monoxide is generated. The gas that has passed through the reformer 3 is supplied to a CO converter 4, where carbon monoxide contained in the reformed gas is converted into carbon dioxide.

【0016】このCO変成器4を経たガスは、CO除去
器5に供給され、ここではCO変成器4を経たガス中の
未変成の一酸化炭素が酸化されて二酸化炭素になる。
The gas that has passed through the CO converter 4 is supplied to a CO remover 5, where the unconverted carbon monoxide in the gas that has passed through the CO converter 4 is oxidized to carbon dioxide.

【0017】このCO除去器5を経て、一酸化炭素濃度
が10ppm以下に低減された水素リッチガスが、固体
高分子型の燃料電池6に供給される。この燃料電池6
は、燃料極(アノード)6aと空気極(カソード)6b
と冷却部6cとを備え、上記水素リッチガスは、アノー
ド6aに供給される。この水素リッチガス中の水素と、
上記ファン11を経て、カソード6bに供給された空気
中に含まれる酸素とが反応し、電力が発生する。
Through this CO remover 5, a hydrogen-rich gas having a carbon monoxide concentration reduced to 10 ppm or less is supplied to a polymer electrolyte fuel cell 6. This fuel cell 6
Are a fuel electrode (anode) 6a and an air electrode (cathode) 6b
And a cooling unit 6c, and the hydrogen-rich gas is supplied to the anode 6a. Hydrogen in this hydrogen-rich gas,
Through the fan 11, oxygen contained in the air supplied to the cathode 6b reacts to generate electric power.

【0018】上記改質器3は、バーナ12を有し、ここ
にはパイプ13を介して燃料が供給され、ファン14を
介して空気が供給され、パイプ15を介して、アノード
6aを経た未反応水素が供給される。
The reformer 3 has a burner 12, to which fuel is supplied via a pipe 13, air is supplied via a fan 14, and the burner 12 passes through an anode 6 a via a pipe 15. Reaction hydrogen is supplied.

【0019】システム起動時には、バーナ12に、パイ
プ13を介して燃料が供給されると共に、ファン14を
介して空気が供給され、起動後、システムが安定した場
合には、燃料の供給が断たれて、バーナ12に、パイプ
15を介して、アノード6aを経た未反応水素が供給さ
れる。
When the system is started, fuel is supplied to the burner 12 via the pipe 13 and air is supplied via the fan 14. If the system is stabilized after the start, the fuel supply is cut off. Thus, unreacted hydrogen that has passed through the anode 6 a is supplied to the burner 12 via the pipe 15.

【0020】上記した改質器3、CO変成器4、CO除
去器5、燃料電池6では、所定の反応温度を有する化学
反応が行われる。改質器3における化学反応は吸熱反応
であるので、バーナ12によって常時加熱しながら化学
反応を行う。
In the reformer 3, the CO shift converter 4, the CO remover 5, and the fuel cell 6, a chemical reaction having a predetermined reaction temperature is performed. Since the chemical reaction in the reformer 3 is an endothermic reaction, the chemical reaction is performed while constantly heating with the burner 12.

【0021】また、CO変成器4、CO除去器5で行わ
れる化学反応は発熱反応であるので、例えばCO除去器
5では、システム起動時のみバーナ(図示せず)を燃焼
させて、燃焼ガスを発生させ、このとき発生した燃焼ガ
スの熱でCO除去器5の温度を反応温度まで昇温し、こ
の反応温度まで昇温した後には、発熱反応の熱により反
応温度以上に昇温しないように冷却が行われる。
The chemical reaction performed in the CO converter 4 and the CO remover 5 is an exothermic reaction. For example, in the CO remover 5, a burner (not shown) is burned only when the system is started, and the combustion gas is removed. Is generated, and the temperature of the CO remover 5 is raised to the reaction temperature by the heat of the combustion gas generated at this time. After the temperature is raised to this reaction temperature, the temperature of the CO remover 5 is not raised to the reaction temperature or higher by the heat of the exothermic reaction. Is cooled.

【0022】燃料電池6では、電気化学反応が行われ、
この電気化学反応時の活性化過電圧、濃度過電圧、抵抗
過電圧により熱が発生する。
In the fuel cell 6, an electrochemical reaction takes place.
Heat is generated by activation overvoltage, concentration overvoltage, and resistance overvoltage during the electrochemical reaction.

【0023】上記した改質器3とCO変成器4間、CO
変成器4とCO除去器5間、CO除去器5と燃料電池6
間および燃料電池6の排気系26には、それぞれ熱交換
器18,19,20,27が接続されている。
Between the reformer 3 and the CO shift converter 4, the CO
Between the transformer 4 and the CO remover 5, the CO remover 5 and the fuel cell 6
Heat exchangers 18, 19, 20, and 27 are connected to the space and the exhaust system 26 of the fuel cell 6, respectively.

【0024】そして、各熱交換器18,19,20には
水タンク21の水が、ポンプ23,24,25を介して
循環し、これらの水で、改質器3、CO変成器4、CO
除去器5を経たガスがそれぞれ冷却される。熱交換器2
7には上記貯湯タンク112(図2)の水が、ポンプ2
8を介して循環する。
The water in the water tank 21 circulates through the heat exchangers 18, 19, and 20 via pumps 23, 24, and 25, and the reformer 3, the CO converter 4, CO
The gas passing through the remover 5 is cooled. Heat exchanger 2
7 is supplied with water from the hot water storage tank 112 (FIG. 2).
Circulate through 8.

【0025】燃料電池6の冷却部6cには、ポンプ48
を介して、水タンク21の水が循環し、この水で、燃料
電池6が冷却される。
The cooling unit 6c of the fuel cell 6 includes a pump 48
The water in the water tank 21 circulates through the, and the water cools the fuel cell 6.

【0026】上記改質器3の排気系31には、熱交換器
17が接続され、水タンク21の水が、ポンプ22を介
して供給されると、この熱交換器17で水蒸気化し、こ
の水蒸気が、脱硫器2、ポンプ10を通った原燃料と混
合して改質器3に供給される。
A heat exchanger 17 is connected to the exhaust system 31 of the reformer 3. When water in the water tank 21 is supplied through a pump 22, the water is converted into steam in the heat exchanger 17, The steam is mixed with the raw fuel passed through the desulfurizer 2 and the pump 10 and supplied to the reformer 3.

【0027】上記の排気系31には、熱交換器17の他
に、さらに別の熱交換器32が接続され、この熱交換器
32には、上記貯湯タンク112の水が、ポンプ33を
介して循環し、排熱回収が行われる。
In addition to the heat exchanger 17, another heat exchanger 32 is connected to the exhaust system 31, and the water in the hot water storage tank 112 is supplied to the heat exchanger 32 via a pump 33. And exhaust heat recovery is performed.

【0028】本システムでは、プロセスガス(PG)バ
ーナ34を備える。
The present system includes a process gas (PG) burner 34.

【0029】本システムの起動時には、改質器3、CO
変成器4、CO除去器5を経た改質ガスの組成が安定し
ていないので、それが安定するまでは、このガスを燃料
電池6に供給することができない。そこで、各反応器の
温度が安定するまでは、不安定なガス組成状態にあるガ
スを、このPGバーナ34に導いて燃焼させる。そし
て、各反応器が安定した後、燃料電池6に導入して発電
を行う。燃料電池6での発電に使用できなかった未反応
ガスは、当初PGバーナ34に導いて燃焼し、燃料電池
6の温度が安定した後は、この未反応ガスをパイプ15
を通じて、改質器3のバーナ12に導入して燃焼させ
る。
When the present system is started, the reformer 3, CO 2
Since the composition of the reformed gas that has passed through the shift converter 4 and the CO remover 5 is not stable, this gas cannot be supplied to the fuel cell 6 until the composition becomes stable. Therefore, the gas in an unstable gas composition state is guided to the PG burner 34 and burned until the temperature of each reactor is stabilized. Then, after each reactor is stabilized, it is introduced into the fuel cell 6 to generate power. The unreacted gas that could not be used for power generation in the fuel cell 6 is first guided to the PG burner 34 and burned, and after the temperature of the fuel cell 6 is stabilized, the unreacted gas is transferred to the pipe 15.
Through the burner 12 of the reformer 3 for combustion.

【0030】PGバーナ34の制御系を説明すると、本
システムの起動後、各反応器が温度的に安定するまで
は、開閉弁91が閉じられ、開閉弁36が開かれる。こ
れによって、改質ガスは管路35および開閉弁36を通
じてPGバーナ34に供給される。各反応器が温度的に
安定した場合、今度は、燃料電池6の温度が安定するま
で、開閉弁91、39が開かれ、開閉弁36、92が閉
じられて、改質ガスが管路38および開閉弁39を通じ
てPGバーナ34に供給され、そこで燃焼される。燃料
電池6の温度が安定し、連続して発電が行われる場合、
開閉弁91,92が開かれ、開閉弁36,39が閉じら
れて、燃料電池6を経た未反応ガスは管路15を経てバ
ーナ12に供給される。
The control system of the PG burner 34 will be described. After the system is started, the on-off valve 91 is closed and the on-off valve 36 is opened until the temperature of each reactor is stabilized. Thus, the reformed gas is supplied to the PG burner 34 through the pipe 35 and the on-off valve 36. When the temperature of each reactor is stabilized, the on-off valves 91 and 39 are opened, and the on-off valves 36 and 92 are closed until the temperature of the fuel cell 6 is stabilized. The gas is supplied to the PG burner 34 through the on-off valve 39 and is burned there. When the temperature of the fuel cell 6 is stable and power is continuously generated,
The on-off valves 91 and 92 are opened, the on-off valves 36 and 39 are closed, and the unreacted gas that has passed through the fuel cell 6 is supplied to the burner 12 via the pipe 15.

【0031】PGバーナ34の排気系45には、熱交換
器46が接続され、この熱交換器46には、ポンプ47
を介して、貯湯タンク112の水が循環する。
A heat exchanger 46 is connected to an exhaust system 45 of the PG burner 34, and a pump 47 is connected to the heat exchanger 46.
Circulates through the hot water storage tank 112.

【0032】水タンク21と貯湯タンク112間には、
熱交換器41が接続され、この熱交換器41には、ポン
プ42を介して水タンク21の水が循環し、ポンプ43
を介して貯湯タンク112の水が循環する。
Between the water tank 21 and the hot water storage tank 112,
The heat exchanger 41 is connected, and the water in the water tank 21 circulates through the heat exchanger 41 via a pump 42 and a pump 43
The water in the hot water storage tank 112 circulates through the.

【0033】この熱交換器41での熱交換によって、貯
湯タンク112の水の温度が上昇し、水タンク21の水
の温度が低下する。
By the heat exchange in the heat exchanger 41, the temperature of the water in the hot water storage tank 112 increases, and the temperature of the water in the water tank 21 decreases.

【0034】以上の構成では、家庭用小型電源システム
Sが、コージェネレーションシステムの形態をとるの
で、エネルギの有効活用が図られる。
In the above configuration, since the small household power supply system S takes the form of a cogeneration system, effective use of energy is achieved.

【0035】従って、高い総合熱効率が得られるので、
原燃料の消費量が減少し、二酸化炭素の排出量が低減さ
れる。
Therefore, a high overall thermal efficiency can be obtained,
Raw fuel consumption is reduced and carbon dioxide emissions are reduced.

【0036】本実施形態では、図4に示すように、貯湯
タンク112の下部に接続された水供給管61を通じ
て、貯湯タンク112内に市水が供給される。この貯湯
タンク112に供給された市水は、燃料電池発電システ
ム(家庭用小型電源システムS)の排熱を回収して所定
温度まで昇温され、この昇温された温水は、開閉弁Aお
よび温水供給管62を通じて外部に給湯される。この温
水供給管62は貯湯タンク112の天板に接続されてい
る。上記した排熱回収は、貯湯タンク112内の温水
を、ポンプP(例えば、図3のポンプ28,33,4
2,43,47)を介して循環させることにより行われ
る。熱交換器27でも排熱が回収される。
In this embodiment, as shown in FIG. 4, city water is supplied into the hot water storage tank 112 through a water supply pipe 61 connected to a lower portion of the hot water storage tank 112. The city water supplied to the hot water storage tank 112 recovers the exhaust heat of the fuel cell power generation system (home small power supply system S) and is heated to a predetermined temperature. Hot water is supplied to the outside through the hot water supply pipe 62. The hot water supply pipe 62 is connected to a top plate of the hot water storage tank 112. The above-described exhaust heat recovery is performed by using the hot water in the hot water storage tank 112 with the pump P (for example, the pumps 28, 33, 4 in FIG.
2, 43, 47). Exhausted heat is also recovered by the heat exchanger 27.

【0037】水供給管61と温水供給管62との間に
は、貯湯タンク112をバイパスして温水を流すため
の、開閉弁Bおよびガスバーナを用いた追焚き器63が
接続され、さらに貯湯タンク112には、高水位におけ
る水温T1を検出する高水位温度センサ65と、この高
水位温度センサ65よりも低水位における水温T2を検
出する低水位温度センサ66とが付設されている。
Between the water supply pipe 61 and the hot water supply pipe 62, a reheating unit 63 using an on-off valve B and a gas burner for flowing hot water bypassing the hot water storage tank 112 is connected. A high water temperature sensor 65 for detecting a water temperature T1 at a high water level and a low water temperature sensor 66 for detecting a water temperature T2 at a lower water level than the high water temperature sensor 65 are attached to 112.

【0038】つぎに、この貯湯・給湯システムの動作を
説明する。
Next, the operation of the hot water storage / hot water supply system will be described.

【0039】図5に示すように、まず、高水位温度セン
サ65によって、貯湯タンク112内の高水位における
水温T1を検出し(S1)、この水温T1が例えば60
℃以上か否かを判定する(S2)。この水温T1が60
℃以下であれば、この貯湯タンク112内に貯湯された
お湯は外部への給湯に適さないため、開閉弁Aを閉じ、
開閉弁Bを開いて、追焚き器63を動作させ、この追焚
き器63で生成された60℃以上の温水を、温水供給管
62を通じて外部に給湯する(S3)。
As shown in FIG. 5, first, a water temperature T1 at a high water level in the hot water storage tank 112 is detected by the high water temperature sensor 65 (S1).
It is determined whether the temperature is not less than ° C (S2). This water temperature T1 is 60
If the temperature is equal to or lower than 0 ° C., the hot water stored in the hot water storage tank 112 is not suitable for supplying hot water to the outside.
The on-off valve B is opened, the reheating device 63 is operated, and hot water of 60 ° C. or higher generated by the reheating device 63 is supplied to the outside through the hot water supply pipe 62 (S3).

【0040】この水温T1が例えば60℃以上であれ
ば、今度は、低水位温度センサ66によって、貯湯タン
ク112内の低水位における水温T2を検出し(S
4)、この水温T2が60℃以下か否かを判定する(S
5)。
If the water temperature T1 is, for example, 60 ° C. or higher, the water temperature T2 at the low water level in the hot water storage tank 112 is detected by the low water temperature sensor 66 (S).
4), it is determined whether the water temperature T2 is equal to or lower than 60 ° C. (S)
5).

【0041】この水温T2が60℃以上であれば、貯湯
タンク112内に貯湯されたお湯の量は豊富であるた
め、開閉弁Bを閉じ、開閉弁Aを開いて、貯湯タンク1
12のお湯を温水供給管62を通じて外部に給湯する
(S6)。
If the water temperature T2 is 60 ° C. or higher, the amount of hot water stored in the hot water storage tank 112 is abundant, so that the on-off valve B is closed and the on-off valve A is opened, and the hot water storage tank 1 is opened.
Twelve hot water is supplied outside through the hot water supply pipe 62 (S6).

【0042】S4で、水温T2が60℃以下の場合、貯
湯タンク112内に貯湯されたお湯の量は豊富でなく、
60℃以上の温水は高水位の部分にしか溜まっていな
い。
In S4, when the water temperature T2 is 60 ° C. or less, the amount of hot water stored in the hot water storage tank 112 is not abundant.
Warm water of 60 ° C. or higher is stored only in the high water level portion.

【0043】この場合、本実施形態では、開閉弁A,B
の開閉をおこなわず、現状態をそのまま維持する(S
7)。すなわち、貯湯タンク112内のお湯を利用して
いるときは、そのまま継続して、貯湯タンク112内の
お湯を利用し続け、追焚き器63で生成された温水を利
用しているときは、そのまま継続して、追焚き器63で
生成された温水を利用し続ける。
In this case, in this embodiment, the on-off valves A and B
Is not opened and closed, and the current state is maintained (S
7). That is, when the hot water in the hot water storage tank 112 is used, the hot water in the hot water storage tank 112 is continuously used, and when the hot water generated by the reheating unit 63 is used, Continuously, the hot water generated by the reheating unit 63 is continuously used.

【0044】本実施形態では、燃料電池発電システムの
排熱回収時間帯と給湯使用時間帯とが重なり合って温水
が不足した場合、追焚き器63が動作して、追焚き器6
3の温水が利用されるので、常に給湯が可能になる。
In this embodiment, when the exhaust heat recovery time zone of the fuel cell power generation system overlaps with the hot water supply usage time zone and hot water runs short, the reheating unit 63 operates and the reheating unit 6 operates.
Since hot water of No. 3 is used, hot water supply is always possible.

【0045】また、上述した制御ループの中で、開閉弁
A,Bの開閉をおこなわず、現状態をそのまま維持する
ステップ(S7)が設けられるので、貯湯タンク112
内のお湯の温度変化が頻繁に起こっても、開閉弁A,B
の開閉は頻繁におこなわれず、そのチャタリングが防止
される。
In the control loop described above, a step (S7) for maintaining the current state without opening / closing the on-off valves A and B is provided.
On-off valves A and B even if the temperature of hot water inside
Is not frequently opened and closed, thereby preventing chattering.

【0046】以上、一実施形態に基づいて本発明を説明
したが、本発明はこれに限定されるものでないことは明
らかである。
Although the present invention has been described based on one embodiment, it is apparent that the present invention is not limited to this.

【0047】[0047]

【発明の効果】本発明では、燃料電池発電システムの排
熱回収時間帯と給湯使用時間帯とが重なり合って温水が
不足した場合、追焚き器が動作して、この追焚き器の温
水が利用されるので、常に給湯が可能になる。
According to the present invention, when the exhaust heat recovery time period of the fuel cell power generation system and the hot water supply use time period overlap and hot water runs short, the reheater operates and the hot water of the reheater is used. So that hot water can always be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体高分子型燃料電池発電システ
ムを家庭に設置した場合の系統図である。
FIG. 1 is a system diagram when a polymer electrolyte fuel cell power generation system according to the present invention is installed at home.

【図2】図1の屋外部分を示す図である。FIG. 2 is a view showing an outdoor part of FIG. 1;

【図3】固体高分子型燃料電池発電システムの一実施形
態を示す回路図である。
FIG. 3 is a circuit diagram showing one embodiment of a polymer electrolyte fuel cell power generation system.

【図4】貯湯・給湯システムを示す回路図である。FIG. 4 is a circuit diagram showing a hot water storage / hot water supply system.

【図5】貯湯・給湯システムのフローチャートである。FIG. 5 is a flowchart of a hot water storage / hot water supply system.

【符号の説明】[Explanation of symbols]

6 燃料電池 61 水供給管 62 温水供給管 63 追焚き器 65 高水位温度センサ 66 低水位温度センサ A,B 開閉弁 P ポンプ 6 Fuel cell 61 Water supply pipe 62 Hot water supply pipe 63 Reheating unit 65 High water level temperature sensor 66 Low water level temperature sensor A, B Open / close valve P pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水供給管を通じて貯湯タンクに水を供給
し、この貯湯タンクに供給された水を、燃料電池発電シ
ステムの排熱を回収して昇温し、この昇温された温水を
温水供給管を通じて外部に給湯する貯湯・給湯システム
において、 前記水供給管と温水供給管との間に貯湯タンクをバイパ
スして温水を流すための追焚き器を接続すると共に、貯
湯タンクに温度センサを付設し、この温度センサの検出
温度が所定温度以下になった場合、追焚き器を動作させ
て、貯湯タンクをバイパスして当該追焚き器で生成した
温水を外部に給湯する構成としたことを特徴とする貯湯
・給湯システム。
Water is supplied to a hot water storage tank through a water supply pipe, and the water supplied to the hot water storage tank is recovered by collecting exhaust heat of a fuel cell power generation system, and the temperature is raised. In a hot water storage / hot water supply system for supplying hot water to the outside through a supply pipe, a reheating unit for flowing hot water is connected between the water supply pipe and the hot water supply pipe, and a temperature sensor is provided in the hot water storage tank. When the temperature detected by the temperature sensor becomes equal to or lower than a predetermined temperature, the reheating device is operated to bypass the hot water storage tank and supply hot water generated by the reheating device to the outside. Hot water storage and hot water supply system.
【請求項2】 水供給管を通じて貯湯タンクに水を供給
し、この貯湯タンクに供給された水を、燃料電池発電シ
ステムの排熱を回収して昇温し、この昇温された温水を
温水供給管を通じて外部に給湯する貯湯・給湯システム
において、 前記水供給管と温水供給管との間に貯湯タンクをバイパ
スして温水を流すための追焚き器を接続すると共に、貯
湯タンクに高水位温度センサと低水位温度センサとを付
設し、高水位温度センサの検出温度が所定温度以下にな
った場合、追焚き器を動作させて、貯湯タンクをバイパ
スして当該追焚き器で生成した温水を外部に給湯し、高
水位温度センサの検出温度が所定温度以上の場合、低水
位温度センサの検出温度が所定温度以上であれば、貯湯
タンクに貯湯された温水を外部に給湯し、低水位温度セ
ンサの検出温度が所定温度以下であれば、貯湯タンクに
貯湯された温水を外部に給湯しているとき、当該貯湯タ
ンクに貯湯された温水を給湯し、追焚き器で生成した温
水を外部に給湯しているとき、当該追焚き器で生成した
温水を給湯するように現状態を維持する構成としたこと
を特徴とする貯湯・給湯システム。
2. Water is supplied to a hot water storage tank through a water supply pipe, and the water supplied to the hot water storage tank is recovered by recovering exhaust heat of the fuel cell power generation system, and the temperature is raised. In a hot water storage / hot water supply system for supplying hot water to the outside through a supply pipe, a reheating unit for flowing hot water bypassing the hot water storage tank is connected between the water supply pipe and the hot water supply pipe. A sensor and a low water level temperature sensor are attached, and when the detection temperature of the high water level temperature sensor falls below a predetermined temperature, the reheating unit is operated to bypass the hot water storage tank and to generate hot water generated by the reheating unit. When hot water is supplied to the outside and the detected temperature of the high water temperature sensor is equal to or higher than a predetermined temperature, and when the detected temperature of the low water temperature sensor is equal to or higher than the predetermined temperature, the hot water stored in the hot water storage tank is externally supplied and the low water temperature is set. Sensor If the outlet temperature is equal to or lower than the predetermined temperature, when hot water stored in the hot water storage tank is being supplied to the outside, the hot water stored in the hot water storage tank is supplied, and the hot water generated by the reheating unit is supplied to the outside. A hot water storage / hot water supply system, wherein the current state is maintained so as to supply hot water generated by the reheating unit when the hot water is supplied.
JP2000022294A 2000-01-31 2000-01-31 Hot water storage/hot water supply system Pending JP2001210343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022294A JP2001210343A (en) 2000-01-31 2000-01-31 Hot water storage/hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022294A JP2001210343A (en) 2000-01-31 2000-01-31 Hot water storage/hot water supply system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005369892A Division JP3939333B2 (en) 2005-12-22 2005-12-22 Hot water system

Publications (1)

Publication Number Publication Date
JP2001210343A true JP2001210343A (en) 2001-08-03

Family

ID=18548615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022294A Pending JP2001210343A (en) 2000-01-31 2000-01-31 Hot water storage/hot water supply system

Country Status (1)

Country Link
JP (1) JP2001210343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448691B1 (en) * 2002-03-12 2004-09-16 주식회사 엘지이아이 Cooling system for fuel cell
JP2004335402A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Fuel cell co-generation device
JP2017198364A (en) * 2016-04-26 2017-11-02 三浦工業株式会社 Heated water production system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448691B1 (en) * 2002-03-12 2004-09-16 주식회사 엘지이아이 Cooling system for fuel cell
JP2004335402A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Fuel cell co-generation device
JP4552387B2 (en) * 2003-05-12 2010-09-29 パナソニック株式会社 Fuel cell cogeneration system
JP2017198364A (en) * 2016-04-26 2017-11-02 三浦工業株式会社 Heated water production system

Similar Documents

Publication Publication Date Title
KR100525538B1 (en) Solid high polymer type fuel cell power generating device
EP1276163B1 (en) Solid polymer fuel cell
JP3416653B2 (en) Polymer electrolyte fuel cell power generator
JP2004207093A (en) Fuel cell system and its operation method
JP3943405B2 (en) Fuel cell power generation system
JP2002170591A (en) Solid-polymer-type fuel battery power system
JP3906083B2 (en) Solid polymer fuel cell power generator
JP2001185187A (en) Power generating system for solid polymeric fuel cell
JP2003217623A (en) Solid polymer electrolyte fuel cell generator
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP2001210343A (en) Hot water storage/hot water supply system
JP5068291B2 (en) Fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP4052784B2 (en) Combined heat and power fuel cell power generator and method of operating the same
JP2001210340A (en) Exhaust heat recovery system of solid polymer type fuel cell
JP3939333B2 (en) Hot water system
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP4176130B2 (en) Fuel cell power generation system
JP3679792B2 (en) Solid polymer fuel cell power generator
JP2004213985A (en) Fuel cell system
JP2001185178A (en) Co removing unit and solid polymeric fuel cell power generation system
JP3846180B2 (en) Cogeneration system
JP3994324B2 (en) Fuel cell power generator
KR20070059779A (en) Fuel cell system having stack preheating function
JP2003288936A (en) Fuel cell power generating system and its operation method