JPS60176913A - Insulating silicon carbide powder and its production - Google Patents

Insulating silicon carbide powder and its production

Info

Publication number
JPS60176913A
JPS60176913A JP59030052A JP3005284A JPS60176913A JP S60176913 A JPS60176913 A JP S60176913A JP 59030052 A JP59030052 A JP 59030052A JP 3005284 A JP3005284 A JP 3005284A JP S60176913 A JPS60176913 A JP S60176913A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide powder
boric acid
boron nitride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59030052A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kubota
芳宏 久保田
Toru Takamura
融 高村
Tokio Sekiya
関矢 登喜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59030052A priority Critical patent/JPS60176913A/en
Publication of JPS60176913A publication Critical patent/JPS60176913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce silicon carbide powder having excellent electrical insulation and thermal conductivity, by heating silicon carbide powder in nitrogen gas atmosphere in the presence of carbon and a boric acid compound, thereby depositing a boron nitride layer to the surface of the silicon carbide powder. CONSTITUTION:The powder of silicon carbide is heat-treated at about 1,650- 2,300 deg.C in nitrogen gas atmosphere in the presence of carbon and a boric acid compound to deposit a boron nitride layer having a specific thickness to the surface of the silicon carbide powder. The crystal form of the silicon carbide may be alpha or beta, however, the purity of the silicon carbide is preferably about >=90%. The carbon is e.g. acetylene black, channel black, etc., and the boric acid compound is e.g. boric acid, methyl borate, etc. If necessary, the attached impurities, etc. are removed by washing the treated silicon carbide powder with a hydrochloric acid solution, and the product is dried to obtain the objective silicon carbide powder.

Description

【発明の詳細な説明】 本発明は絶縁性炭化けい素、特には炭化けい素粉末の表
面に窒化はう素層を形成した電気絶縁性と熱伝導性のす
ぐれた炭化けい素粉末およびその製造方法に関するもの
である。
Detailed Description of the Invention The present invention relates to insulating silicon carbide, particularly silicon carbide powder having excellent electrical insulation and thermal conductivity, in which a boron nitride layer is formed on the surface of the silicon carbide powder, and the production thereof. It is about the method.

従来、サイリスク、パワートランジスターなどのような
発熱を伴なう電子部品については、これを電気絶縁性と
放熱性をもつ累月から作る必要があることから、アルミ
ナ、窒化はう素などから作られた基板やマイカ箔または
高分子物質にアルミナ、窒化はう素などを充填した放熱
シートが汎用されているが、これには最近の事務のオー
トメインョン化、コンピューター化に伴なってその小型
化、高性能化が望まれていることから、この伺料につい
てはより熱伝導度が高く、かつ絶縁性のよい粉末材が要
求されている。
Conventionally, electronic components that generate heat, such as cyrisks and power transistors, need to be made from materials that have electrical insulation and heat dissipation properties, so they have been made from materials such as alumina and boron nitride. Heat-dissipating sheets made of printed circuit boards, mica foil, or polymeric materials filled with alumina, boron nitride, etc., are widely used. Due to the desire for improved performance, powder materials with higher thermal conductivity and better insulation are required for this material.

本発明はこのような要求に応えるすぐれた電気絶縁性と
熱伝導性をもつ炭化けい素粉末とその製造方法に関する
ものであって、この第1発明は炭化けい素粉末の表面に
窒化はう素層を形成させてなる絶縁性炭化けい素に関し
、この第2発明は炭化けい素粉末を炭素とほう酸化合物
の存在下に窒素ガス雰囲気下で加熱処理して、その表面
に窒化はう素層を形成させた炭化けい素粉末を得ること
を特徴とするものである。
The present invention relates to a silicon carbide powder having excellent electrical insulation and thermal conductivity that meets these demands, and a method for producing the same. Regarding insulating silicon carbide formed by forming a layer, this second invention heat-treats silicon carbide powder in the presence of carbon and a boric acid compound in a nitrogen gas atmosphere to form a boron nitride layer on its surface. The method is characterized in that a formed silicon carbide powder is obtained.

すなわち、本発明者らは、熱伝導度がアルミナ、窒化は
う素にくらべて著しく高いが、しかし電気絶縁性が低い
ために電子材料として使用されない炭化けい素の改質に
ついて種々検討した結果、この炭化けい素粉末の表面に
窒化はう素層を形成させると電気絶縁性のすぐれた、し
かも熱伝導性のよい炭化けい素粉末を得ることができる
ことを児出すと共に、この種の炭化けい素粉末の製造に
ついては炭化けい素粉末を炭素とほう酸化合物の存在下
に窒素ガス雰囲気中で加熱処理すれは効率よ<1−I曲
物を得ることができるということを確認して本発明を完
成させた。
That is, the present inventors have conducted various studies on the modification of silicon carbide, which has significantly higher thermal conductivity than alumina and boron nitride, but is not used as an electronic material due to its low electrical insulation properties. It was discovered that by forming a boron nitride layer on the surface of this silicon carbide powder, silicon carbide powder with excellent electrical insulation and thermal conductivity can be obtained. Regarding the production of powder, we completed the present invention by confirming that heat treatment of silicon carbide powder in the presence of carbon and a boric acid compound in a nitrogen gas atmosphere can produce a curved material with efficiency <1-I. I let it happen.

本発明の絶縁性炭化けい素を得るために使用される始発
イ」としての炭化けい素は従来市販されているものでよ
く、したがってこれはα型、β型のいずれの結晶形のも
のであってもよいが、これは本発明の方法で製造された
炭化けい素が電子部品用材料とされるものであることか
らできるだけ高純度のもの、例えば純度が90%以上の
ものとすることが好ましい。
The silicon carbide used as the starting material for obtaining the insulating silicon carbide of the present invention may be conventionally commercially available silicon carbide, and therefore it may be in either the α-type or β-type crystal form. However, since the silicon carbide produced by the method of the present invention is used as a material for electronic components, it is preferable that the silicon carbide be as pure as possible, for example, with a purity of 90% or more. .

本発明の絶縁性炭化けい累はこの炭化けい素粉末の表面
に窒化はう素層を形成させることによって宿られるが、
この窒化はう素層を形成させる方法は炭化けい素粉末を
1)玉塩化はう素とアンモニアガスとからの化学蒸着法
て、2)金属はう素の窒化反応で、3)はう酸ナトリウ
ム、尿素とアンモニアガスとの反応て、4)はう酸、リ
ン酸カルシウムとアンモニアガスとの反応で、また5)
炭素とほう酸化合物の窒化反応で得られる窒化はう素を
層状に炭化けい素表面に析11」させればよい。
The insulating silicon carbide of the present invention is deposited by forming a boron nitride layer on the surface of the silicon carbide powder,
The method for forming this nitrided boron layer is to apply silicon carbide powder to 1) a chemical vapor deposition method using boron chloride and ammonia gas, 2) a nitriding reaction of metallic boron, and 3) borosilicate. 4) Reaction of sodium, urea and ammonia gas, 4) Reaction of oxalic acid, calcium phosphate and ammonia gas, and 5)
Boron nitride obtained by a nitriding reaction of carbon and a boric acid compound may be deposited in a layer on the surface of silicon carbide.

しかしこれらの方θモ(二ついては一トS己した1)、
2)の方法は原料が高価で経済性に乏しく、3)、4)
の方法にはその処理を効果的にするために二段処理が必
要で工程が複雑になるという不利があるので、経済的で
、かつ簡便な5)の方法とすることが好ましいものとさ
れる。
However, these people (one of them was one),
Method 2) requires expensive raw materials and is not economical; 3), 4)
Method 5) has the disadvantage of requiring a two-stage treatment to make the treatment effective, which complicates the process. Therefore, method 5) is preferable because it is economical and simple. .

上記した5)の方法による絶縁性炭化けい素の製造方法
に使用される炭素としてはアセチレンブラック、チャン
ネルブラック、グラファイトなどの炭素粉末が例示され
るが、これは木炭あるいはタールであってもよい。また
、こ−に使用されるほう酸化合物としては、はう酸、無
水はう酸などの無機化合物、メチルボレート、エチルボ
レート、ジボランなどの有機はう素化合物が例示され、
この炭素とほう酸化合物はヘンシェルミキサー、リボン
ミキサー、押出機などで混合してから使用すれはよいが
、これにはこの種の窒化反応で公知とされている触媒、
例えば鉄、コバルト、ニツケノペカルシウム、マダイ・
シウム、マンガン、モ、リブデンなとの金属あるいはこ
れらの酸化物、炭酸塩を添加してもよい。炭化けい素粉
米表面に窒化はう素層を形成させるには、前記した炭化
けい素粉末を上記した炭素とほう酸化合物との混合物の
存在下に、窒素ガス雰囲気で加熱処理すればよく、この
窒素ガス雰囲気は窒素ガスとアンモニア、水素、アルゴ
ン、ヘリウムなどとの混合ガス雰囲気としてもよいが、
この加熱温度は1,650°C以下では窒化はう素層の
形成が困難であ1バ 2,300 ’C以上では窒化は
う素でなく炭化はう素が析出するので、これは1,65
0〜2,300℃の範囲とすることがよい。この反応は
炭化けい素と炭素とほう酸化合物との混合物を同一の反
応容器中に収納して行なえばよいが、これは同一の加熱
炉中の別々の反応容器中に収容し、片方の反応器で発生
した窒化はう素を他の容器中の炭化けい素粉米表面に移
送するようにしてもよい。
Carbon powders such as acetylene black, channel black, and graphite are exemplified as the carbon used in the method for producing insulating silicon carbide according to method 5) above, but charcoal or tar may also be used. Examples of the boric acid compound used here include inorganic compounds such as halonic acid and halonic anhydride, and organic boron compounds such as methyl borate, ethyl borate, and diborane.
The carbon and boric acid compound can be mixed in a Henschel mixer, ribbon mixer, extruder, etc. before use.
For example, iron, cobalt, Nitsukenope calcium, red sea bream, etc.
Metals such as ium, manganese, molybdenum, and lithium, or oxides and carbonates thereof may be added. In order to form a boron nitride layer on the surface of silicon carbide powder rice, the silicon carbide powder described above may be heat-treated in a nitrogen gas atmosphere in the presence of the mixture of carbon and boric acid compound described above. The nitrogen gas atmosphere may be a mixed gas atmosphere of nitrogen gas, ammonia, hydrogen, argon, helium, etc.
If this heating temperature is below 1,650°C, it is difficult to form a boron nitriding layer, and if it is above 2,300°C, boron carbide is precipitated instead of boron nitriding. 65
The temperature is preferably in the range of 0 to 2,300°C. This reaction can be carried out by storing a mixture of silicon carbide, carbon, and a boric acid compound in the same reaction vessel, but this reaction can be carried out by storing the mixture in separate reaction vessels in the same heating furnace, and one reactor The boron nitride generated may be transferred to the surface of the silicon carbide powder rice in another container.

なお、この場合の炭化けい素と炭素およびほう酸化合物
との配合割合は炭化けい素表面に析出させるべき窒化は
う素の厚さによって任意に定めればよい。
In this case, the blending ratio of silicon carbide, carbon, and boric acid compound may be arbitrarily determined depending on the thickness of boron nitride to be deposited on the surface of silicon carbide.

これによって炭化けい素粉末の表面は窒化はう素層が形
成されるが、これは必要に応じ塩酸水、熱水などでi’
51j 浄してここに付着している不純物などを除去し
たのち乾燥して製品化される。
As a result, a boron nitride layer is formed on the surface of the silicon carbide powder.
51j After cleaning and removing impurities attached thereto, it is dried and made into a product.

このような方法で得られる本発明の絶縁性炭化けい素は
、炭化けい素が本来有している高熱伝導性とこの表面層
を形成している窒化はう素の有する高給、縁件の両方の
特性をもっているので、これにはアルミナ、窒化はう素
では満足できない高置。
The insulating silicon carbide of the present invention obtained by such a method has both the high thermal conductivity inherently possessed by silicon carbide and the high thermal conductivity possessed by the boron nitride forming this surface layer. This is because alumina, nitride, and boron have such properties that they cannot be satisfied.

熱部位に使用する電子部品用の基板や放熱シートとして
有利に使用することができるという実用性が与えられる
It has the practicality of being advantageous in that it can be advantageously used as a substrate for electronic components or a heat dissipation sheet used in a heated area.

つぎに本発明の実施例をあける。Next, examples of the present invention will be explained.

実施例 α八す炭化けい素PR−10(信濃電気粋錬社製神品名
、平均ね径]Oμ)100gと、アセチレンブラック7
.2g、はう酸33,9、炭酸マグネシウム3gの混合
物とをアルミナ製ボートの前後に2つに分けて載せ、窒
素ガスを51/分で流しながら1,900℃で5時間加
熱処理したところ、表面かや−白くなった炭化けい素粉
末が得られ、これはX線および電子顕微鏡写真から炭化
けい素粉末上に窒化はう素層が均一に被覆されたもので
あることが確言忍された。
Example α 100 g of Yasu silicon carbide PR-10 (manufactured by Shinano Denki Seirensha, name of sacred product, average diameter: Oμ) and acetylene black 7
.. A mixture of 2g of oxalic acid, 33.9g of oxalic acid, and 3g of magnesium carbonate was placed in two parts on the front and back of an alumina boat, and heat treated at 1,900°C for 5 hours while flowing nitrogen gas at a rate of 51/min. Silicon carbide powder with a white surface was obtained, and it was confirmed from X-ray and electron micrographs that this was silicon carbide powder uniformly coated with a boron nitride layer. .

つぎにこの炭化けい素粉末80Iにシリコーンゴム50
gとその硬化触媒2gおよびトルエン20 (l 9を
混合し、キャスティング後に腓燥、プレスして厚さ05
醋の放熱シートを作り、これをパワートランジスターに
設置して電力を負荷したときの温度上昇を測定してその
熱抵抗性を計測すると共にその体積固有抵抗を測定した
ところ、第1表に示したとおりの結果が得られたが、比
較のために上記したような処理を行なわなかった始発剤
としての炭化けい素PR−1+1および市販の窒化はう
素を用いて上記と同じようにして作った放熱シートにつ
いて」二記と同じようにして計測した熱抵抗性と体積固
有抵抗は第1表に併記したとおりの結果を示した。
Next, add 50 parts of silicone rubber to this silicon carbide powder of 80 parts.
g, its curing catalyst 2 g and toluene 20 (l 9) were mixed, and after casting, it was dried and pressed to a thickness of 0.5 mm.
We made a heat dissipation sheet, placed it on a power transistor, measured the temperature rise when power was applied to it, measured its thermal resistance, and measured its volume resistivity, as shown in Table 1. The same results were obtained, but for comparison, a sample was prepared in the same manner as above using silicon carbide PR-1+1 as a starter and commercially available boron nitride without the above treatment. Regarding the heat dissipation sheet, the thermal resistance and volume resistivity were measured in the same manner as described in Section 2, and the results were shown in Table 1.

第1表Table 1

Claims (1)

【特許請求の範囲】 1 炭化けい素粉末の表面に窒化はう素層を形成してな
ることを特徴とする絶縁性炭化けい素粉末 2 炭化けい素粉末を炭素とほう酸化合物の存在下に窒
素ガス雰囲気下で加熱処理して、その表面に窒化はう素
層を形成させた炭化けい素粉末を得ることを特徴とする
絶縁性炭化けい素の製造方法
[Claims] 1. Insulating silicon carbide powder characterized by forming a boron nitride layer on the surface of silicon carbide powder. 2. Silicon carbide powder is heated with nitrogen in the presence of carbon and a boric acid compound. A method for producing insulating silicon carbide, the method comprising heating in a gas atmosphere to obtain silicon carbide powder with a boron nitride layer formed on its surface.
JP59030052A 1984-02-20 1984-02-20 Insulating silicon carbide powder and its production Pending JPS60176913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030052A JPS60176913A (en) 1984-02-20 1984-02-20 Insulating silicon carbide powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030052A JPS60176913A (en) 1984-02-20 1984-02-20 Insulating silicon carbide powder and its production

Publications (1)

Publication Number Publication Date
JPS60176913A true JPS60176913A (en) 1985-09-11

Family

ID=12293051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030052A Pending JPS60176913A (en) 1984-02-20 1984-02-20 Insulating silicon carbide powder and its production

Country Status (1)

Country Link
JP (1) JPS60176913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701427A (en) * 1985-10-17 1987-10-20 Stemcor Corporation Sintered silicon carbide ceramic body of high electrical resistivity
KR20000006202A (en) * 1998-06-23 2000-01-25 시바타 마사하루 A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701427A (en) * 1985-10-17 1987-10-20 Stemcor Corporation Sintered silicon carbide ceramic body of high electrical resistivity
KR20000006202A (en) * 1998-06-23 2000-01-25 시바타 마사하루 A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member

Similar Documents

Publication Publication Date Title
Selvaduray et al. Aluminium nitride: review of synthesis methods
JPS6112844B2 (en)
JPS60176913A (en) Insulating silicon carbide powder and its production
JPH0329023B2 (en)
WO2006103930A1 (en) Method for producing material containing aluminum nitride
JPH01264969A (en) Beta-silicon carbide molding and production thereof
JPS63225591A (en) Manufacture of silicon carbide-coated graphite material
JPS6355108A (en) Aluminum nitride powder and production thereof
JP3725686B2 (en) Method for manufacturing aluminum nitride whisker
JPS62108718A (en) Production of sintered body of cubic boron nitride
JPH01203205A (en) Production of boron nitride powder
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPH11349305A (en) Production of carbonaceous film and film to be treated
WO2006103931A1 (en) Material containing aluminum nitride
JP2003183076A (en) Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JPH01252519A (en) Bulk body consisting of boron, carbon and nitrogen and production thereof
JPS6133701B2 (en)
JP2621192B2 (en) Manufacturing method of aluminum nitride sintered body
JPH04175209A (en) Aluminum nitride and its production
JPH0120527B2 (en)
JPS61146706A (en) Production of silicon carbide
JPH06219730A (en) Production of solid material composed mainly of boron, carbon and nitrogen
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JPH058123B2 (en)
JPH06342705A (en) Manufacture of rare earth magnetic material using plasma reaction