JPS63223155A - Production of alpha+beta type titanium alloy extruded material - Google Patents

Production of alpha+beta type titanium alloy extruded material

Info

Publication number
JPS63223155A
JPS63223155A JP5526487A JP5526487A JPS63223155A JP S63223155 A JPS63223155 A JP S63223155A JP 5526487 A JP5526487 A JP 5526487A JP 5526487 A JP5526487 A JP 5526487A JP S63223155 A JPS63223155 A JP S63223155A
Authority
JP
Japan
Prior art keywords
titanium alloy
billet
alpha
type titanium
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5526487A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Yasuhiro Sato
佐藤 恭博
Yasuto Hayamizu
速水 寧人
Masahiro Kadokawa
門河 昌宏
Yoshimi Yamadera
芳美 山寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5526487A priority Critical patent/JPS63223155A/en
Publication of JPS63223155A publication Critical patent/JPS63223155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To stably produce an extruded material provided with excellent strength, ductility and toughness, by heating an alpha+beta type titanium alloy billet to a specific temp. range, extruding the same under specific conditions, cooling it and thereafter annealing said billet. CONSTITUTION:The titanium alloy billet provided with an extra fine isometric alpha+beta structure by working it at >=50% working rate in the alpha+beta range is heated to the temp. from the beta transformation point - (the beta transformation point + 150 deg.C). The billet is extruded at >=10 extrusion ratio and is cooled to 500 deg.C at the cooling ratio of >=5 deg.C/sec in succession. Said billet is then annealed for 0.5-4hr at 700-800 deg.C to decompose the alpha' martensite. By this method, the titanium alloy extruded material having the excellent strength, ductility and toughness can be stably obtd. regardless of the product shape and size thereof.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、優れた強度、延性並びに靭性を兼備してい
て、航空機用構造部材等に適用した場合にそれらの更な
る性能向上を可能とする“型材”や“管材”等を工業的
規模で安定に生産し得るようにした、α+β型チタン合
金押出材の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention has excellent strength, ductility, and toughness, and when applied to aircraft structural members, etc., it is possible to further improve their performance. The present invention relates to a method for producing α+β type titanium alloy extruded material, which enables stable production of "shaped materials", "tube materials", etc. on an industrial scale.

く背景技術〉 α+β型チタン合金は、優れた靭性を有していることに
加えて良好な強度、加工性、成形性ならびに溶接性をも
備えていることから、高い比強度と優れた耐食性が注目
されているチタン合金の中でも、航空機用構造部材や各
種設備・装置類の構造部材として最大の需要を誇るもの
であり、前記構造部材に供するためには、通常、押出成
形法によって所望素材形状への成形がなされてきた。
Background technology α+β type titanium alloys have not only excellent toughness but also good strength, workability, formability, and weldability, so they have high specific strength and excellent corrosion resistance. Among the titanium alloys that are attracting attention, they are in the greatest demand as structural members for aircraft and various equipment and devices.In order to use these structural members, the material is usually shaped into the desired shape by extrusion molding. It has been shaped into

ところで、押出法によるα+β型チタン合金の成形は変
形抵抗の小さいβ変態点以上の温度域で行われるのが一
般的であるが、β単相域で成形された押出材では“0.
2%耐力”や“延性”等がα+β型域型出押出材べて低
いと言う問題点があった。
By the way, α+β type titanium alloys are generally formed by extrusion in a temperature range above the β transformation point where deformation resistance is low, but extruded materials formed in the β single-phase region have “0.
There was a problem in that the α+β type extruded materials were all low in terms of 2% proof stress and ductility.

そこで、このような問題点を解消し、十分な強度、延性
、靭性等を備えた部材を提供すべり、Ti−611’−
4V系チタン合金を850〜960℃のα+β域で押出
成形する方法が提案された(特開昭61−193719
号)。
Therefore, we solved these problems and provided a member with sufficient strength, ductility, toughness, etc.
A method of extrusion molding a 4V titanium alloy in the α+β region of 850 to 960°C was proposed (Japanese Patent Application Laid-open No. 193719-1983).
issue).

しかしながら、α+β型チタン合金の加工温度と変形抵
抗との関係を示す第1図からも明らかなように、α+β
域(850〜960℃)ではやはり変形抵抗が高く、そ
のため押出製品の寸法や加工度等の面で制限を受け、複
雑形状品の製造が困難であるとの問題を如何ともし難か
った。
However, as is clear from Figure 1, which shows the relationship between processing temperature and deformation resistance of α+β type titanium alloy, α+β
In the temperature range (850 to 960°C), the deformation resistance is still high, which limits the dimensions and processing rate of extruded products, making it difficult to manufacture products with complex shapes.

〈問題点を解決する手段〉 本発明者等は、α+β型チタン合金の押出成形品に係る
上記問題を解決し、強度、延性、靭性が共に優れたα+
β型チタン合金の押出成形品を形状・寸法に格別な制限
を受けることなく安定製造すべく、様々な観点から研究
を行った結果、以下(al〜(d)に示されるような知
見を得るに至ったのである。即ち、 (a)  α+β型チタン合金押出成形品に十分満足で
きる強度、延性並びに靭性を確保するには、最終製品の
ミクロ組織を“微細なβ粒の中に極めて微細な針状αが
存在する状態”とすることが重要であり、押出の最終形
状品を上記ミクロ組織とすれば良好な強度、延性並びに
靭性を兼備したα+β型チタン合金部材が実現されるこ
と、(bl  ただ、変形抵抗の低いβ域での押出成形
により微細なβ粒を得ることは極めて困難なことである
が、思い掛けないことに、押出素材たるビレットとして
その製作時に十分な加工を加えることで容易に実現でき
る“微細な等軸α+β組織”を有するものを使用すると
共に、押出成形後に適切な処置を講ずれば、β域押出に
よっても十分に細かな再結晶β粒が得られ、該微細8粒
中に極めて微細な針状αを析出させたミクロ組織の実現
が可能となること、 (C)  再結晶β粒の成長を抑え、がっ延性を低下さ
せる要因である“β粒界へのα相の析出”を抑えるには
、上述のように押出成形後に適切な処置を講じる必要が
あるが、この処置は“押出成形後そのまま直ちに急冷す
る”手段でなければならないこと、 (d)  上記急冷により得られるミクロ組織はマルテ
ンサイト(α′)と針状のα+βの混合組織となってい
るが、十分に高い延性と靭性とを発揮する“微細なβ粒
の中に極めて微細な針状αが存在するミクロ組織”を実
現するためには、前記急冷後の押出材に所定条件の焼鈍
を施してマルテンサイト(α′)の分解を図る必要があ
ること。
<Means for Solving the Problems> The present inventors have solved the above-mentioned problems regarding extrusion molded products of α+β type titanium alloys, and have developed α+ type titanium alloys that have excellent strength, ductility, and toughness.
In order to stably manufacture β-type titanium alloy extrusion products without any particular restrictions on shape or dimensions, we conducted research from various perspectives and obtained the knowledge shown in (al to (d)) below. (a) In order to ensure sufficient strength, ductility, and toughness for α+β type titanium alloy extruded products, the microstructure of the final product must be modified to have “extremely fine grains in the fine β grains”. It is important to create a state in which acicular α exists, and if the final shape of the extruded product has the above microstructure, an α + β type titanium alloy member with good strength, ductility, and toughness can be realized. bl However, it is extremely difficult to obtain fine β grains by extrusion molding in the β region where deformation resistance is low, but unexpectedly, it is possible to apply sufficient processing at the time of manufacturing the extruded material billet. If we use a material with a "fine equiaxed α+β structure" that can be easily achieved by extrusion and take appropriate measures after extrusion, sufficiently fine recrystallized β grains can be obtained even by β region extrusion. It is possible to realize a microstructure in which extremely fine acicular α particles are precipitated in eight fine grains, and (C) “β grain boundaries, which are a factor that suppresses the growth of recrystallized β grains and reduces ductility. In order to suppress the "precipitation of α phase into the material," as mentioned above, it is necessary to take appropriate measures after extrusion molding, but this treatment must be a means of "quenching immediately after extrusion molding." (d ) The microstructure obtained by the above rapid cooling is a mixed structure of martensite (α') and acicular α+β, but there are extremely fine β grains in the fine β grains that exhibit sufficiently high ductility and toughness. In order to realize a "microstructure in which acicular α exists," it is necessary to subject the extruded material after the rapid cooling to annealing under predetermined conditions to decompose martensite (α').

この発明は、上記知見に基づいてなされたものであり、 α+β域で50%以上の加工が行われて微細な等軸α+
β組織とされたα+β型チタン合金ビレットを、β変態
点〜〔β変態点+150℃〕の温度に加熱して押出比1
0以上の押出加工を行うと共に、引き続いて5℃/秒以
上の冷却速度で500℃以下にまで冷却し、その後70
0〜850℃の温度で0.5〜4時間の焼鈍を行うこと
により、優れた強度、延性並びに靭性を兼備したα+β
型チタン合金押出材を、複雑な形状・寸法のものであっ
ても容易かつ安定に製造し得るようにした点、に特徴を
有するものである。
This invention was made based on the above knowledge, and more than 50% of the processing is performed in the α+β region, resulting in fine equiaxed α+
An α+β type titanium alloy billet with a β structure is heated to a temperature between the β transformation point and [β transformation point + 150°C], and the extrusion ratio is 1.
Extrusion processing of 0 or more is performed, followed by cooling to 500 °C or less at a cooling rate of 5 °C / sec or more, and then 70 °C
By annealing at a temperature of 0 to 850°C for 0.5 to 4 hours, α+β has excellent strength, ductility, and toughness.
This invention is characterized by the fact that it is possible to easily and stably manufacture type titanium alloy extruded materials even if they have complex shapes and dimensions.

なお、この発明の方法において、押出条件を上記の如く
に限定した理由を説明する。
In addition, in the method of this invention, the reason why the extrusion conditions were limited as mentioned above will be explained.

A)適用する押出ビレット 押出成形用ビレットとして“α+β域で50%以上加工
された微細な等軸組織を有するもの”を使用することと
したのは、α+β域での加工率が50%未満ではビレッ
トの組織を所望の微細な等軸α+β組織とすることが出
来ずに針状或いはプレート状のα+β組織となってしま
い、このようなミクロ組織のビレットを押出加工しても
微細な再結晶β粒が得られないからである。
A) Applicable extrusion billet We decided to use a billet for extrusion molding that has a fine equiaxed structure that has been processed by 50% or more in the α+β region because if the processing rate in the α+β region is less than 50%, The structure of the billet cannot be made into the desired fine equiaxed α+β structure, but becomes an acicular or plate-like α+β structure, and even if a billet with such a microstructure is extruded, fine recrystallized β This is because grains cannot be obtained.

B)押出時の加熱温度 β変態点を下回る温度域での押出では、変形抵抗が高い
上、この発明が目指す“微細なβ粒の中に極めて微細な
針状αが析出したミクロ組織”を得ることが出来ずに靭
性の改善がなされない。一方、〔β変態点+150℃〕
を超える温度で押出すると0.2%耐力、延性及び靭性
が劣化することに加えて、表面酸化による肌荒れにより
良好な製品を得ることが出来ない。従って、押出時の加
熱温度はβ変態点〜〔β変態点+150’c)の範囲と
限定した。
B) Heating temperature during extrusion Extrusion in a temperature range below the β transformation point not only has high deformation resistance, but also reduces the ability to achieve the “microstructure in which extremely fine acicular α particles are precipitated within fine β grains” that this invention aims for. Therefore, the toughness cannot be improved. On the other hand, [β transformation point +150℃]
If extruded at a temperature exceeding 0.2%, the yield strength, ductility, and toughness will deteriorate, and a good product will not be obtained due to surface roughness due to surface oxidation. Therefore, the heating temperature during extrusion was limited to the range from the β transformation point to [β transformation point +150'c].

C)押出比 押出比が10を下回る加工度では、再結晶β粒が加工中
に成長して0.2%耐力、延性及び靭性の劣化を招′く
こととなる。従って、押出比は10以上と限定した。
C) Extrusion Ratio If the extrusion ratio is less than 10, recrystallized β grains will grow during processing, resulting in a 0.2% deterioration of yield strength, ductility, and toughness. Therefore, the extrusion ratio was limited to 10 or more.

D)押出後の冷却速度、並びに急冷終了温度押出温度か
らの冷却速度を5℃/秒以上と定めたのは、冷却途中の
β粒の成長を抑え、かつ冷却途中で生成する粒界への粗
大なα相の析出を抑制するためであり、冷却速度が5℃
/秒未満であると上記抑制作用が十分でないからである
。また、急冷終了温度が500℃を上回ると、やはりβ
粒の成長や粗大なα相析出の危険がある。従って、押出
の終了に引き続き、直ちに冷却速度5℃/秒以上で50
0℃以下にまで冷却することと定めた。
D) Cooling rate after extrusion and end temperature of quenching The cooling rate from the extrusion temperature was set at 5°C/sec or more to suppress the growth of β grains during cooling and to prevent the formation of grain boundaries during cooling. This is to suppress the precipitation of coarse α phase, and the cooling rate is 5℃.
This is because if it is less than /second, the above-mentioned suppressing effect will not be sufficient. Moreover, if the quenching end temperature exceeds 500℃, β
There is a risk of grain growth and coarse alpha phase precipitation. Therefore, immediately following the end of extrusion, the cooling rate is 5°C/sec or more to
It was decided that the temperature should be cooled to below 0°C.

E)焼鈍条件 先にも説明したように、冷却した後の押出材のミクロ組
織は(α′+α+β)の混合組織となっているが、α′
フマルンサイトが最終製品に存在すると著しい靭性低下
を招く。従って、冷却後の押出材は700〜850℃の
温度で0.5〜4時間の焼鈍を施してα′フマルンサイ
トの分解を図る必要があるが、焼鈍温度が700℃未満
であったり、焼鈍時間が0.5時間を下回る場合にはα
′−α+βの分解が十分進行せず、一方、焼鈍温度が8
50℃を超えたり、焼鈍時間が4時間を上回る場合には
、α′−α+βの分解により生成したα相が成長して所
期の強度と靭性が得られない。
E) Annealing conditions As explained earlier, the microstructure of the extruded material after cooling is a mixed structure of (α'+α+β), but α'
The presence of fumarunsite in the final product results in a significant decrease in toughness. Therefore, the extruded material after cooling needs to be annealed at a temperature of 700 to 850°C for 0.5 to 4 hours to decompose α' fumarunsite, but if the annealing temperature is less than 700°C, If the annealing time is less than 0.5 hours, α
′-α+β decomposition did not proceed sufficiently, and on the other hand, the annealing temperature was 8.
If the temperature exceeds 50°C or the annealing time exceeds 4 hours, the α phase produced by the decomposition of α'-α+β grows, making it impossible to obtain the desired strength and toughness.

続いて、この発明を実施例により比較例と対比しながら
具体的に説明する。
Next, the present invention will be specifically explained using examples and comparing with comparative examples.

〈実施例〉 実施例 1 真空アーク溶解して得たところの、直径が400mmφ
で第1表に示す如き成分組成のTi−6Al−4V合金
インゴットにβ鍛造及びα+β鍛造を施した後(α+β
鍛造の加工度は第2表に示す通り)、直径:170nφ
の押出用ビレットとした。
<Example> Example 1 A piece with a diameter of 400 mmφ obtained by vacuum arc melting
After β forging and α+β forging were performed on a Ti-6Al-4V alloy ingot having the composition shown in Table 1 (α+β
The degree of forging is shown in Table 2), diameter: 170nφ
It was made into a billet for extrusion.

次いで、このビレットを用いて第2表に示ス条件で押出
加工を行い、焼鈍を施してL型材を製造した。
Next, this billet was extruded under the conditions shown in Table 2 and annealed to produce an L-shaped material.

得られたし型材の機械的性質を調査し、その結果を第2
表に併せて示した。
The mechanical properties of the obtained mold material were investigated and the results were used in the second
It is also shown in the table.

第2表に示される結果からも明らかなように、本発明の
条件通りに製造されたし型材は強度、延性及び靭性が共
に優れた値を示すのに対して、製造条件の何れかが本発
明の条件を満たさないものは、上記特性の全てを満足す
るものとならないことが分かる。
As is clear from the results shown in Table 2, the shape material produced under the conditions of the present invention exhibits excellent values for both strength, ductility, and toughness, whereas It can be seen that a product that does not satisfy the conditions of the invention does not satisfy all of the above characteristics.

実施例 2 真空アーク溶解して得たところの、直径が40011φ
で第3表に示す如き成分組成のTi−6Aj?−6V−
2Sn合金インゴットにβ鍛造及びα+β鍛造を施した
後(α+β鍛造の加工度は第4表に示す通り)、直径:
160mmφの押出用ビレットとした。
Example 2 The diameter was 40011φ obtained by vacuum arc melting.
So, Ti-6Aj with the component composition shown in Table 3? -6V-
After subjecting the 2Sn alloy ingot to β forging and α+β forging (the working degree of α+β forging is shown in Table 4), the diameter:
A billet for extrusion with a diameter of 160 mm was prepared.

次いで、このビレットを用いて第4表に示す条件で押出
加工を行い、焼鈍を施して継目無鋼管を製造した。
Next, this billet was extruded under the conditions shown in Table 4 and annealed to produce seamless steel pipes.

得られた継目無鋼管の機械的性質を調査し、その結果を
第4表に併せて示した。
The mechanical properties of the obtained seamless steel pipe were investigated, and the results are also shown in Table 4.

第4表に示される結果からも、本発明の条件通りに製造
、された継目無鋼管は強度、延性及び靭性が共に優れた
値を示すのに対して、製造条件の何れかが本発明の条件
を満たさないものは上記特性の何れかに劣っていること
が明らかである。
The results shown in Table 4 also show that the seamless steel pipe manufactured under the conditions of the present invention exhibits excellent values for strength, ductility, and toughness, whereas any of the manufacturing conditions of the present invention It is clear that those that do not satisfy the conditions are inferior in any of the above characteristics.

なお、前記実施例1及び2ではTi−6AI!−4V合
金及びTi−6Aj? −6V −2Sn合金について
の説明に終始したが、その他のα+β型チタン合金、例
えばTi −3A I −2,5V合金、 Ti−6A
j! −2Sn−42r−2Mo合金或いはTi  6
Aj! −2Sn −42r −6MO合金等について
も十分に満足できる結果が得られることは言うまでもな
い。
In addition, in Examples 1 and 2, Ti-6AI! -4V alloy and Ti-6Aj? -6V -2Sn alloy has been explained, but other α+β type titanium alloys, such as Ti-3A I-2,5V alloy, Ti-6A
j! -2Sn-42r-2Mo alloy or Ti6
Aj! It goes without saying that fully satisfactory results can be obtained with -2Sn -42r -6MO alloys and the like.

く効果の総括〉 以上に説明した如く、この発明によれば、強度。Summary of effects> As explained above, according to the present invention, strength.

延性及び靭性の面でも極めて優れた性能を有するα+β
型ヂタン合金押出材を製品形状・寸法に係わりなく高能
率で安定製造することができ、航空機機体用材料等とし
て一段と厳しさを増してきた要求性能を十分に満足する
α+β型チタン合金部材をコスト安く提供することが可
能となるなど、その工業的意義は極めて大きいものであ
る。
α+β has extremely excellent performance in terms of ductility and toughness.
It is possible to stably manufacture titanium alloy extruded materials with high efficiency regardless of the product shape and size, and it is possible to produce α+β type titanium alloy parts at a low cost that fully satisfy the increasingly strict performance requirements for materials such as aircraft fuselage materials. Its industrial significance is extremely great, as it can be provided at a low price.

−4−テ;→閤イm4つAWr住1カン浴計明二-4-te; → 4 pieces of AWr living in 1 room and bathing plan Meiji

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、α+β型チタン合金の加工温度と変形抵抗と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between processing temperature and deformation resistance of α+β type titanium alloy.

Claims (1)

【特許請求の範囲】 α+β域で50%以上の加工が行われて微細な等軸α+
β組織とされたα+β型チタン合金ビレットを、β変態
点〜〔β変態点+150℃〕の温度に加熱して押出比1
0以上の押出加工を行うと共に、引き続いて5℃/秒以
上の冷却速度で500℃以下にまで冷却し、その後70
0〜850℃の温度で0.5〜4時間の焼鈍を行うこと
を特徴とする、α+β型チタン合金押出材の製造方法。
[Claims] 50% or more of processing is performed in the α+β region to create a fine equiaxed α+
An α+β type titanium alloy billet with a β structure is heated to a temperature between the β transformation point and [β transformation point + 150°C], and the extrusion ratio is 1.
Extrusion processing of 0 or more is performed, followed by cooling to 500 °C or less at a cooling rate of 5 °C / sec or more, and then 70 °C
A method for producing an α+β type titanium alloy extruded material, characterized by performing annealing at a temperature of 0 to 850°C for 0.5 to 4 hours.
JP5526487A 1987-03-12 1987-03-12 Production of alpha+beta type titanium alloy extruded material Pending JPS63223155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5526487A JPS63223155A (en) 1987-03-12 1987-03-12 Production of alpha+beta type titanium alloy extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5526487A JPS63223155A (en) 1987-03-12 1987-03-12 Production of alpha+beta type titanium alloy extruded material

Publications (1)

Publication Number Publication Date
JPS63223155A true JPS63223155A (en) 1988-09-16

Family

ID=12993740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5526487A Pending JPS63223155A (en) 1987-03-12 1987-03-12 Production of alpha+beta type titanium alloy extruded material

Country Status (1)

Country Link
JP (1) JPS63223155A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244517A (en) * 1990-03-20 1993-09-14 Daido Tokushuko Kabushiki Kaisha Manufacturing titanium alloy component by beta forming
US6139659A (en) * 1996-03-15 2000-10-31 Honda Giken Kogyo Kabushiki Kaisha Titanium alloy made brake rotor and its manufacturing method
EP1273674A1 (en) * 2001-07-06 2003-01-08 General Electric Company Heat treatment of titanium-alloy article having martensitic structure
JP2009299124A (en) * 2008-06-12 2009-12-24 Kobe Steel Ltd Titanium alloy billet having excellent defect detectability in ultrasonic crack inspection test
WO2010125253A1 (en) * 2009-04-30 2010-11-04 Cefival Method for producing elongate products made of titanium
CN102327974A (en) * 2011-06-23 2012-01-25 苏州旭创精密模具有限公司 Electric control cabinet material bridge mould with primary back pressure workstation
JP2012052219A (en) * 2010-08-03 2012-03-15 Kobe Steel Ltd α-β TITANIUM ALLOY EXTRUDED MATERIAL EXCELLENT IN FATIGUE STRENGTH, AND METHOD FOR PRODUCING THE α-β TITANIUM ALLOY EXTRUDED MATERIAL
JP6176425B1 (en) * 2016-12-22 2017-08-09 新日鐵住金株式会社 α + β type titanium alloy extrusion
JP2018053320A (en) * 2016-09-29 2018-04-05 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY HOT EXTRUSION SHAPE MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2019167584A (en) * 2018-03-23 2019-10-03 日本製鉄株式会社 α + β TYPE TITANIUM ALLOY EXTRUSION SHAPE

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244517A (en) * 1990-03-20 1993-09-14 Daido Tokushuko Kabushiki Kaisha Manufacturing titanium alloy component by beta forming
US6139659A (en) * 1996-03-15 2000-10-31 Honda Giken Kogyo Kabushiki Kaisha Titanium alloy made brake rotor and its manufacturing method
EP1273674A1 (en) * 2001-07-06 2003-01-08 General Electric Company Heat treatment of titanium-alloy article having martensitic structure
US6814820B2 (en) 2001-07-06 2004-11-09 General Electric Company Heat treatment of titanium-alloy article having martensitic structure
JP2009299124A (en) * 2008-06-12 2009-12-24 Kobe Steel Ltd Titanium alloy billet having excellent defect detectability in ultrasonic crack inspection test
FR2944983A1 (en) * 2009-04-30 2010-11-05 Cefival PROCESS AND INSTALLATION FOR MANUFACTURING TITANIUM EXTENSION PRODUCTS
WO2010125253A1 (en) * 2009-04-30 2010-11-04 Cefival Method for producing elongate products made of titanium
CN102438764A (en) * 2009-04-30 2012-05-02 塞菲瓦尔公司 Method for producing elongate products made of titanium
JP2012052219A (en) * 2010-08-03 2012-03-15 Kobe Steel Ltd α-β TITANIUM ALLOY EXTRUDED MATERIAL EXCELLENT IN FATIGUE STRENGTH, AND METHOD FOR PRODUCING THE α-β TITANIUM ALLOY EXTRUDED MATERIAL
CN102327974A (en) * 2011-06-23 2012-01-25 苏州旭创精密模具有限公司 Electric control cabinet material bridge mould with primary back pressure workstation
JP2018053320A (en) * 2016-09-29 2018-04-05 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY HOT EXTRUSION SHAPE MATERIAL AND MANUFACTURING METHOD THEREFOR
JP6176425B1 (en) * 2016-12-22 2017-08-09 新日鐵住金株式会社 α + β type titanium alloy extrusion
WO2018116444A1 (en) 2016-12-22 2018-06-28 新日鐵住金株式会社 α+β TITANIUM ALLOY EXTRUDED MATERIAL
US11473173B2 (en) 2016-12-22 2022-10-18 Nippon Steel Corporation α+βtitanium alloy extruded shape
JP2019167584A (en) * 2018-03-23 2019-10-03 日本製鉄株式会社 α + β TYPE TITANIUM ALLOY EXTRUSION SHAPE

Similar Documents

Publication Publication Date Title
US5532069A (en) Aluminum alloy and method of preparing the same
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
Jing et al. Effect of the annealing temperature on the microstructural evolution and mechanical properties of TiZrAlV alloy
CN114657417B (en) High-strength plastic titanium alloy suitable for cold deformation processing and preparation method thereof
JPS63223155A (en) Production of alpha+beta type titanium alloy extruded material
CN116000134A (en) GH4738 alloy cold drawn bar and preparation method and application thereof
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
JPS6160871A (en) Manufacture of titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US5092940A (en) Process for production of titanium and titanium alloy material having fine equiaxial microstructure
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
US5417779A (en) High ductility processing for alpha-two titanium materials
CN113528921B (en) C-containing high-performance multi-principal-element high-entropy alloy and preparation method thereof
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JP2004277873A (en) Titanium alloy incorporated with boron added
JPH08269656A (en) Production of titanium alloy
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPH05500539A (en) Forming of Zircaloy milled products with good microstructure and physical properties
JPS61253354A (en) Manufacture of alpha+beta type titanium alloy sheet
JPH03130352A (en) Production of titanium or alpha titanium alloy having fine and equiaxial structure
JPS61284560A (en) Manufacture of alpha+beta titanium alloy
JPH0196360A (en) Manufacture of titanium alloy material for cold working
JPH02258959A (en) Production of alpha plus beta titanium alloy having fine and cubic structure