JPS62267438A - High-strength ti alloy material excellent in workability and its production - Google Patents

High-strength ti alloy material excellent in workability and its production

Info

Publication number
JPS62267438A
JPS62267438A JP10763886A JP10763886A JPS62267438A JP S62267438 A JPS62267438 A JP S62267438A JP 10763886 A JP10763886 A JP 10763886A JP 10763886 A JP10763886 A JP 10763886A JP S62267438 A JPS62267438 A JP S62267438A
Authority
JP
Japan
Prior art keywords
alloy material
strength
hot
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10763886A
Other languages
Japanese (ja)
Other versions
JPH0457734B2 (en
Inventor
Yoshiharu Mae
前 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP10763886A priority Critical patent/JPS62267438A/en
Publication of JPS62267438A publication Critical patent/JPS62267438A/en
Publication of JPH0457734B2 publication Critical patent/JPH0457734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain a high-strength Ti alloy material excellent in hot workability at low temp. as compared with conventional Ti alloy materials, by providing a composition which contains, besides Al, V, and Mo, respectively prescribed amounts of one or more elements among Zr, Cr, Fe, and Sn and in which the total amount of respective component elements satisfies specific inequalities. CONSTITUTION:The Ti alloy material has a composition consisting of, by weight ratio, 2-5% Al, 5-12% V, 0.5-8% Mo, one or more kinds among 0.5-8% Zr, 0.1-3% Cr, 0.1-3% Fe, and 0.1-4% Sn, and the balance Ti with inevitable impurities and satisfying the conditions of inequalities I and II. On order to manufacture said Ti alloy material, first a Ti alloy ingot with the above composition is hot-worked at 600-950 deg.C to be formed into coexistent state of alpha-phase and beta-phase. Subsequently, the Ti alloy ingot after hot-worked is subjected, after annealing if necessary, to cold working, then to solution heat treatment at 700-800 deg.C, and further to ageing treatment at 300-600 deg.C, so that desired high-strength Ti alloy material excellent in workability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、殊に、高温強度および耐熱性(耐酸化性)
などが要求される航空機用部品の製造に用いるのに好適
であり、しかも、上記のような部品に容易に熱間および
冷間加工することができる高強度11合合材およびその
製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is particularly applicable to high temperature strength and heat resistance (oxidation resistance).
This invention relates to a high-strength 11 composite material that is suitable for use in the manufacture of aircraft parts that require the following, and that can be easily hot and cold worked into the above-mentioned parts, and a method for manufacturing the same. It is.

〔従来の技術〕[Conventional technology]

従来、強度、耐酸化性および熱間加工性の三部性が良好
でバランスが取れていることが要求される分野、例えば
、航空機用ノエットエンソンには、Ti −6%Al−
4%Vの組成に代表されるα+β型Ti合金材、あるい
は熱間加工性は劣るが、Tt−sチAl−1%V−1%
Moの組成を有し、組織の大部分がα相であるα+β型
、即ち準α型Ti合金材が用いられていた。
Conventionally, Ti-6%Al-
α+β type Ti alloy material represented by a composition of 4%V, or Tt-stiAl-1%V-1%, although its hot workability is inferior.
An α+β type, that is, a quasi-α type Ti alloy material, which has a composition of Mo and whose structure is mostly α phase, has been used.

なぜならば、α型Ti合金材は、強度と熱間加工性が悪
く、また、β型Ti合金材は、耐酸化性が悪いからであ
る。
This is because α-type Ti alloy materials have poor strength and hot workability, and β-type Ti alloy materials have poor oxidation resistance.

そして、Ti−6%Al−4%VやTi−8%Al−1
%V−1%Moなどのα+β型Ti合金材は、850℃
以上、とりわけ前者については900℃以上、後者につ
いては950℃以上の温度で熱間加工され、焼鈍後に9
50℃以上の高温で溶体化処理され、さらに、前者のT
i合金材については、500〜600 ’Cの範囲内の
温度で時効処理されて製造されていた。
And Ti-6%Al-4%V and Ti-8%Al-1
α+β type Ti alloy materials such as %V-1%Mo are heated at 850°C.
In particular, the former is hot worked at a temperature of 900°C or higher, and the latter is hot worked at a temperature of 950°C or higher, and after annealing, the
The former T
The i-alloy material was manufactured by being aged at a temperature within the range of 500-600'C.

なお、後者のTi合金材は、時効効果能が小さいために
、時効処理はなされない。
Note that the latter Ti alloy material is not subjected to aging treatment because its aging effect is small.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述のように、上記の従来のα+β型T
i合金材は、その熱間加工温度が850’C以上と高い
ために、例えば恒温鍛造で最終製品の形状や寸法に近い
鍛造品を得ようとする場合には、耐熱性が高く、しかも
最終製品の形状に対応した複雑かつ滑らかな内面を有す
る高価な合壁が必要となる。
However, as mentioned above, the above conventional α+β type T
i-alloy materials have a high hot working temperature of 850'C or higher, so when trying to obtain a forged product close to the shape and dimensions of the final product by isothermal forging, for example, it has high heat resistance and An expensive joint wall with a complex and smooth inner surface corresponding to the shape of the product is required.

また、これらの従来α+β型Ti合金材は、熱間加工温
度だけでなく、溶体化処理温度も高いために熱経済性が
悪く、かつスケールなどの発生も多い0 〔問題点を解決するだめの手段〕 そこで、本発明者等は、上述のような観点から、より低
温で熱間加工および溶体化処理することができ、しかも
時効処理することもでき、かっこの時効処理により高強
度を確保できるT1合金材を開発すべく研究を行なった
結果、 Al: 2〜5%、 v :5〜12%、 Mo: 0.5〜8%、 を含有し、さらに、 Zr : 0.5〜8%、 cr : o、i〜3%、 Fe : 0.1〜3%、 Sn : 0.1〜4%、 のうち1種または2種以上を含有し、かつ、14%≦t
、sx■(%)+Mo(%)+ 0.6 X zr(%
)+1.9XCr(%)+1.IXFe(@≦21%、
および、2%≦AA(’#+Sn(@≦6% の条件を満足し、残りがTiと不可避不純物からなる組
成(以上、重量ヴ)を有するTi合金材は、比較的低温
(例えば700℃)でα+β組織を示し、しかもα相と
β相の容量比が1:1に近いものであるために従来より
も低い温度で容易に熱間加工することができるばかりで
なく、従来条件よりも低い温度で溶体化処理をすること
もでき、さらに時効処理することができ、しかもその時
効処理後の強度は、Ti−6%Al−4%Vの従来Ti
合金の時効材と同等ないしそれ以上の強度特性を有する
ことを見い出した。
In addition, these conventional α+β type Ti alloy materials have poor thermoeconomic efficiency due to high solution treatment temperatures as well as hot working temperatures, and often generate scale. [Means] Therefore, from the above-mentioned viewpoint, the present inventors have developed a method that allows hot working and solution treatment at lower temperatures, and also allows aging treatment, and ensures high strength by aging treatment of the parentheses. As a result of research to develop T1 alloy material, it was found that it contains Al: 2-5%, V: 5-12%, Mo: 0.5-8%, and further Zr: 0.5-8%. , cr: o, i~3%, Fe: 0.1~3%, Sn: 0.1~4%, and contains one or more of the following, and 14%≦t
, sx (%) + Mo (%) + 0.6 X zr (%
)+1.9XCr(%)+1. IXFe (@≦21%,
And, a Ti alloy material that satisfies the condition of 2%≦AA('#+Sn(@≦6%) and has a composition (hereinafter referred to as weight V) with the remainder consisting of Ti and unavoidable impurities can be heated at a relatively low temperature (for example, 700°C). ) shows an α+β structure, and the capacitance ratio of the α phase and β phase is close to 1:1, so it is not only possible to hot-work easily at a lower temperature than before, but also under the conventional conditions. It is possible to perform solution treatment at a low temperature and further to perform an aging treatment, and the strength after the aging treatment is lower than that of the conventional Ti-6%Al-4%V.
It has been found that this material has strength properties equivalent to or greater than that of aged alloy materials.

この発明は、1肥知見に基いて発明されたものであり、 11)Al:2〜5%、 V :5〜12%、 Mo : 0.5〜8%、 を含有し、さらに、 Zr : 0.5〜8%、 Cr  :  0.1〜3 %、 Fe  :  0.1〜3 %、 Sn  :  0.1〜4 %、 のうち1種または2種以上を含有し、かつ、14%≦1
.!5 xv(%)+Mo(%)+ 0.6 x Zr
(%)+1.9 xCr(%)+ 1.1 x F’e
(%)≦21%、および2%≦AA(’#+Sn(@≦
6% の条件を満足し、残りがTiと不可避不純物からなる組
成(以上、重量幅)を有する加工性の優れたTi合金材
This invention was invented based on the knowledge of 11) Al: 2 to 5%, V: 5 to 12%, Mo: 0.5 to 8%, and further contains Zr: Contains one or more of the following: 0.5-8%, Cr: 0.1-3%, Fe: 0.1-3%, Sn: 0.1-4%, and 14% ≦1
.. ! 5 xv (%) + Mo (%) + 0.6 x Zr
(%) + 1.9 x Cr (%) + 1.1 x F'e
(%)≦21%, and 2%≦AA('#+Sn(@≦
A Ti alloy material with excellent workability that satisfies the condition of 6% and has a composition (weight range) with the remainder consisting of Ti and unavoidable impurities.

+21Al:2〜5%、 v ;5〜12%、 Mo : 0.5〜8%、 を含有し、さらに、 Zr : 0.5〜8%、 Cr : O,L〜3%、 Fe : 0.1〜3%、 Sn : 0.1〜4%、 のうち1種または2種以上を含有し、かつ。+21Al: 2-5%, v; 5-12%, Mo: 0.5-8%, Contains, and furthermore, Zr: 0.5-8%, Cr: O, L ~ 3%, Fe: 0.1-3%, Sn: 0.1-4%, Contains one or more of the following.

■4%≦1,5×V(%i)+Mo(%9+0.6XZ
r(@+1.9 XCr(@+ l 、I X Fe(
1≦21%、および2優≦AJ(イ)+Sn(イ)≦6
% の条件を満足し、残りがTiと不可避不純物からなる組
成(以上、重量幅)を有するT1合金インゴットに対し
て、600〜950℃の範囲内の温度で最終熱間加工を
施した後、700〜800℃の範囲内の温度において溶
体化処理し、ついで300〜600℃の範囲内の温度で
時効処理することからなる加工性の優れた高強度Ti合
金材の製造方法に特徴を有するものである。
■4%≦1,5×V(%i)+Mo(%9+0.6XZ
r(@+1.9 XCr(@+ l , I X Fe(
1≦21%, and 2 points≦AJ(a)+Sn(a)≦6
After performing final hot working at a temperature within the range of 600 to 950°C, a T1 alloy ingot having a composition (weight range) that satisfies the conditions of % and the remainder consists of Ti and unavoidable impurities, A method for producing a high-strength Ti alloy material with excellent workability, which comprises solution treatment at a temperature within the range of 700 to 800°C, and then aging treatment at a temperature within the range of 300 to 600°C. It is.

つぎに、この発明のTi合金材の成分組成および製造条
件を上記の通りに限定した理由を説明する。
Next, the reason why the composition and manufacturing conditions of the Ti alloy material of the present invention are limited as described above will be explained.

(I)  成分組成 (a)  AA Al成分にはα相を強化する作用があるが、その含有量
が2%未満ではα相の強度ひいてはTi合金全体の強度
を所望の値に保持することができず、一方、その含有量
が5チを越えると、β変態点を低く抑えるためのβ安定
化元素であるV及びMoの含有量を多くしなければなら
なくなり、その結果。
(I) Ingredient Composition (a) AA The Al component has the effect of strengthening the α phase, but if its content is less than 2%, the strength of the α phase, and by extension the strength of the entire Ti alloy, cannot be maintained at the desired value. On the other hand, if the content exceeds 5%, it becomes necessary to increase the content of V and Mo, which are β stabilizing elements to keep the β transformation point low.

Ti  合金材の熱間加工性が劣化する(具体的には、
変形抵抗が増大し、鍛造の際に大きなプレスが必要とな
る。)ので、その含有量を2〜5チと定めた。
The hot workability of Ti alloy materials deteriorates (specifically,
Deformation resistance increases and a large press is required during forging. ) Therefore, the content was determined to be 2 to 5 chi.

(b)  v ■成分は、特にβ変態点を低く抑え、かつβ相安定化領
域を広げる作用を有する他、全91i合金の延性を害す
ることなく Moはどではないがβ相を強化する作用を
有するが、その含有量が5チ未満では、β変態点を低く
抑えることができないばかりでなく、700℃付近での
α相とβ相との容量比をほぼ1:1にすることが不可能
となシ、その結果、熱間加工温度や溶体化処理温度が従
来条件と余り変わらなくなり、一方、その含有量が12
係を越えると、Ti合金の熱間加工性が劣化する(具体
的には、変形抵抗が増大し、鍛造の際に大きなプレスが
必要となる。)ので、その含有量を5〜12%と定めた
(b) v ■ component has the effect of suppressing the β-transformation point particularly low and widening the β-phase stabilization region, and also has the effect of strengthening the β-phase without impairing the ductility of the entire 91i alloy. However, if the content is less than 5%, it is not only impossible to keep the β transformation point low, but also it is impossible to maintain the capacity ratio of α phase and β phase to approximately 1:1 at around 700°C. As a result, the hot working temperature and solution treatment temperature are not much different from conventional conditions, while the content is 12.
If the Ti alloy exceeds 5%, the hot workability of the Ti alloy deteriorates (specifically, the deformation resistance increases and a large press is required during forging). Established.

(e)  M。(e) M.

Mo成分は、特にβ相を強化する作用を有すると共に、
β変態点を低く抑え、かつβ相安定化領域を広げる作用
を有するが、その含有量が0.5%未満では、β相強化
ひいてはTi合金全体を強化する効果が低く、一方、そ
の含有量が8%を越えると、Ti合金の延性が低下する
ようになるので、その含有量を0.5〜8チと定めた。
The Mo component has the effect of particularly strengthening the β phase, and
It has the effect of keeping the β transformation point low and widening the β phase stabilization region, but if its content is less than 0.5%, the effect of strengthening the β phase and the entire Ti alloy is low; If it exceeds 8%, the ductility of the Ti alloy decreases, so the content was set at 0.5 to 8%.

(d)  Zr 、 Cr 、 F’eおよびSnこれ
ら成分には、11合合材の強度を一段と向上させる作用
があるが、それらの含有量がそれぞれZr : 0.5
%未満、Cr : 0.1%未満、Fe:0.1%未満
およびSn : 0.1%未満では所望の強度向と効果
が得られず、また、Zr : 8 % 、 Cr : 
3%。
(d) Zr, Cr, F'e, and Sn These components have the effect of further improving the strength of the 11 composite material, but their content is Zr: 0.5.
%, Cr: less than 0.1%, Fe: less than 0.1% and Sn: less than 0.1%, the desired strength and effect cannot be obtained, and Zr: 8%, Cr: less than 0.1%.
3%.

Fe : 3%およびSn : 4 %をそれぞれ越え
て含有するとTi合金材の加工性が低下するようになる
ことから、それらの成分の含有量をそれぞれZr :0
.5〜8%、 Cr: 0.1〜3%、 Fe : 0
.1〜3%、 Sn :0.1〜4%と定めた。
If the content exceeds Fe: 3% and Sn: 4%, the workability of the Ti alloy material decreases, so the content of these components was reduced to Zr: 0.
.. 5-8%, Cr: 0.1-3%, Fe: 0
.. 1 to 3%, and Sn: 0.1 to 4%.

(e)  14%≦1.5×V(%)+Mo(%)+0
.6XZr(%)+1.9XCr(19+1.IXFe
(%)521%および2%≦Al(@ + S n(%
)<6% 上記Ti合金材添加元素であるAJ 、V、Mo 、 
Zr 。
(e) 14%≦1.5×V(%)+Mo(%)+0
.. 6XZr(%)+1.9XCr(19+1.IXFe
(%)521% and 2%≦Al(@+S n(%
)<6% The above Ti alloy material additive elements AJ, V, Mo,
Zr.

Cr 、 FeおよびSnは、それぞれと記成分組成範
囲内にあることが必要であるが、さらに加工性を低下さ
せることなく高強度を確保するための条件として、β相
安定化能力が、Moを1とするとV : 1.5倍、Z
r : 0.6倍、Cr:1.9倍、F’e:1.1倍
となるから、これら係数を成分組成率にかけた総和が1
4チ未満となるときは変態点の低下が不充分となり。
Cr, Fe, and Sn need to be within the composition ranges listed above, but in order to ensure high strength without reducing workability, the β-phase stabilizing ability is higher than that of Mo. If it is 1, then V: 1.5 times, Z
Since r: 0.6 times, Cr: 1.9 times, and F'e: 1.1 times, the sum of these coefficients multiplied by the component composition ratio is 1.
If it is less than 4 inches, the transformation point has not been lowered enough.

熱間加工性が低下し、21チを越えると変形抵抗が増大
し、同様に熱間加工性が低下する。また、SnはAlと
の関係が強く、AlとSnの総和がTi合金材の強度と
加工性に影響し、Al(イ)十Sn(イ)が2チ未満の
場合は強度を保持することが難しくなり、かつ6チを越
えると変態温度が上るので熱間加工性を劣化させる。し
たがって、成分組成の条件を14多≦1.5XV(%)
+Mo(19+0.6XZr(%)+1−9XCr%+
1,1xFe(%9≦21チおよび2%≦AJ(1+S
n(#≦6係となるように定めた。
Hot workability decreases, and when it exceeds 21 inches, deformation resistance increases and hot workability similarly decreases. In addition, Sn has a strong relationship with Al, and the sum of Al and Sn affects the strength and workability of the Ti alloy material, and if Al (a) and Sn (a) are less than 2, the strength cannot be maintained. If it exceeds 6 inches, the transformation temperature will rise, deteriorating hot workability. Therefore, the condition of component composition is 14≦1.5XV (%)
+Mo(19+0.6XZr(%)+1-9XCr%+
1,1xFe(%9≦21CH and 2%≦AJ(1+S
n (#≦6).

(TI)   裂造条1牛 (a)  最終熱間加工温度 (1)で述べた成分組成を有し、かつ上記成分組成条件
を満足するT1合金インゴットに熱間鍛造、熱間圧延、
熱間押し出し等の熱間加工を行なうが、その最終熱間加
工温度が600℃未満では再結晶が難しく、変形抵抗が
高くなシ、一方、その温度が950℃を越えると、結晶
粒の粗大化が起こって望ましくないばかりでなく、恒温
鍛造の場合には高価な金型が必要となることから、最終
熱間加工温度を600〜950□℃に定めた。特に鋳造
組織を消す必要がある場合には、900℃近くあるいは
これ以上の温度で熱間加工を開始することが好ましく、
また、仕上げ工程では熱間加工のし易さから、650〜
750℃の範囲内の温度が好ましい。これは、この発明
のTi合金材は650〜750°Gの範囲内の温度で熱
間加工に適するα相とβ相の共存状態となる(即ち、α
相とβ相の容量比が1:1に近くなる)からである。
(TI) Fragmented strip 1 cow (a) A T1 alloy ingot having the component composition described in final hot working temperature (1) and satisfying the above component composition conditions is hot forged, hot rolled,
Hot processing such as hot extrusion is performed, but if the final hot processing temperature is less than 600°C, recrystallization is difficult and deformation resistance is high.On the other hand, if the temperature exceeds 950°C, the crystal grains become coarse. The final hot working temperature was set at 600 to 950 □°C because not only is this undesirable, but also an expensive mold is required in the case of isothermal forging. In particular, when it is necessary to erase the cast structure, it is preferable to start hot working at a temperature near or above 900°C.
In addition, in the finishing process, 650 ~
Temperatures within the range of 750°C are preferred. This means that the Ti alloy material of the present invention has a coexistence state of α phase and β phase suitable for hot working at a temperature within the range of 650 to 750°G (i.e., α
This is because the capacitance ratio between the phase and the β phase is close to 1:1).

(b)  焼鈍 この工程は、必須の工程ではないが、°後工程として冷
間加工を行なう場合に、必要に応じて行なわれる。焼鈍
条件は、650〜750℃の範囲内の温度で0.5〜2
時間行なうことが望ましい。
(b) Annealing This step is not an essential step, but is performed as necessary when cold working is performed as a post-process. The annealing conditions are 0.5-2 at a temperature within the range of 650-750℃.
It is advisable to do it for an hour.

(c)溶体化処理温度 熱間加工されたTi合金材、あるいは熱間加工し、必要
に応じて焼鈍した後、冷間加工されたTi合金材には、
次に、溶体化処理が施されるが、その温度は、従来条件
よりも低温の700〜800℃の範囲内の温度で行なう
必要がある。これは、その温度が700℃未満ではα相
安定化元素であるAlがβ相中に充分溶解せず、このた
め、この工程の後に時効処理を行なっても所望の強度を
確保することができず、一方、その温度が800℃を越
えるとβ変態点を越えるか、あるいは近くになシすぎ、
初析α相の量が少なくなりすぎるために、組織が不均一
になるという理由にもとづくものである。なお、溶体化
処理時間は、材料が均一に加熱される時間で充分である
(c) Solution treatment temperature For hot worked Ti alloy materials, or hot worked and optionally annealed, cold worked Ti alloy materials,
Next, solution treatment is performed, but the temperature needs to be within the range of 700 to 800° C., which is lower than conventional conditions. This is because if the temperature is lower than 700°C, Al, which is an α-phase stabilizing element, will not dissolve sufficiently in the β-phase, and for this reason, even if an aging treatment is performed after this step, the desired strength cannot be secured. On the other hand, if the temperature exceeds 800℃, it will exceed the β transformation point or be too close to it.
This is because the amount of the pro-eutectoid α phase becomes too small, resulting in a non-uniform structure. Note that the solution treatment time is sufficient to uniformly heat the material.

(d)  時効処理温度 その温度が300℃未満では、拡散速度が遅いためにβ
相中の微小なα相の析出が起こらないことから、時効硬
化せず、一方、その温度が600℃を越えると、過時効
となり強度が低下するようになることから、その温度を
300〜600℃に定めた。
(d) Aging treatment temperature If the temperature is less than 300℃, the diffusion rate is slow and β
Since precipitation of the minute α phase in the phase does not occur, age hardening does not occur.On the other hand, if the temperature exceeds 600°C, it will become overaged and the strength will decrease, so the temperature should be lowered from 300 to 600°C. It was set at ℃.

また、時効処理時間は、その温度によっても異なるが、
経済性も考慮して0.5〜10時間が好ましい。なお、
必要な場合は、焼鈍後、あるいは焼鈍しない場合には溶
体化処理後に、すなわち時効処理前に冷間加工を行なっ
てもよい。
In addition, the aging treatment time varies depending on the temperature, but
Considering economic efficiency, the time is preferably 0.5 to 10 hours. In addition,
If necessary, cold working may be performed after annealing, or if not annealing, after solution treatment, that is, before aging treatment.

〔実施例〕〔Example〕

つぎに、この発明のTi合金材およびその製造方法を実
施例により具体的に説明する。
Next, the Ti alloy material of the present invention and its manufacturing method will be specifically explained with reference to Examples.

真空アーク溶解炉を用いた2段溶解により、それぞれ第
1表に示される成分組成をもったTi合金を溶製し、直
径:200m1φ×長さ:50011の寸法をもったイ
ンゴットとした後、1ooo’cで熱間鍛造して、厚さ
:5Q+acX巾:5QQm×長さ:5001E&の寸
法をもったスラブとし、ついで、このスラブを720℃
で熱間圧延して厚さ:3uの熱延板とし、この際、これ
らの熱延板における熱間加工割れの有無を観察すると共
に、600℃および700℃(以下焼鈍状態という)に
おける機械的性質を測定し、さらに溶体化処理を750
℃に1時間保持後水冷の条件で行ない、最後に、520
℃に4時間保持の条件で時効処理を行なうことによシ、
本発明Ti合金材1〜■6および比較合金1〜8をそれ
ぞれ製造した。この結果得られたTi合金材の常温およ
び300℃における機械的性質も測定し、これらの測定
結果を第2表に示した。
By two-stage melting using a vacuum arc melting furnace, Ti alloys having the component compositions shown in Table 1 were melted and made into ingots with dimensions of diameter: 200 m 1φ x length: 50011, and then 100 mm. Hot forged at 'c to make a slab with dimensions of thickness: 5Q+acX width: 5QQm x length: 5001E&, then this slab was
At this time, the hot-rolled sheets were hot-rolled to a thickness of 3u, and at this time, the hot-rolled sheets were observed for the presence or absence of hot working cracks, and mechanically After measuring the properties, solution treatment was carried out at 750°C.
After being kept at ℃ for 1 hour, it was cooled with water, and finally, it was heated to 520℃.
By performing aging treatment under the condition of holding at ℃ for 4 hours,
Ti alloy materials 1 to 6 of the present invention and comparative alloys 1 to 8 were manufactured, respectively. The mechanical properties of the resulting Ti alloy material at room temperature and 300° C. were also measured, and the results of these measurements are shown in Table 2.

なお、上記第1表に示した比較Ti合金材のうち比較T
i合金材1〜3は、AJ 、 V tたはMoのうちい
ずれか1種が含有されていないTi合金材であシ、比較
Ti合金7および8は、条件式2%≦AJ((ホ)+S
n(悄≦6% を満足しないTi合金材であシ、比較T
i合金材5および6は、条件式14%≦1.5XV(秀
+Mo(%9+ 0.6 X Zr(%)+ 1.9 
X Cr(%)+ 1.I X F’e(%)≦21を
満足しないTi合金材であり、また、比較Ti合金材4
は、上記条件式をいずれも満足しないTi合金材である
Furthermore, among the comparative Ti alloy materials shown in Table 1 above, comparative T
The i-alloy materials 1 to 3 are Ti alloy materials that do not contain any one of AJ, Vt, or Mo, and the comparative Ti alloys 7 and 8 satisfy the conditional expression 2%≦AJ ((Hot). )+S
n (Ti alloy material that does not satisfy 6%), comparison T
i Alloy materials 5 and 6 satisfy the conditional formula 14%≦1.5XV (Hide+Mo(%9+0.6 X Zr(%)+1.9
X Cr (%) + 1. It is a Ti alloy material that does not satisfy I
is a Ti alloy material that does not satisfy any of the above conditional expressions.

〔発明の効果〕〔Effect of the invention〕

第2表に示される結果から、本発明Ti合金材1〜16
は、いずれも720℃という極めて低温での熱間加工に
おいても割れの発生がないのに対し、比較Ti合金材1
〜8においては、熱間加工時に割れの発生を避けること
ができず、また、本発明Ti合金材1〜16は、いずれ
も常温および使用上重要な300℃でも比較Ti合金材
1〜8よシは優れた機械的強度を示すことが明らかであ
る。
From the results shown in Table 2, the present invention Ti alloy materials 1 to 16
Comparative Ti alloy material 1 showed no cracking even during hot working at an extremely low temperature of 720°C.
In samples 1 to 8, cracking could not be avoided during hot working, and all of the Ti alloy materials 1 to 16 of the present invention performed better than comparative Ti alloy materials 1 to 8 even at room temperature and at 300°C, which is important for use. It is clear that the material exhibits excellent mechanical strength.

さらに第2表の焼鈍状態における機械的性質から明らか
なように、本発明Ti合金材1〜16は、いずれも60
0℃および700℃における低温での強度が低く、かつ
伸びもきわめて大きい、すなわち200%前後、あるい
はこれ以上の伸びを示すことから、これらの特性、すな
わちできるだけ低温で変形抵抗が小さく、かつ伸びが大
きいという特性が重要な恒温鍛造などにおいて、優れた
加工性を示すものである。
Further, as is clear from the mechanical properties in the annealed state in Table 2, all of the Ti alloy materials 1 to 16 of the present invention have a 60%
The strength at low temperatures of 0°C and 700°C is low, and the elongation is extremely large, around 200% or more. It shows excellent workability in applications such as constant temperature forging where the characteristic of large size is important.

このように、本発明Ti合金材は、比較Ti合全合材く
らべて低温での熱間加工性が良好であることから、比較
的安価な型を用いて型鍛造を行うことができ、かつ結晶
粒の成長も抑制できることから容易に微細組織とするこ
とができ、さらに、常温および高温における強度も優れ
ていることから、常温および高温で強度を必要とする軽
量で複雑な形状の部品、例えば航空機部品の材料として
工業上有用な性能を発揮するものである。
As described above, the Ti alloy material of the present invention has better hot workability at low temperatures than the comparative Ti alloy material, and therefore can be die forged using a relatively inexpensive die. Since the growth of crystal grains can be suppressed, it is possible to easily create a fine structure.Furthermore, it has excellent strength at room and high temperatures, so it can be used for lightweight and complex-shaped parts that require strength at room and high temperatures, such as It exhibits industrially useful performance as a material for aircraft parts.

Claims (2)

【特許請求の範囲】[Claims] (1)Al:2〜5%、 V:5〜12%、 Mo:0.5〜8%、 を含有し、さらに、 Zr:0.5〜8%、 Cr:0.1〜3%、 Fe:0.1〜3%、 Sn:0.1〜4%、 のうち1種または2種以上を含有し、かつ、14%≦1
.5×V(%)+Mo(%)+0.6×Zr(%)+1
.9×Cr(%)+1.1×Fe(%)≦21%、およ
び、2%≦Al(%)+Sn(%)≦6% の条件を満足し、残りがTiと不可避不純物からなる組
成(以上、重量%)を有することを特徴とする加工性の
優れた高強度Ti合金材
(1) Contains Al: 2-5%, V: 5-12%, Mo: 0.5-8%, and further contains Zr: 0.5-8%, Cr: 0.1-3%, Contains one or more of Fe: 0.1-3%, Sn: 0.1-4%, and 14%≦1
.. 5 x V (%) + Mo (%) + 0.6 x Zr (%) + 1
.. The composition satisfies the following conditions: 9 x Cr (%) + 1.1 x Fe (%) ≦ 21% and 2% ≦ Al (%) + Sn (%) ≦ 6%, with the remainder consisting of Ti and unavoidable impurities ( High-strength Ti alloy material with excellent workability characterized by having a
(2)Al:2〜5%、 V:5〜12%、 Mo:0.5〜8% を含有し、さらに、 Zr:0.5〜8% Cr:0.1〜3% Fe:0.1〜3% Sn:0.1〜4% のうち1種または2種以上を含有し、かつ、14%≦1
.5×V(%)+Mo(%)+0.6×Zr(%)+1
.9×Cr(%)+1.1×Fe(%)≦21%、およ
び2%≦Al(%)+Sn(%)≦6% の条件を満足し、残りがTiと不可避不純物からなる組
成(以上、重量%)を有するTi合金インゴットに対し
て、600〜950℃の温度範囲で最終熱間加工を施し
た後、700〜800℃の温度範囲で溶体化処理し、つ
いで300〜600℃の温度範囲で時効処理することを
特徴とする加工性の優れた高強度Ti合金材の製造方法
(2) Contains Al: 2-5%, V: 5-12%, Mo: 0.5-8%, and further contains Zr: 0.5-8% Cr: 0.1-3% Fe: 0 .1 to 3% Sn: Contains one or more of 0.1 to 4%, and 14%≦1
.. 5 x V (%) + Mo (%) + 0.6 x Zr (%) + 1
.. The following conditions are satisfied: 9 x Cr (%) + 1.1 x Fe (%) ≦ 21%, and 2% ≦ Al (%) + Sn (%) ≦ 6%, with the remainder consisting of Ti and unavoidable impurities (or more). , weight%) is subjected to final hot working at a temperature range of 600 to 950°C, then solution treatment at a temperature range of 700 to 800°C, and then at a temperature of 300 to 600°C. A method for producing a high-strength Ti alloy material with excellent workability, characterized by subjecting it to aging treatment within a range.
JP10763886A 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production Granted JPS62267438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10763886A JPS62267438A (en) 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10763886A JPS62267438A (en) 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production

Publications (2)

Publication Number Publication Date
JPS62267438A true JPS62267438A (en) 1987-11-20
JPH0457734B2 JPH0457734B2 (en) 1992-09-14

Family

ID=14464264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10763886A Granted JPS62267438A (en) 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production

Country Status (1)

Country Link
JP (1) JPS62267438A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229058A (en) * 1998-02-13 1999-08-24 Sumitomo Metal Ind Ltd Titanium alloy excellent in oxidation resistance and cold workability
JP2008106317A (en) * 2006-10-26 2008-05-08 Nippon Steel Corp beta-TYPE TITANIUM ALLOY
CN103243235A (en) * 2013-05-22 2013-08-14 哈尔滨工业大学 High strength titanium alloy
CN103276242A (en) * 2013-06-04 2013-09-04 哈尔滨工业大学 Ultrahigh-strength titanium alloy and preparation method thereof
JP2014513197A (en) * 2010-09-27 2014-05-29 パブリックストックカンパニー “ヴイエスエムピーオー アヴィスマ コーポレーション” (4.0-6.0)% Al- (4.5-6.0)% Mo- (4.5-6.0)% V- (2.0-3.6)% Method for melting near β-type titanium alloy comprising Cr- (0.2-0.5)% Fe- (0.1-2.0)% Zr
US8771590B2 (en) * 2005-05-16 2014-07-08 Vsmpo-Avisma Corporation Titanium base alloy
CN104694863A (en) * 2013-12-10 2015-06-10 陕西宏远航空锻造有限责任公司 Novel titanium alloy heat treatment method
CN106967897A (en) * 2016-11-18 2017-07-21 中国科学院金属研究所 A kind of novel low-cost, Ti alloy with high performance
JP2017218661A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
JP2017218660A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
CN108913942A (en) * 2018-08-03 2018-11-30 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
CN112195365A (en) * 2020-09-29 2021-01-08 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
JP2021523295A (en) * 2018-05-07 2021-09-02 エイティーアイ・プロパティーズ・エルエルシー High-strength titanium alloy
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
CN114592142A (en) * 2020-12-07 2022-06-07 中国科学院金属研究所 Medium-strength high-toughness titanium alloy with yield strength of 800MPa for ocean engineering and preparation process thereof
US11384413B2 (en) 2018-04-04 2022-07-12 Ati Properties Llc High temperature titanium alloys

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229058A (en) * 1998-02-13 1999-08-24 Sumitomo Metal Ind Ltd Titanium alloy excellent in oxidation resistance and cold workability
US8771590B2 (en) * 2005-05-16 2014-07-08 Vsmpo-Avisma Corporation Titanium base alloy
JP2008106317A (en) * 2006-10-26 2008-05-08 Nippon Steel Corp beta-TYPE TITANIUM ALLOY
JP2014513197A (en) * 2010-09-27 2014-05-29 パブリックストックカンパニー “ヴイエスエムピーオー アヴィスマ コーポレーション” (4.0-6.0)% Al- (4.5-6.0)% Mo- (4.5-6.0)% V- (2.0-3.6)% Method for melting near β-type titanium alloy comprising Cr- (0.2-0.5)% Fe- (0.1-2.0)% Zr
CN103243235A (en) * 2013-05-22 2013-08-14 哈尔滨工业大学 High strength titanium alloy
CN103243235B (en) * 2013-05-22 2015-05-13 哈尔滨工业大学 High strength titanium alloy
CN103276242A (en) * 2013-06-04 2013-09-04 哈尔滨工业大学 Ultrahigh-strength titanium alloy and preparation method thereof
CN104694863A (en) * 2013-12-10 2015-06-10 陕西宏远航空锻造有限责任公司 Novel titanium alloy heat treatment method
JP2017218660A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
JP2017218661A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
CN106967897A (en) * 2016-11-18 2017-07-21 中国科学院金属研究所 A kind of novel low-cost, Ti alloy with high performance
CN106967897B (en) * 2016-11-18 2019-02-19 中国科学院金属研究所 A kind of inexpensive, Ti alloy with high performance
US11384413B2 (en) 2018-04-04 2022-07-12 Ati Properties Llc High temperature titanium alloys
JP2021523295A (en) * 2018-05-07 2021-09-02 エイティーアイ・プロパティーズ・エルエルシー High-strength titanium alloy
US11674200B2 (en) 2018-05-07 2023-06-13 Ati Properties Llc High strength titanium alloys
CN108913942B (en) * 2018-08-03 2019-08-02 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
CN108913942A (en) * 2018-08-03 2018-11-30 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
US11920231B2 (en) 2018-08-28 2024-03-05 Ati Properties Llc Creep resistant titanium alloys
CN112195365A (en) * 2020-09-29 2021-01-08 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
CN112195365B (en) * 2020-09-29 2022-02-15 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
CN114592142A (en) * 2020-12-07 2022-06-07 中国科学院金属研究所 Medium-strength high-toughness titanium alloy with yield strength of 800MPa for ocean engineering and preparation process thereof
CN114592142B (en) * 2020-12-07 2023-02-28 中国科学院金属研究所 Medium-strength high-toughness titanium alloy with yield strength of 800MPa for ocean engineering and preparation process thereof

Also Published As

Publication number Publication date
JPH0457734B2 (en) 1992-09-14

Similar Documents

Publication Publication Date Title
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
JPH10195563A (en) Ti alloy excellent in heat resistance and treatment thereof
JPH0138868B2 (en)
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
US5417779A (en) High ductility processing for alpha-two titanium materials
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JPS60230968A (en) Manufacture of rolled titanium alloy plate
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPH05279820A (en) Production of aluminum alloy sheet excellent in formability
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
KR910006016B1 (en) Memorial alloy based cu and the making method
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH0623423B2 (en) Method for manufacturing Al-Cu-Mg alloy soft material
JPH0570910A (en) Production of soft aluminum alloy material for welded structure
JPH0196360A (en) Manufacture of titanium alloy material for cold working
JPS61147864A (en) Production of cold rolled titanium alloy plate
JPH062064A (en) High-strength and high-formability al-mg-si alloy and its manufacture
JPS61179831A (en) Production of ti alloy having excellent workability and high-strength material thereof
CN116397131A (en) High-strength high-plasticity metastable beta titanium alloy reinforced by oxygen element and preparation method thereof