JPH01127653A - Manufacture of alpha+beta type titanium alloy cold rolled plate - Google Patents

Manufacture of alpha+beta type titanium alloy cold rolled plate

Info

Publication number
JPH01127653A
JPH01127653A JP28577387A JP28577387A JPH01127653A JP H01127653 A JPH01127653 A JP H01127653A JP 28577387 A JP28577387 A JP 28577387A JP 28577387 A JP28577387 A JP 28577387A JP H01127653 A JPH01127653 A JP H01127653A
Authority
JP
Japan
Prior art keywords
cold
type titanium
titanium alloy
annealing
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28577387A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Yasuo Yasukura
安蔵 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28577387A priority Critical patent/JPH01127653A/en
Publication of JPH01127653A publication Critical patent/JPH01127653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To simply, easily and stably manufacture alpha+beta type titanium alloy cold-rolled sheet without generating rolling defect of surface crack, etc., by executing an intermediate annealing under the specific condition during cold- rolling the alpha+beta type titanium alloy. CONSTITUTION:The intermediate annealing executing during cold-rolling the alpha+beta type titanium alloy is executed under conditions of temp. range from >=[betatransformation point -25 deg.C] to <beta transformation point for annealing temp., 0.5-4hr for annealing time and 0.5-5 deg.C/sec for cooling velocity to <=300 deg.C after holding the heating. By this method, beta-phase having good cold- rollability is brought into existence at >=about 70% and fine structure is formed and the cold-rollability of the above alloy is improved at some degree of rolling reduction. Successively, by further executing the cold-rolling, the alpha+beta type titanium alloy cold-rolled sheet is obtd. at good workability without generating surface crack, edge crack, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、α+β型チタン合金の冷延薄板を、表面割
れ等の圧延欠陥を発生させることなく安定かつ容易に製
造する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for stably and easily manufacturing a cold-rolled thin plate of α+β type titanium alloy without generating rolling defects such as surface cracks. .

〈背景技術〉 近年に至ってようやく工業的生産が可能となったチタン
合金は、その特異な性質の故に極めて幅広い用途が期待
されるものして各国で開発が競われてきたが、その結果
、非常に多種のチタン合金が世に出ることとなった。中
でも、Ti−6Aj!−4Vに代表されるα+β型チタ
ン合金は高い比強度や優れた耐食性を示すことは勿論、
高温強度、溶接性並びに熱処理性等の特性バランスが良
好であることから航空・宇宙機器部材等として広く用い
られている材料であり、また、このα+β型チタン合金
は超塑性を示すので、超塑性加工により複雑形状品を容
易に成形し得る可能性を持つものとしても注目されてい
た。
<Background technology> Titanium alloys, which have only recently become possible to produce industrially, are expected to have an extremely wide range of uses due to their unique properties, and the development of titanium alloys has been competed with in many countries. Many types of titanium alloys have come to market. Among them, Ti-6Aj! The α+β type titanium alloy represented by -4V not only exhibits high specific strength and excellent corrosion resistance, but also
Due to its good balance of properties such as high-temperature strength, weldability, and heat treatability, it is a material that is widely used as parts for aerospace equipment.Also, this α+β type titanium alloy exhibits superplasticity, so it It was also attracting attention as a material that could be processed to easily form products with complex shapes.

ところで、前記超塑性加工では素材として薄板材が用い
られることが多く、従って超塑性加工用材料は薄板形態
として供給する場合が殆んどである。しかし、α+β型
チタン合金には、冷延性が極めて悪くて冷間圧延により
薄板材を製造するのは困難であると言う問題点があった
Incidentally, in the superplastic processing, a thin plate material is often used as the raw material, and therefore the material for superplastic processing is almost always supplied in the form of a thin plate. However, the α+β type titanium alloy has a problem in that it has extremely poor cold rolling properties, making it difficult to produce thin sheets by cold rolling.

このα+β型チタン合金は、室温では稠密六方晶(ha
p)の結晶構造を持つα相が母相であり、α相の集合組
織が冷延性に大きな影響を持つことが知られている。そ
して、第1図で示したhcp結晶格子の“C軸”が板面
垂直方向に集積している度合を示すところの、rFr値
」が大きいほど冷間圧延は難しくなるとさている。なお
、Fr値は第で表わすことができる。ここで、I !’
::d/’t’sはα及びφ位置での(0002)面の
X線回折強度を示す。
This α+β type titanium alloy has a dense hexagonal (ha) structure at room temperature.
It is known that the α phase having the crystal structure shown in p) is the parent phase, and the texture of the α phase has a great influence on cold rollability. It is also said that the larger the rFr value, which indicates the degree to which the "C-axis" of the hcp crystal lattice shown in FIG. 1 is concentrated in the direction perpendicular to the sheet surface, the more difficult cold rolling becomes. Incidentally, the Fr value can be expressed as a number. Here, I! '
::d/'t's indicates the X-ray diffraction intensity of the (0002) plane at the α and φ positions.

つまり、α+β型チタン合金では、冷間圧延するとC軸
が板面に垂直な方向に容易に集積するのでFr値がすぐ
に大きくなってしまい、このためにそれ以上の冷間圧延
が困難となるものであった。
In other words, in α+β type titanium alloy, when cold rolled, the C axis easily accumulates in the direction perpendicular to the plate surface, so the Fr value increases quickly, making further cold rolling difficult. It was something.

このようなことから、α+β型チタン合金の冷間圧延材
をβ変態点以上の温度に保持することによりαの冷延集
合組織を消滅させ、これによって冷延性を改善しようと
の提案もなされた(R&D神戸製鋼技報/Vo1.32
. No、1. p、44〜47)。ところが、このよ
うなβ焼鈍を施した場合にはミクロ組織が粗粒の針状組
織となってしまい、それ放遂に延性低下を招くこととな
って、やはり冷延中に表面割れを生じるとの問題が生じ
たのである。
For this reason, a proposal has been made to eliminate the α cold-rolled texture by maintaining the cold-rolled material of α+β type titanium alloy at a temperature above the β transformation point, thereby improving cold rollability. (R&D Kobe Steel Technical Report/Vo1.32
.. No, 1. p, 44-47). However, when such β annealing is applied, the microstructure becomes a coarse-grained acicular structure, which in turn leads to a decrease in ductility, resulting in surface cracking during cold rolling. A problem arose.

従って、α+β型チタン合金薄板材を得る場合には活性
金属特有の“パンク圧延”等の如き特殊な熱間圧延を適
用するのが一般的であったが、そのため、“パックの製
作”、“微妙な条件制御を要する熱延作業”、“熱延後
の表面精製”等の製造コストを上げる多くの工程を余儀
なくされていた。
Therefore, when obtaining α+β type titanium alloy thin sheets, it was common to apply special hot rolling such as "puncture rolling" peculiar to active metals. Many processes that increase production costs, such as "hot rolling work that requires delicate control of conditions" and "surface refining after hot rolling," were required.

く問題点を解決するための手段〉 本発明者等は、α+β型チタン合金に見られる上述のよ
うな問題点を踏まえた上で、需要が急増しているα+β
型チタン合金薄板材を作業性良く簡単に製造する方法の
可能性を求め、種々の観点から試験・研究を行った結果
、 「確かに、減肉のために成る程度の冷間圧延を施したα
+β型チタン合金の冷延性を改善するには、前述の提案
のようにαの冷延集合組織を消滅させてβの再結晶集合
組織を形成させることが必要であるが、このためには必
ずしもβ領域での焼鈍を必要とせず、α+β温度域の高
温部で所定時間の焼鈍を行うことでαの冷延集合組織を
消滅させるに十分な70%以上の比率で再結晶β相を安
定して出現させることができる上、この温度域での焼鈍
であれば前述した粗粒針状組織の形成が抑えられるので
表面割れ等の欠陥原因を作ることもなく、従って更なる
冷間圧延を実施することが可能な冷延性の優れたα+β
型チタン合金素材が得られる」 との知見を得るに至った。
Means for Solving the Problems〉 The present inventors have taken into account the above-mentioned problems found in α+β type titanium alloys, and have developed α+β type titanium alloys whose demand is rapidly increasing.
After conducting tests and research from various viewpoints in search of the possibility of a method for easily manufacturing type titanium alloy thin sheets with good workability, we found that, ``Certainly, cold rolling was applied to the extent necessary for thinning. α
In order to improve the cold rollability of +β type titanium alloys, it is necessary to eliminate the α cold rolling texture and form the β recrystallization texture as proposed above, but this does not necessarily require The recrystallized β phase can be stabilized at a ratio of 70% or more, which is sufficient to eliminate the α cold rolling texture, by annealing for a predetermined time at a high temperature in the α+β temperature range without requiring annealing in the β region. In addition, annealing in this temperature range suppresses the formation of the above-mentioned coarse-grained acicular structure, so it does not cause defects such as surface cracks, and therefore further cold rolling is performed. α+β with excellent cold rollability
This led us to the knowledge that "type titanium alloy material can be obtained."

この発明は、上記知見に基づいてなされたものであり、 「α+β型チタン合金冷延板の製造工程で、冷間圧延中
に実施する中間焼鈍を、 焼鈍温度: 〔β変態点−25℃〕以上でβ変態点未満
の温度範囲。
This invention has been made based on the above knowledge, and is based on the following: ``In the manufacturing process of α+β type titanium alloy cold rolled sheet, intermediate annealing performed during cold rolling is performed at annealing temperature: [β transformation point -25°C] The above temperature range is below the β transformation point.

焼鈍時間:0.5〜4時間。Annealing time: 0.5-4 hours.

加熱保持後の冷却速度二0.5〜5℃/秒。Cooling rate after heating and holding: 20.5-5°C/sec.

上記冷却速度での冷却を施す温度区間:300℃以下ま
で。
Temperature range in which cooling is performed at the above cooling rate: up to 300°C or less.

なる条件で行うことにより、格別なコスト高を招く特殊
な作業や設備を必要とすることなく簡単かつ安定にα+
β型チタン合金冷延薄板を製造し得るようにした点」 に特徴を有するものである。
By performing the process under the following conditions, α+ can be easily and stably achieved without the need for special work or equipment that would result in exceptionally high costs.
This method is characterized by the ability to produce cold-rolled β-type titanium alloy thin sheets.

ここで、対象となるα+β型チタン合金はTi −6A
f−4Vのみに限られるものではな(、Ti−3Aj 
−2,5V、 Ti −6Af −6V −2Sn、 
Ti −6Af −2Sn  4Zr−2Mo、Ti−
6At!−2Sn−42r−6Mo。
Here, the target α+β type titanium alloy is Ti-6A
It is not limited to f-4V only (Ti-3Aj
-2,5V, Ti -6Af -6V -2Sn,
Ti-6Af-2Sn 4Zr-2Mo, Ti-
6At! -2Sn-42r-6Mo.

Ti−10V −2Fe −3Aj!等の何れであって
も良いことは言うまでもない。
Ti-10V-2Fe-3Aj! It goes without saying that any of the above may be used.

く作用〉 次いで、本発明の方法において中間焼鈍の条件を前記の
如くに限定した理由を説明する。
Effect> Next, the reason why the conditions for intermediate annealing in the method of the present invention are limited as described above will be explained.

(al  焼鈍温度 前記中間焼鈍をβ変態点以上の温度で実施すると、前述
したように粗粒の針状組織が形成されて冷延性を悪化す
ることとなり、一方、焼鈍温度が〔β変態点−25℃〕
よりも低いと、β相の比率が少なくなってαの冷延集合
組織を消滅させるに十分な再結晶βが得られなくなる。
(Al Annealing Temperature If the intermediate annealing is performed at a temperature higher than the β-transform point, a coarse-grained acicular structure will be formed as described above, deteriorating the cold rollability. 25℃]
If it is lower than , the ratio of the β phase decreases, and it becomes impossible to obtain recrystallized β sufficient to eliminate the cold rolling texture of α.

従って、中間焼鈍は(β変態点−25℃)以上でβ変態
点未満の温度域で実施することと定めた。
Therefore, it was decided that the intermediate annealing should be carried out in a temperature range above (beta transformation point -25°C) and below the beta transformation point.

なお、第3図はTi−6Aj!−4V合金(β変態点:
990℃)の各温度におけるβ相の比率を示したグラフ
である。この第3図からも、加熱温度が〔β変態点−2
5℃〕以上であれば、β変態点の温度を超えなくてもβ
相の比率がαの冷延集合組織を消滅させるに十分な70
%を超えることが確認できる。
In addition, Fig. 3 shows Ti-6Aj! -4V alloy (β transformation point:
990° C.) is a graph showing the ratio of β phase at each temperature. This figure 3 also shows that the heating temperature is [β transformation point -2
5℃] or above, β does not exceed the temperature of the β transformation point.
70, which is sufficient to eliminate the cold-rolled texture with a phase ratio of α.
It can be confirmed that it exceeds %.

申) 焼鈍時の加熱・保持時間 焼鈍時の加熱・保持時間が0.5時間未満では十分な再
結晶β相が得られず、一方、4時間を超えて焼鈍温度に
保持すると結晶粒の成長が起こって延性の低下を招き、
何れの場合でも冷延性を劣化することとなる。
Heating/holding time during annealing If the heating/holding time during annealing is less than 0.5 hours, sufficient recrystallized β phase cannot be obtained; on the other hand, if held at the annealing temperature for more than 4 hours, crystal grains will grow. occurs, leading to a decrease in ductility,
In either case, cold rollability will deteriorate.

従って、焼鈍時の加熱・保持時間は0.5〜4時間と限
定した。
Therefore, the heating and holding time during annealing was limited to 0.5 to 4 hours.

(C)  加熱保持後の冷却速度 焼鈍温度に加熱・保持した後の冷却速度が0.5℃/秒
よりも遅いと冷却の途中で結晶粒の成長が起こり、一方
、5℃/秒を超える冷却速度で冷却するとマルテンサイ
ト変態が生じることとなり、何れも冷延性の低下につな
がることから、上記冷却速度は0.5〜5℃/秒と定め
た。
(C) Cooling rate after heating and holding If the cooling rate after heating and holding at the annealing temperature is slower than 0.5°C/sec, grain growth will occur during cooling, whereas if it exceeds 5°C/sec If the steel is cooled at a cooling rate, martensitic transformation will occur, which will lead to a decrease in cold rollability. Therefore, the cooling rate was set at 0.5 to 5°C/sec.

(d)  前記特定の冷却速度で冷却を施す区間焼鈍温
度に加熱・保持した後に加速冷却を行って結晶粒の成長
を抑制する区間は300℃までで十分であり、300℃
以下の温度では加速冷却を施さないで放置しても結晶粒
の成長が殆んど起こらないことから、前記加速冷却を施
す温度区間は300℃以下までと定めた。
(d) The section in which cooling is performed at the specific cooling rate The section in which accelerated cooling is performed to suppress the growth of crystal grains after heating and holding at the annealing temperature is sufficient up to 300 ° C.
Since crystal grain growth hardly occurs at temperatures below, even if left without accelerated cooling, the temperature range in which accelerated cooling is applied was determined to be 300° C. or lower.

次に、この発明を実施例により比較例と対比しながら具
体的に説明する。
Next, the present invention will be specifically explained using examples and comparing with comparative examples.

〈実施例〉 まず、真空アーク溶解によって第1表に示す如き化学成
分組成のTi−6Af−4V合金のインゴットを溶製し
た後、このインゴットに熱間鍛造と熱間圧延を施して5
鶴厚の熱延板とし、次いで表面精製を行ってから更に断
面減少率:50%の冷間圧延を施して2.5111厚の
板材を得た。
<Example> First, an ingot of Ti-6Af-4V alloy having the chemical composition shown in Table 1 was melted by vacuum arc melting, and then this ingot was hot-forged and hot-rolled.
A hot-rolled plate with a thickness of 2.5111 mm was obtained by surface refining and cold rolling with a reduction in area of 50%.

続いて、この板材に真空炉を使用して第2表に示す如き
条件の焼鈍を施し、焼鈍後の板材についてFr値を調査
すると共に、冷延試験を実施した。
Subsequently, this plate material was annealed using a vacuum furnace under the conditions shown in Table 2, and the Fr value of the annealed plate material was investigated and a cold rolling test was conducted.

これらの調査結果を第2表に併せて示す。These survey results are also shown in Table 2.

第2表に示される結果からも明らかなように、本発明で
規定する条件通りに処理されたTi−6AI−4V合金
板(試験番号1〜4)は、何れもPr値が0.33〜0
.38と低ぐ、冷延限界も35〜40%であって、単に
エツジ割れが冷延限界を決めていることが分かる。なお
、このエツジ割れの原因は、冷延集合組織が再び形成さ
れて板厚方向の変形が困難になることに対応していると
考えられる。
As is clear from the results shown in Table 2, the Ti-6AI-4V alloy plates (test numbers 1 to 4) treated according to the conditions specified in the present invention all have Pr values of 0.33 to 4. 0
.. It can be seen that the cold rolling limit is as low as 38% and the cold rolling limit is 35 to 40%, and that the cold rolling limit is simply determined by edge cracking. The cause of this edge cracking is thought to be that the cold rolling texture is re-formed and deformation in the thickness direction becomes difficult.

これに対して、焼鈍の加熱・保持時間が本発明の規定範
囲よりも短かったり、焼鈍温度が低い試験番号6又は1
1によるものは焼鈍後のβ相の再結晶が不十分であり、
従ってFr値も0.48及び0.50と高く、冷延限界
も15%と低い値に止まっている。
On the other hand, test number 6 or 1 where the annealing heating/holding time is shorter than the specified range of the present invention or the annealing temperature is low.
1, the recrystallization of the β phase after annealing is insufficient,
Therefore, the Fr values are high at 0.48 and 0.50, and the cold rolling limit remains at a low value of 15%.

また、β焼鈍が施された試験番号5によるものは、Fr
値は0.32と低いが延性不足のために表面割れを起こ
し、やはり冷延限界は15%に止まっている。
In addition, the test number 5 which was subjected to β annealing was Fr.
Although the value is low at 0.32, surface cracking occurs due to insufficient ductility, and the cold rolling limit remains at 15%.

更に、試験番号7.8及び10はα+β焼鈍の例ではあ
るが、試験番号7は焼鈍の加熱・保持時間が長すぎ、試
験番号8は焼鈍後の冷却速度が遅く、そして試験番号I
Oは加速冷却終了温度が高すぎることから何れも結晶粒
の成長により延性が低下し、冷延率20%で表面割れを
起こしている。
Furthermore, test numbers 7.8 and 10 are examples of α+β annealing, but test number 7 has too long annealing heating and holding time, test number 8 has a slow cooling rate after annealing, and test number I
Since the accelerated cooling end temperature of O was too high, the ductility decreased due to the growth of crystal grains, and surface cracking occurred at a cold rolling reduction of 20%.

しかし、試験番号9の場合には、逆に焼鈍後の冷却速度
が速すぎるのでマルテンサイト変態を起こし、やはり延
性不足による表面割れを生じて冷延限界は15%と低い
値に止まっている。
However, in the case of test number 9, on the contrary, the cooling rate after annealing was too fast, causing martensitic transformation, and surface cracking also occurred due to insufficient ductility, so that the cold rolling limit remained at a low value of 15%.

なお、この実施例では、代表的なα+β型チタン合金で
あるTi−6^ff1−4Vについての結果のみ示した
が、他のα+β型チタン合金、例えばTi −6Af 
−6V −2Sn、 Ti −6Aj! −2Sn −
4Zr −2Mo。
In this example, only the results for Ti-6^ff1-4V, which is a typical α+β type titanium alloy, were shown, but other α+β type titanium alloys, such as Ti-6Af
-6V -2Sn, Ti -6Aj! -2Sn-
4Zr-2Mo.

Ti −6Af −2Sn −4Zr −6Mo等につ
いても同様の結果が得られたことは言うまでもない。
Needless to say, similar results were obtained for Ti-6Af-2Sn-4Zr-6Mo and the like.

〈効果の総括〉 以上に説明した如く、この発明によれば、極めて困難で
あった高強度α+β型チタン合金の冷間圧延を簡単に安
定して実施できるようになり、需要が急増している極薄
板の高能率生産が可能となるなど、産業上有用な効果が
もたらされるのである。
<Summary of Effects> As explained above, according to this invention, it has become possible to easily and stably cold-roll high-strength α+β-type titanium alloys, which was extremely difficult, and demand is rapidly increasing. This brings about industrially useful effects, such as enabling highly efficient production of ultra-thin plates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、チタンのすべり径とC軸との関係を示した模
式図である。 第2図は、Fr値の算出基準説明図である。 第3図は、Ti−6Ai’−4V合金の各温度における
β相の比率を示したグラフである。
FIG. 1 is a schematic diagram showing the relationship between the sliding diameter of titanium and the C axis. FIG. 2 is an explanatory diagram of the calculation criteria for the Fr value. FIG. 3 is a graph showing the ratio of the β phase at each temperature of the Ti-6Ai'-4V alloy.

Claims (1)

【特許請求の範囲】 α+β型チタン合金冷延板の製造工程で、冷間圧延中に
実施する中間焼鈍を、 焼鈍温度:〔β変態点−25℃〕以上でβ変態点未満の
温度範囲、 焼鈍時間:0.5〜4時間、 加熱保持後の冷却速度:0.5〜5℃/秒、上記冷却速
度での冷却を施す温度区間: 300℃以下まで、 なる条件で行うことを特徴とする、α+β型チタン合金
冷延板の製造方法。
[Claims] In the manufacturing process of an α+β type titanium alloy cold rolled sheet, intermediate annealing performed during cold rolling is performed at an annealing temperature: a temperature range of [β transformation point −25°C] or more and below the β transformation point; Annealing time: 0.5 to 4 hours, cooling rate after heating and holding: 0.5 to 5°C/sec, temperature range in which cooling is performed at the above cooling rate: to 300°C or less. A method for producing an α+β type cold-rolled titanium alloy plate.
JP28577387A 1987-11-12 1987-11-12 Manufacture of alpha+beta type titanium alloy cold rolled plate Pending JPH01127653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28577387A JPH01127653A (en) 1987-11-12 1987-11-12 Manufacture of alpha+beta type titanium alloy cold rolled plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28577387A JPH01127653A (en) 1987-11-12 1987-11-12 Manufacture of alpha+beta type titanium alloy cold rolled plate

Publications (1)

Publication Number Publication Date
JPH01127653A true JPH01127653A (en) 1989-05-19

Family

ID=17695874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28577387A Pending JPH01127653A (en) 1987-11-12 1987-11-12 Manufacture of alpha+beta type titanium alloy cold rolled plate

Country Status (1)

Country Link
JP (1) JPH01127653A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531546A (en) * 2006-03-30 2009-09-03 スネクマ Heat treatment method and manufacturing method for thermomechanical components made of titanium alloy, and thermomechanical components obtained from these methods
CN102230097A (en) * 2011-03-31 2011-11-02 西北有色金属研究院 Preparation method of titanium alloy bars
CN102230145A (en) * 2011-06-20 2011-11-02 西部钛业有限责任公司 Method for producing TC25 two-phase titanium alloy rod material with large specification
CN104624899A (en) * 2015-01-14 2015-05-20 无锡市派克重型铸锻有限公司 Forging improving method of 200-kilogram-level TC4-DT titanium alloy
CN113249667A (en) * 2021-06-18 2021-08-13 北京煜鼎增材制造研究院有限公司 Heat treatment method for obtaining high-toughness high-damage-tolerance dual-phase titanium alloy
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate
WO2022162816A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531546A (en) * 2006-03-30 2009-09-03 スネクマ Heat treatment method and manufacturing method for thermomechanical components made of titanium alloy, and thermomechanical components obtained from these methods
CN102230097A (en) * 2011-03-31 2011-11-02 西北有色金属研究院 Preparation method of titanium alloy bars
CN102230145A (en) * 2011-06-20 2011-11-02 西部钛业有限责任公司 Method for producing TC25 two-phase titanium alloy rod material with large specification
CN104624899A (en) * 2015-01-14 2015-05-20 无锡市派克重型铸锻有限公司 Forging improving method of 200-kilogram-level TC4-DT titanium alloy
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate
WO2022162816A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil
KR20230110601A (en) 2021-01-28 2023-07-24 닛폰세이테츠 가부시키가이샤 Titanium alloy plate and titanium alloy coil, method for manufacturing titanium alloy plate and method for manufacturing titanium alloy coil
KR20230118978A (en) 2021-01-28 2023-08-14 닛폰세이테츠 가부시키가이샤 Titanium alloy thin plate and manufacturing method of titanium alloy thin plate
CN113249667A (en) * 2021-06-18 2021-08-13 北京煜鼎增材制造研究院有限公司 Heat treatment method for obtaining high-toughness high-damage-tolerance dual-phase titanium alloy

Similar Documents

Publication Publication Date Title
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
WO2012032610A1 (en) Titanium material
CN114657417B (en) High-strength plastic titanium alloy suitable for cold deformation processing and preparation method thereof
JP3101280B2 (en) Manufacturing method of Al-based alloy and Al-based alloy product
JPH0474856A (en) Production of beta ti alloy material having high strength and high ductility
JPS62109956A (en) Manufacture of titanium alloy
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JP2016113640A (en) High strength titanium sheet and manufacturing method therefor
JPH08311594A (en) Al-mg alloy sheet excellent in bendability and its production
WO2016140231A1 (en) Thin titanium sheet and manufacturing method therefor
RU2675011C1 (en) Method of manufacturing flat products from hafnium-containing alloy based on titanium
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
CN111440938B (en) Annealing strengthening process method for rolling pure tantalum foil
JP5382518B2 (en) Titanium material
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JPS6224498B2 (en)
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JP3065782B2 (en) Hydrogen treatment method for titanium alloy
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH11335803A (en) Production of near beta type titanium alloy coil