JPS63215987A - Highly resolvable scintillation fiber plate - Google Patents

Highly resolvable scintillation fiber plate

Info

Publication number
JPS63215987A
JPS63215987A JP4976987A JP4976987A JPS63215987A JP S63215987 A JPS63215987 A JP S63215987A JP 4976987 A JP4976987 A JP 4976987A JP 4976987 A JP4976987 A JP 4976987A JP S63215987 A JPS63215987 A JP S63215987A
Authority
JP
Japan
Prior art keywords
scintillator
film
fiber plate
columnar crystal
organic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4976987A
Other languages
Japanese (ja)
Inventor
Michihiro Ito
通浩 伊藤
Masahiro Yamaguchi
山口 政弘
Koichiro Oba
大庭 弘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4976987A priority Critical patent/JPS63215987A/en
Publication of JPS63215987A publication Critical patent/JPS63215987A/en
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a luminous efficiency from being reduced by the deliquescence of a columnar crystal scintillator, improve its mechanical strength and facilitate handling by covering the scintillator by a film and fixedly supporting the scintillator. CONSTITUTION:A columnar crystal scintillator 1 formed on a fiber plate 3 is covered by an organic film 8 and fixedly supported. As the organic film 8, a xylene resin, for example, polyparaxylene, polymonochloroxylene or the like is used. A water vapor permeability is low due to the film formed by CVD (Chemical Vapor Deposition) method so that the scintillator 1 composed of columnar crystals is not brought into contact with are and an X-ray transmittance is high, being able to be used down to a low energy region. Further, in order to prevent a loss from being generated in the amount of emitted light by the phenomenon that the light emitted from the scintillator 1 returns to an input side and emitted outside therefrom, a reflecting mirror (or light absorbing film) 7 is coated on the outer or inner surface of the organic film 8.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はXM像を高解像度で観察するためのシンチレー
ションファイバープレートに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a scintillation fiber plate for observing XM images with high resolution.

〔従来の技術〕[Conventional technology]

従来、2次元X線像(数KeV〜百KeV)を高解像度
で観察するシンチレーションファイバープレートは、第
4図に示すように、通常のファイバープレート上にその
ファイバープレートの持つファイバー径と等しく、柱状
結晶を互いに独立にわずかな隔たりをもたせて配列した
ものである。
Conventionally, a scintillation fiber plate for observing two-dimensional X-ray images (several KeV to 100 KeV) with high resolution has a columnar shape on a normal fiber plate with a diameter equal to the fiber diameter of the fiber plate, as shown in Figure 4. Crystals are arranged independently from each other with a slight distance between them.

図中、1はシンチレータ、2はタララドガラス、3はフ
ァイバープレート、4はコアガラス、5はX線である。
In the figure, 1 is a scintillator, 2 is a Talarad glass, 3 is a fiber plate, 4 is a core glass, and 5 is an X-ray.

通常のファイバープレートのファイバー径は5〜6μm
であるから柱状結晶シンチレータ1も同等のサイズであ
る。柱状結晶の材料は使用対象のX線の線質によるが、
通常Cs r、Na Iが使われる。
The fiber diameter of a normal fiber plate is 5 to 6 μm.
Therefore, the columnar crystal scintillator 1 is also of the same size. The material of the columnar crystals depends on the quality of the X-rays used, but
Usually Csr, NaI are used.

第5図は第4図のシンチレーションファイバープレート
の使用例を示す図であり、6は試料である。
FIG. 5 is a diagram showing an example of use of the scintillation fiber plate shown in FIG. 4, and 6 is a sample.

例えば、試料6を透過してプレートに投影されたX線像
は、上記柱状結晶から成るセグメントに分割され、第4
図に示すように各々のセグメントでシンチレーション光
を生じる。このシンチレーション光の一部はまず柱状結
晶シンチレータl中をファイバープレート3側に反射を
繰り返しながら伝わり、ファイバープレート3の端部で
一部反射ロスを受けながらファイバープレート3に入射
し、最終的にファイバープレート3の出力端に現われる
。このシンチレーションファイバープレートは第4図に
示すように、一本一本の柱状結晶と対応するファイバー
が各々独立してセグメントを形成することから、非常に
高い空間解像度を示すこととなる。
For example, the X-ray image transmitted through the sample 6 and projected onto the plate is divided into segments consisting of the above-mentioned columnar crystals.
As shown in the figure, scintillation light is generated in each segment. A part of this scintillation light first propagates through the columnar crystal scintillator l while repeating reflection to the fiber plate 3 side, and then enters the fiber plate 3 while undergoing some reflection loss at the end of the fiber plate 3, and finally enters the fiber plate 3. Appears at the output end of plate 3. As shown in FIG. 4, this scintillation fiber plate exhibits extremely high spatial resolution because each columnar crystal and the corresponding fiber form segments independently.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

ところで、シンチレーションファイバープレートの柱状
結晶部に用いられるシンチレータ材料としては前述した
ようにCs 1% Na Iなどがあるが、いずれも潮
解性を持っている。そして図示したような構造では、一
本一本の柱状結晶は6μm以下と非常に細く、従って、
全体を構成する柱状結晶の本数は膨大な数になる0例え
ば、1インチ径の場合で結晶本数は約600万本程度に
なる。
Incidentally, scintillator materials used for the columnar crystal portions of scintillation fiber plates include Cs 1% Na I and the like as described above, but all of them have deliquescent properties. In the structure shown in the figure, each columnar crystal is very thin, less than 6 μm, and therefore,
The number of columnar crystals that make up the whole is enormous. For example, in the case of a diameter of 1 inch, the number of crystals is about 6 million.

全体は一本一本が独立し、空間的に分離していることか
ら結晶の示す表面積は非常に大きなものとなり、1イン
チ径単結晶の場合に比して約40倍にもなる。そのため
、空気中に放置したとき、潮解性による発光効率の劣化
が問題となる。
As each crystal is independent and spatially separated, the surface area of the crystal is extremely large, approximately 40 times that of a 1-inch diameter single crystal. Therefore, when left in the air, deterioration of luminous efficiency due to deliquescence becomes a problem.

第6図は不活性ガス中と大気中における発光効率の経時
変化の実験結果を示す図である。
FIG. 6 is a diagram showing experimental results of changes in luminous efficiency over time in an inert gas and in the atmosphere.

図において、不活性ガスとして窒素雰囲気中に保管した
場合には殆ど変化はなく、大気中に保管した場合には2
4時間で15%程に低下することが分かる。これは各々
の柱状結晶間に空気が入り込み結晶を潮解させて、発光
効率が低下することによるものである。
In the figure, there is almost no change when stored in a nitrogen atmosphere as an inert gas, and 2% when stored in the atmosphere.
It can be seen that the temperature decreases to about 15% in 4 hours. This is because air enters between each columnar crystal, deliquifying the crystal and reducing luminous efficiency.

そこでシンチレータ全体をX線透過性の良い被膜で完全
に覆い、空気を完全に遮断して潮解性はもとより、空気
と結晶表面の接触による発光効率劣化の防止、さらには
取り扱い昌さの向上を図ることが考えられるが、高解像
シンチレーションファイバープレートの場合、結晶一本
一本が径6μm以下で、長さが数lO〜数100μmと
非常に細く、従って機械的に極めて弱い結晶の集合体で
あるため、アルミフォイルによる被膜とかBe板を直接
押しつけるような形の保護はできず、また真空容器に収
納するものも提案されているが、柱状結晶の先端を確実
に固定することができないために機械的強度の点で問題
があった。
Therefore, the entire scintillator is completely covered with a film that is highly transparent to X-rays, completely blocking air, preventing not only deliquescent properties but also deterioration of luminous efficiency due to contact between air and the crystal surface, as well as improving handling. However, in the case of high-resolution scintillation fiber plates, each crystal is very thin, with a diameter of 6 μm or less and a length of several 100 μm to several 100 μm, and is therefore an aggregate of mechanically extremely weak crystals. Because of this, it is not possible to protect the columnar crystals by applying a coating with aluminum foil or by directly pressing the Be plate.Also, storage in a vacuum container has been proposed, but it is not possible to securely fix the tips of the columnar crystals. There was a problem with mechanical strength.

本発明は上記問題点を解決するためのもので、シンチレ
ータの潮解性による発光効率の低下を防止すると共に、
機械的強度を向上させ取り扱いを容易にすることが可能
な高解像シンチレーションファイバープレートを提供す
ることを目的とする。
The present invention is intended to solve the above problems, and prevents a decrease in luminous efficiency due to the deliquescence of the scintillator, as well as
The purpose of the present invention is to provide a high-resolution scintillation fiber plate that has improved mechanical strength and can be easily handled.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の高解像シンチレーションファイバー
プレートは、ファイバープレートと、1亥フアイバープ
レート上に形成された柱状結晶シンチレータ群から成る
シンチレータ3ンフアイバープレートにおいて、柱状結
晶シンチレータをフィルムで被覆し固定支持したことを
特徴とする。
To this end, the high-resolution scintillation fiber plate of the present invention has a three-fiber plate consisting of a fiber plate and a group of columnar crystal scintillators formed on one fiber plate, in which the columnar crystal scintillator is covered with a film and fixedly supported. It is characterized by

〔作用〕[Effect]

本発明の高解像シンチレーションファイバープレートは
、柱状結晶シンチレータ群をフィルムで被覆して固定す
ることにより、シンチレータを空気から遮断して潮解す
るのを防止すると共に、ファイバープレート基板方向へ
はストレスを与えずにシンチレータを固定支持すること
ができる。
The high-resolution scintillation fiber plate of the present invention covers and fixes a columnar crystal scintillator group with a film, thereby shielding the scintillator from the air and preventing it from deliquescence, while applying stress toward the fiber plate substrate. The scintillator can be fixedly supported without any problems.

〔実施例〕〔Example〕

以下、実施例を図1を参照して説明する。 An example will be described below with reference to FIG.

第1図は本発明による高解像シンチレーションファイバ
ープレートの一実施例を示す図で、第3図と同一番号は
同一内容を示している。なお図中、7は反射膜コーティ
ング、8は有機フィルムである。
FIG. 1 is a diagram showing an embodiment of a high-resolution scintillation fiber plate according to the present invention, and the same numbers as in FIG. 3 indicate the same contents. In the figure, 7 is a reflective film coating, and 8 is an organic film.

図において、有機フィルム8は各々の柱状結晶からなる
シンチレータlが空気に触れないようにCVD (Ch
e+wical Vapour Deposition
 )法によって形成した被膜で、XSS透過性が高(、
かつ空気を遮断することができる被膜からなっている。
In the figure, an organic film 8 is formed by CVD (Ch
e+wical Vapor Deposition
) method with high XSS permeability (,
It also consists of a coating that can block air.

この場合、有機フィルム8の内部に空気が入り込まない
ように真空あるいは不活性ガス中においてフィルム形成
を行う。なおプレートの出力面は高解像が得られるよう
に有機フィルムのコーティングは行わない。この被膜形
成により、シンチレーションファイバープレートを空気
中に放置したときに問題となる潮解性による発光効率の
劣化を防ぐことができる。
In this case, film formation is performed in vacuum or in an inert gas to prevent air from entering the organic film 8. Note that the output surface of the plate is not coated with an organic film to obtain high resolution. By forming this film, it is possible to prevent deterioration of luminous efficiency due to deliquescence, which becomes a problem when the scintillation fiber plate is left in the air.

またこの有機フィルムは、完全には面一ではない全ての
シンチレータ先端部に固着するので、ファイバープレー
ト基板の方へはストレスを与えずにこれを固定支持し、
極めて細いシンチレータの強度を向上させる働きも兼ね
ている。
In addition, this organic film adheres to all scintillator tips that are not completely flush, so it can be fixed and supported without applying stress to the fiber plate substrate.
It also serves to improve the strength of extremely thin scintillators.

なお有機フィルム8として、例えばポリパラキシレン、
ポリモノクロロキシレン、ポリジクロロキシレン等のキ
シレン系樹脂が望ましく、10μm厚のキシレン系樹脂
フィルムであれば、水蒸気透過率が非常に低いと共にX
vA透過率が高く、数百eV程度の低エネルギー領域ま
で使用可能である。ただしこの場合、有機フィルム8が
透明薄膜であるため、シンチレータ1で発光した光が入
力側に戻り、そこから外に射出されてしまい発光量の損
失を生ずる。また、シンチレーションファイバープレー
トに直接光が入射したりすることも生ずる。そこで有機
フィルム8の外面あるいは内面に反射膜7等をコーティ
ングし、再度シンチレータ側に光を反射させたり、或い
は光吸収膜を設けて外部からの直接光を遮断したりする
ことが望ましい。
Note that as the organic film 8, for example, polyparaxylene,
Xylene-based resins such as polymonochloroxylene and polydichloroxylene are preferable, and a xylene-based resin film with a thickness of 10 μm has a very low water vapor permeability and
It has a high vA transmittance and can be used up to a low energy range of several hundred eV. However, in this case, since the organic film 8 is a transparent thin film, the light emitted by the scintillator 1 returns to the input side and is emitted from there to the outside, resulting in a loss in the amount of light emitted. Furthermore, light may be directly incident on the scintillation fiber plate. Therefore, it is desirable to coat the outer or inner surface of the organic film 8 with a reflective film 7 or the like to reflect the light back to the scintillator side, or to provide a light absorption film to block direct light from the outside.

第2図はキシレン系樹脂のCVD蒸着方法を示す図で、
図中、11は加熱室、12は分解炉、13は蒸着室、1
4は冷却装置である。
Figure 2 is a diagram showing the CVD deposition method of xylene resin.
In the figure, 11 is a heating chamber, 12 is a decomposition furnace, 13 is a vapor deposition chamber, 1
4 is a cooling device.

図において、加熱室11でキシレン系樹脂材料を150
〜200℃程度に加熱して昇華蒸発させ、分解炉12で
550〜700℃程度に加熱昇温しで分子化する0分子
化された状態の蒸気は蒸着室13を室温にすることによ
り蒸着する。なお冷却装置14は真空ポンプ側に分子が
行くのを防止するために設けられているものである。
In the figure, 150% of the xylene resin material is heated in the heating chamber 11.
The vapor is heated to about ~200°C to sublimate and evaporate, and then heated to about 550 to 700°C in the decomposition furnace 12 to be molecularized. The vapor in the molecularized state is vaporized by bringing the vapor deposition chamber 13 to room temperature. . Note that the cooling device 14 is provided to prevent molecules from going to the vacuum pump side.

第3図は第2図の方法により柱状結晶シンチレータ上に
生成されたキシレン系樹脂フィルムを示す図で、第1図
と同一番号は同一内容を示している。
FIG. 3 is a diagram showing a xylene-based resin film produced on a columnar crystal scintillator by the method shown in FIG. 2, and the same numbers as in FIG. 1 indicate the same contents.

シンチレータ柱状結晶の隙間を窒素等の不活性ガスで満
たすか真空にしてほぼ屈折率を1にしである。こうする
ことによりシンチレータとして使用するCs I、Na
 Iが屈折率がほぼ1.7であるので、シンチレーショ
ン光は柱状結晶の内面で反射されてファイバープレート
に到達する。
The gaps between the scintillator columnar crystals are filled with an inert gas such as nitrogen or evacuated so that the refractive index is approximately 1. By doing this, Cs I, Na used as a scintillator
Since I has a refractive index of approximately 1.7, the scintillation light is reflected from the inner surface of the columnar crystal and reaches the fiber plate.

このようにCVD法により蒸着されたキシレン系樹脂の
被膜は、高真空に耐え、X線透過率はほぼ100%であ
り、また空気や蒸気の透過性が極めて小さいので、シン
チレータ柱状結晶の潮解を防ぐことができ、また柔軟性
に優れ、寸法安定性が良好であるので、シンチレータ柱
状結晶の先端部を安定的に固定支持することができる。
The xylene-based resin film deposited by the CVD method can withstand high vacuum, has an X-ray transmittance of almost 100%, and has extremely low permeability to air and vapor, so it prevents the deliquescence of the scintillator columnar crystals. In addition, since it has excellent flexibility and good dimensional stability, the tip of the scintillator columnar crystal can be stably fixed and supported.

なお、キシレン系樹脂を直接蒸着して被膜を形成する代
わりに、ガラスプレートのような平坦なものの上に成長
させたキシレン系樹脂膜を剥がしてシンチレーションフ
ァイバープレート上にラップし、周辺部を接着剤等で固
定するようにしても樹脂膜が柔軟性に優れているので同
様の効果が得られる。
Note that instead of directly vapor depositing xylene resin to form a film, the xylene resin film grown on a flat object such as a glass plate is peeled off, wrapped on a scintillation fiber plate, and the surrounding area is covered with adhesive. The same effect can be obtained even if the resin film is fixed with a similar method because the resin film has excellent flexibility.

またキシレン系樹脂以外にも、アルミ等を蒸着して形成
してもよく、ただこの場合はキシレン系樹脂に比して柱
状結晶間の隙間が完全に密封されにくいのと、空気(水
分)を通し易いことを考慮する必要がある。
In addition to xylene-based resin, aluminum or the like may also be vapor-deposited, but in this case, it is difficult to completely seal the gaps between columnar crystals compared to xylene-based resin, and air (moisture) is It is necessary to consider ease of passage.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、柱状結晶シンチレータ群
をフィルムで被覆して固定することによりシンチレータ
を空気から完全に遮断し、潮解により発光効率が低下す
るのを防止することができる。またファイバープレート
の方へストレスを与えずに全てのシンチレータ柱状結晶
を固定支持することができ、その結果機械的強度を向上
させて取り扱いを容品にすることが可能となる。
As described above, according to the present invention, by covering and fixing the columnar crystal scintillator group with a film, the scintillator can be completely shielded from the air, and it is possible to prevent the luminous efficiency from decreasing due to deliquescence. In addition, all the scintillator columnar crystals can be fixedly supported without applying stress to the fiber plate, and as a result, the mechanical strength can be improved and handling becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高解像シンチレーションファイバ
ープレートの一実施例を示す図、第2図はキシレン系樹
脂のCVD蒸着方法を示す図、第3図は柱状結晶シンチ
レータ上に生成されたキシレン系樹脂フィルムを示す図
、第4図は高解像度用シンチレーションファイバープレ
ートの断面図、第5図はシンチレーションファイバープ
レートの使用例を示す図、第6図は不活性ガス中保管と
大気中保管の発光効率の変化を示す図である。 1・・・シンチレータ、2・・・タララドガラス、3・
・・ファイバープレート、4・・・コアガラス、5・・
・X&l。 6・・・試料、7・・・反射膜コーティング、8・・・
有機フィルム、11・・・加熱室、12・・・分解炉、
13・・・蒸着室、14・・・冷却装置。 出  願  人  浜松ホトニクス株式会社代  理 
 人  弁理士 蛭 川 昌 信第1図 第2図
Fig. 1 is a diagram showing an embodiment of a high-resolution scintillation fiber plate according to the present invention, Fig. 2 is a diagram showing a CVD deposition method of xylene-based resin, and Fig. 3 is a diagram showing a xylene-based resin produced on a columnar crystal scintillator. Figure 4 shows a resin film, Figure 4 is a cross-sectional view of a high-resolution scintillation fiber plate, Figure 5 shows an example of how a scintillation fiber plate is used, and Figure 6 shows luminous efficiency when stored in inert gas and in air. FIG. 1...Scintillator, 2...Tararad glass, 3.
...Fiber plate, 4...Core glass, 5...
・X&l. 6... Sample, 7... Reflective film coating, 8...
Organic film, 11... heating chamber, 12... decomposition furnace,
13... Vapor deposition chamber, 14... Cooling device. Applicant Hamamatsu Photonics Co., Ltd. Representative
Person Patent Attorney Masanobu Hirukawa Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ファイバープレートと、該ファイバープレート上
に形成された柱状結晶シンチレータ群から成るシンチレ
ーションファイバープレートにおいて、柱状結晶シンチ
レータをフィルムで被覆し固定支持したことを特徴とす
る高解像シンチレーションファイバープレート。
(1) A high-resolution scintillation fiber plate comprising a fiber plate and a group of columnar crystal scintillators formed on the fiber plate, characterized in that the columnar crystal scintillator is covered with a film and fixedly supported.
(2)前記フィルムがキシレン系樹脂からなる特許請求
の範囲第1項記載の高解像シンチレーションファイバー
プレート。
(2) The high-resolution scintillation fiber plate according to claim 1, wherein the film is made of xylene resin.
(3)前記フィルムは外面または内面に光遮断用の吸収
膜または反射膜がコーティングされている特許請求の範
囲第1項記載の高解像シンチレーションファイバープレ
ート。
(3) The high-resolution scintillation fiber plate according to claim 1, wherein the outer or inner surface of the film is coated with an absorbing film or a reflective film for blocking light.
JP4976987A 1987-03-04 1987-03-04 Highly resolvable scintillation fiber plate Expired - Lifetime JPS63215987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4976987A JPS63215987A (en) 1987-03-04 1987-03-04 Highly resolvable scintillation fiber plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4976987A JPS63215987A (en) 1987-03-04 1987-03-04 Highly resolvable scintillation fiber plate

Publications (1)

Publication Number Publication Date
JPS63215987A true JPS63215987A (en) 1988-09-08

Family

ID=12840376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4976987A Expired - Lifetime JPS63215987A (en) 1987-03-04 1987-03-04 Highly resolvable scintillation fiber plate

Country Status (1)

Country Link
JP (1) JPS63215987A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572344A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Radiation detecting apparatus
WO1999066351A1 (en) * 1998-06-18 1999-12-23 Hamamatsu Photonics K.K. Method of organic film deposition
WO1999066348A1 (en) * 1998-06-18 1999-12-23 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and method for producing the same
WO1999066347A1 (en) * 1998-06-19 1999-12-23 Hamamatsu Photonics K.K. Radiation image sensor
WO1999067658A1 (en) * 1998-06-23 1999-12-29 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and process for producing the same
WO2000036436A1 (en) * 1998-12-14 2000-06-22 Hamamatsu Photonics K.K. Optical element and radiation detector using the same
EP1118879A1 (en) * 1998-06-18 2001-07-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6429430B2 (en) 1998-06-18 2002-08-06 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and methods of making the same
JP2002333480A (en) * 2001-05-07 2002-11-22 Hamamatsu Photonics Kk Scintillator panel, and radiation detector using the same
US6531225B1 (en) 1998-06-18 2003-03-11 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6753531B2 (en) 1999-04-09 2004-06-22 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6940072B2 (en) 1997-02-14 2005-09-06 Hamamatsu Photonics K.K. Radiation detection device and method of making the same
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7041982B2 (en) * 2000-01-11 2006-05-09 Hamamatsu Photonics K.K. X-ray image detection apparatus
US7372045B2 (en) 2005-11-28 2008-05-13 Konica Minolta Medical & Graphic, Inc. Scintillator plate for radiation
WO2008133424A1 (en) * 2007-04-25 2008-11-06 Radtek, Co., Ltd. A detector module with pixelated scintillators for radiation imaging and the manufacturing method thereof
WO2010050358A1 (en) 2008-10-28 2010-05-06 コニカミノルタエムジー株式会社 Scintillator panel, radiation detector, and processes for producing these
WO2010061727A1 (en) 2008-11-28 2010-06-03 コニカミノルタエムジー株式会社 Scintillator panel
WO2011093140A1 (en) * 2010-01-29 2011-08-04 浜松ホトニクス株式会社 Radiation image conversion panel
JP2011158291A (en) * 2010-01-29 2011-08-18 Hamamatsu Photonics Kk Radiation image conversion panel
JP2011158293A (en) * 2010-01-29 2011-08-18 Hamamatsu Photonics Kk Radiation image conversion panel
US8124945B2 (en) 2007-04-05 2012-02-28 Konica Minolta Medical & Graphic, Inc. Scintillator plate
US8368025B2 (en) 2008-08-28 2013-02-05 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and production method thereof
US8461536B2 (en) 2008-07-18 2013-06-11 Konica Minolta Medical & Graphic, Inc. Radiation scintillator and radiation image detector
US8476605B2 (en) 2009-06-26 2013-07-02 Konica Minolta Medical & Graphic, Inc. Scintillator panel, method of producing scintillator panel, radiation image detector and method of producing radiation image detector
US8552393B2 (en) 2010-01-25 2013-10-08 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and radiation image detector using same
US8735854B2 (en) 2009-03-19 2014-05-27 Konica Minolta Medical & Graphic, Inc. Scintillator panel
JP2015072283A (en) * 2014-12-08 2015-04-16 浜松ホトニクス株式会社 Radiation image conversion panel manufacturing method
GB2477346B (en) * 2010-02-01 2016-03-23 Scintacor Ltd Scintillator assembly for use in digital x-ray imaging
JP2016095189A (en) * 2014-11-13 2016-05-26 コニカミノルタ株式会社 Scintillator panel and radiation detector
CN105785420A (en) * 2015-01-09 2016-07-20 佳能株式会社 Radiation Imaging Apparatus, Method For Manufacturing The Same, And Radiation Inspection Apparatus

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572344A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Radiation detecting apparatus
US6940072B2 (en) 1997-02-14 2005-09-06 Hamamatsu Photonics K.K. Radiation detection device and method of making the same
US7019301B2 (en) 1997-02-14 2006-03-28 Hamamatsu Photonics K.K. Radiation detection device and method of making the same
KR100687368B1 (en) * 1998-06-18 2007-02-26 하마마츠 포토닉스 가부시키가이샤 Method of organic film deposition
US6777690B2 (en) 1998-06-18 2004-08-17 Hamamatsu Photonics K.K. Organic film vapor deposition method and a scintillator panel
US7897938B2 (en) 1998-06-18 2011-03-01 Hamamatsu Photonics K.K. Scintillator panel
EP1118879A1 (en) * 1998-06-18 2001-07-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6429430B2 (en) 1998-06-18 2002-08-06 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and methods of making the same
WO1999066351A1 (en) * 1998-06-18 1999-12-23 Hamamatsu Photonics K.K. Method of organic film deposition
USRE39806E1 (en) 1998-06-18 2007-09-04 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and methods of making the same
US7705315B2 (en) 1998-06-18 2010-04-27 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6531225B1 (en) 1998-06-18 2003-03-11 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6573506B2 (en) 1998-06-18 2003-06-03 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7662427B2 (en) 1998-06-18 2010-02-16 Hamamatsu Photonics K.K. Organic film vapor deposition method
EP1684095A3 (en) * 1998-06-18 2009-01-14 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6762420B2 (en) 1998-06-18 2004-07-13 Hamamatsu Photonics K.K. Organic film vapor deposition method and a scintillator panel
KR100697493B1 (en) * 1998-06-18 2007-03-20 하마마츠 포토닉스 가부시키가이샤 A scintillator panel
US7132665B2 (en) 1998-06-18 2006-11-07 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6849336B2 (en) 1998-06-18 2005-02-01 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7408177B2 (en) 1998-06-18 2008-08-05 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7112801B2 (en) 1998-06-18 2006-09-26 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
WO1999066348A1 (en) * 1998-06-18 1999-12-23 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and method for producing the same
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
EP1118879B1 (en) * 1998-06-18 2006-04-26 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6469307B2 (en) 1998-06-18 2002-10-22 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and methods of making the same
US7048967B2 (en) 1998-06-18 2006-05-23 Hamamatsu Photonics K.K. Organic film vapor deposition method and a scintillator panel
EP1684095A2 (en) 1998-06-18 2006-07-26 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
WO1999066347A1 (en) * 1998-06-19 1999-12-23 Hamamatsu Photonics K.K. Radiation image sensor
KR100639845B1 (en) * 1998-06-19 2006-10-27 하마마츠 포토닉스 가부시키가이샤 Radiation image sensor
US6469305B2 (en) 1998-06-19 2002-10-22 Hamamatsu Photonics K.K. Radiation image sensor
WO1999067658A1 (en) * 1998-06-23 1999-12-29 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and process for producing the same
US6781131B2 (en) 1998-12-14 2004-08-24 Hamamatsu Photonics K.K. Scintillator panel, radiation detector, and method of making scintillator panel
EP1148349A4 (en) * 1998-12-14 2003-07-09 Hamamatsu Photonics Kk Optical element and radiation detector using the same
WO2000036436A1 (en) * 1998-12-14 2000-06-22 Hamamatsu Photonics K.K. Optical element and radiation detector using the same
US6911658B2 (en) 1999-04-09 2005-06-28 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6753531B2 (en) 1999-04-09 2004-06-22 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7041982B2 (en) * 2000-01-11 2006-05-09 Hamamatsu Photonics K.K. X-ray image detection apparatus
JP2002333480A (en) * 2001-05-07 2002-11-22 Hamamatsu Photonics Kk Scintillator panel, and radiation detector using the same
JP4647828B2 (en) * 2001-05-07 2011-03-09 浜松ホトニクス株式会社 Scintillator panel and radiation detector using the same
US7372045B2 (en) 2005-11-28 2008-05-13 Konica Minolta Medical & Graphic, Inc. Scintillator plate for radiation
US8124945B2 (en) 2007-04-05 2012-02-28 Konica Minolta Medical & Graphic, Inc. Scintillator plate
WO2008133424A1 (en) * 2007-04-25 2008-11-06 Radtek, Co., Ltd. A detector module with pixelated scintillators for radiation imaging and the manufacturing method thereof
US8461536B2 (en) 2008-07-18 2013-06-11 Konica Minolta Medical & Graphic, Inc. Radiation scintillator and radiation image detector
US8368025B2 (en) 2008-08-28 2013-02-05 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and production method thereof
WO2010050358A1 (en) 2008-10-28 2010-05-06 コニカミノルタエムジー株式会社 Scintillator panel, radiation detector, and processes for producing these
US8669526B2 (en) 2008-10-28 2014-03-11 Konica Minolta Medical & Graphic, Inc. Scintillator panel, radiation detector, and method for manufacturing the same
US8748849B2 (en) 2008-11-28 2014-06-10 Konica Minolta Medical & Graphic, Inc. Scintillator panel
WO2010061727A1 (en) 2008-11-28 2010-06-03 コニカミノルタエムジー株式会社 Scintillator panel
US8735854B2 (en) 2009-03-19 2014-05-27 Konica Minolta Medical & Graphic, Inc. Scintillator panel
US8476605B2 (en) 2009-06-26 2013-07-02 Konica Minolta Medical & Graphic, Inc. Scintillator panel, method of producing scintillator panel, radiation image detector and method of producing radiation image detector
US8552393B2 (en) 2010-01-25 2013-10-08 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and radiation image detector using same
JP2011158293A (en) * 2010-01-29 2011-08-18 Hamamatsu Photonics Kk Radiation image conversion panel
WO2011093140A1 (en) * 2010-01-29 2011-08-04 浜松ホトニクス株式会社 Radiation image conversion panel
CN102741941A (en) * 2010-01-29 2012-10-17 浜松光子学株式会社 Radiation image conversion panel
JP2011158291A (en) * 2010-01-29 2011-08-18 Hamamatsu Photonics Kk Radiation image conversion panel
US8866088B2 (en) 2010-01-29 2014-10-21 Hamamatsu Photonics K.K. Radiation image conversion panel
GB2477346B (en) * 2010-02-01 2016-03-23 Scintacor Ltd Scintillator assembly for use in digital x-ray imaging
JP2016095189A (en) * 2014-11-13 2016-05-26 コニカミノルタ株式会社 Scintillator panel and radiation detector
JP2015072283A (en) * 2014-12-08 2015-04-16 浜松ホトニクス株式会社 Radiation image conversion panel manufacturing method
CN105785420A (en) * 2015-01-09 2016-07-20 佳能株式会社 Radiation Imaging Apparatus, Method For Manufacturing The Same, And Radiation Inspection Apparatus

Similar Documents

Publication Publication Date Title
JPS63215987A (en) Highly resolvable scintillation fiber plate
EP0042149B1 (en) Radiation excited phosphor screen and method for manufacturing the same
US7897938B2 (en) Scintillator panel
JP4353635B2 (en) Photosensitive matrix type electronic sensor and manufacturing method of matrix type image sensor
US20090065705A1 (en) Scintillator plate
JP2000356679A (en) Scintillator panel and radiation image sensor
FR2586508A1 (en) INTENSIFIER RADIOLOGICAL IMAGE INTENSIFIER TUBE ENTRY SCINTILLATOR AND METHOD FOR MANUFACTURING SUCH A SCINTILLATOR
CN1140815C (en) Scintillator panel, radiation image sensor, and method for manufacturing the same
WO1999067658A1 (en) Scintillator panel, radiation image sensor, and process for producing the same
EP0403802A2 (en) X-ray image intensifier and method of manufacturing input screen
US4528210A (en) Method of manufacturing a radiation excited input phosphor screen
JP4317169B2 (en) Scintillator panel
JPS62235600A (en) Radiation conversion screen
JPS585855B2 (en) semi-reflective glass
EP0068536B1 (en) Method of manufacturing a luminescent screen
JP3130611B2 (en) Radiation image conversion panel
JP3704733B2 (en) Nonlinear optical crystal element
JPH05107362A (en) Manufacture of x-ray detecting element
JP2012220400A (en) Scintillator panel, method for manufacturing scintillator panel, and radiation detector
JP4317068B2 (en) Scintillator panel
JPS61225684A (en) Scintillation fiber plate and manufacture thereof
JPH0143421B2 (en)
Mc Kenney et al. Research in far ultraviolet filtering for space optical systems
Van der Ven The preparation and performance of thin vacuum-deposited CsI (Na) scintillation layers
JPS61185844A (en) X-ray electron tube having input face for exciting x-ray and input face thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term