JPS63215057A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS63215057A
JPS63215057A JP62047566A JP4756687A JPS63215057A JP S63215057 A JPS63215057 A JP S63215057A JP 62047566 A JP62047566 A JP 62047566A JP 4756687 A JP4756687 A JP 4756687A JP S63215057 A JPS63215057 A JP S63215057A
Authority
JP
Japan
Prior art keywords
glass layer
semiconductor device
substrate
lead frame
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62047566A
Other languages
Japanese (ja)
Other versions
JPH0824153B2 (en
Inventor
Hideo Suzuki
秀夫 鈴木
Moroo Nakagawa
中川 師夫
Masabumi Ohashi
大橋 正文
Hiroyuki Suzuki
浩之 鈴木
Makoto Hiraga
平賀 良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4756687A priority Critical patent/JPH0824153B2/en
Publication of JPS63215057A publication Critical patent/JPS63215057A/en
Publication of JPH0824153B2 publication Critical patent/JPH0824153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the deterioration of characteristics due to thermal fatigue after sealing, by restricting the void content and the maximum grain diameter of void of a glass layer for sealing a semiconductor device, within a range less than a specified value. CONSTITUTION:A semiconductor element 7 is joined on one side surface of an insulating substrate 3, and on the peripheral part of the surface, a frame 11 is sealed via a glass layer 4 with low melting point. A plurality of lead- segments 5 are airtightly sealed in the glass layer 4, and the one end of the lead-segment is connected to the semiconductor element 7 by a bonding wire 9. The other surface of the frame 11 and a cap 6 are airtightly sealed by a glass layer 10 with low melting point. The glass layers 4 and 10 are formed in the manner in which the void content is less than or equal to 7vol.% and the maximum grain diameter is less than or equal to 0.11mm. By reducing the void in the glass layer and restricting the grain diameter, the deterioration of characteristics due to thermal fatigue after sealing can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な半導体装置−に係り、特にガラス中のボ
イドを低減した高信頼性の半導体装置及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel semiconductor device, and particularly to a highly reliable semiconductor device with reduced voids in glass and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

大電力使用の高速ロジックまたは高速メモリ用の半導体
装置の絶縁基板としてはモリブデンやベリリヤが使用さ
れている。ところが、このようなベースは、前者は特に
絶縁物構造体(例えばアルミナ)との整合が悪く、中間
介在体(例えばコバール、チュアロイ)の使用を必要と
し、後者はシリコンの整合性が悪く、また、毒性がある
という問題があった。このような欠点を補うために開発
されたものに金属アルミニウムなみの熱伝導性を有し、
かつ電気絶縁性の特性を有する炭化ケイ素質セラミクス
(以下SiCと言う)がある、このSiC焼結体を絶縁
基板とし−て、半導体素子を実装した例に、特開昭60
−20539がある。このようにSiCを絶縁基板とし
て用いると熱放散性が優れ、更にシリコンとほぼ熱膨張
係数が一致しているために、ベリリヤ、モリブデンある
いはアルミナに比べ部品点数の少ない半導体装置が得ら
九ることが知られている。しかし、SiCをベースにし
たり、A/Nを絶縁基板として使用するとき、半導体装
置として信頼性の点から有効に使用する手法が見つかっ
ていない。
Molybdenum and beryllium are used as insulating substrates for semiconductor devices for high-speed logic or high-speed memory that use large amounts of power. However, such bases are difficult to use, with the former having particularly poor compatibility with insulator structures (e.g. alumina) and requiring the use of intermediates (e.g. Kovar, Tualloy), and the latter having poor compatibility with silicon and There was a problem that it was toxic. A material developed to compensate for these drawbacks has thermal conductivity comparable to that of metal aluminum.
There is a silicon carbide ceramic (hereinafter referred to as SiC) which also has electrically insulating properties, and an example of mounting a semiconductor element using this SiC sintered body as an insulating substrate is disclosed in Japanese Unexamined Patent Application Publication No. 1986-60.
There is -20539. When SiC is used as an insulating substrate in this way, it has excellent heat dissipation properties, and its coefficient of thermal expansion is almost the same as that of silicon, so it is possible to create semiconductor devices with fewer parts compared to beryllium, molybdenum, or alumina. It has been known. However, when using SiC as a base or using A/N as an insulating substrate, no method has been found for effectively using it as a semiconductor device from the viewpoint of reliability.

特開昭58−74581号公報には磁気ヘッドの製造法
としてフェライト磁性層を所定の間隔で配置し、これら
をその上部に配置しそのガラス板を加熱してその間隙に
ガラスを浸透させてフェライト磁性体をガラスによって
接合しその積層体を形成させる際に高圧ガスによってそ
の間隙にガラスを強制的に浸透させることが開示されて
いるが、本発明の半導体装置については全く記載されて
いないし、半導体装置としてのヘリウムがスリークにつ
いても全く開示されていない。
JP-A-58-74581 discloses a method for manufacturing a magnetic head in which ferrite magnetic layers are arranged at predetermined intervals, these are placed on top of the ferrite magnetic layers, the glass plate is heated, and glass is infiltrated into the gaps to produce ferrite. Although it is disclosed that the glass is forcibly penetrated into the gap by high-pressure gas when bonding magnetic materials with glass to form a laminate, there is no mention of the semiconductor device of the present invention, and there is no description of the semiconductor device of the present invention. There is also no disclosure of helium leaks as a device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらのSiC,AQNを絶縁基板として使用した半導
体装置を試作し、実用化試験を行った。
A semiconductor device using these SiC and AQN as an insulating substrate was prototyped and tested for practical use.

その結果ヘリウムリーク試験において、リーク量が多く
、かつばらつきが大きい問題があった。そこで上記リー
ク不良の問題を解決するため種々検討した結果1部材の
熱膨張係数の違いから生じる内部応力によるガラスの割
れ、あるいは部材の熱膨張とガラスの熱膨張を合せるた
めにガラス中に添加したヒラ−によって発生するボイド
、更に印刷・焼成時等に発生するボイドがリーク不良の
原因になっていることを見い出した。
As a result, in the helium leak test, there were problems with a large amount of leakage and large variations. Therefore, in order to solve the problem of leak failure mentioned above, we conducted various studies and found that the glass cracks due to internal stress caused by the difference in the thermal expansion coefficient of one member, or that the glass is added to the glass to match the thermal expansion of the member and the glass. It has been found that voids generated by filler and also voids generated during printing, firing, etc. are the cause of leakage defects.

本発明の目的は、半導体装置の低融点ガラス中のボイド
を体積比で7%以下とし、かつボイドの粒径を0.11
m以下に抑制した信頼性の高い半導体装置及びその製造
方法を提供することにある。
The purpose of the present invention is to reduce the volume ratio of voids in the low melting point glass of a semiconductor device to 7% or less, and to reduce the particle size of the voids to 0.11%.
It is an object of the present invention to provide a highly reliable semiconductor device in which the semiconductor device is suppressed to less than m, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電気絶縁性基板上に搭載された半導体素子、
半導体素子からの信号を外部に取り出すリードフレーム
、リードフレームと半導体素子とを電気的に接続する細
線及び、基板上にガラス層によって接合され、且半導体
素子、細線及びリードフレームの一部を外気より遮断封
止す゛るキャップを備えた半導体装置において、ガラス
層中のボイド率が7体積%以下で、且ガラス層中のボイ
ドの最大粒径が0.11mm以下であることを特徴とす
る半導体装置にある。
The present invention provides a semiconductor element mounted on an electrically insulating substrate,
A lead frame that extracts signals from a semiconductor element to the outside, a thin wire that electrically connects the lead frame and the semiconductor element, and a glass layer bonded to the substrate, and a part of the semiconductor element, the thin wire, and the lead frame are exposed to the outside air. A semiconductor device equipped with a cap for blocking and sealing, characterized in that the void ratio in the glass layer is 7% by volume or less, and the maximum grain size of the voids in the glass layer is 0.11 mm or less. be.

更に、本発明は電気絶縁性基板上に半導体素子接合用メ
タライズ層を有し、半導体素子の信号を外部に取り出す
リードフレームが基板上にガラス側によって接合されて
いる半導体装置用基板、又は、金属又はセラミックス焼
結体からなる平板状部材の外周部全周にガラス層が設け
られている半導体装置封止用キャップにおいて、ガラス
層のボイド率が3.5体積%以下で、且ガラス層のボイ
ド最大粒径が0.8mm以下であることを特徴とするも
のである。
Furthermore, the present invention provides a substrate for a semiconductor device, which has a metallized layer for bonding a semiconductor element on an electrically insulating substrate, and a lead frame for extracting signals from the semiconductor element to the outside, which is bonded to the glass side on the substrate, or a metallized layer. Or, in a semiconductor device sealing cap in which a glass layer is provided around the entire outer periphery of a flat plate-shaped member made of a ceramic sintered body, the void ratio of the glass layer is 3.5% by volume or less, and the voids in the glass layer are It is characterized by a maximum particle size of 0.8 mm or less.

本発明の半導体装置の製造法は、前述の半導体装置にお
いて、予め電気絶縁性基板上にリードフレームをガラス
層によって接合するとともに、キャップにガラス層を焼
成によって形成し、次いでリードフレームを接合した基
板及びガラス層を有する前記キャップを前記ガラス層の
溶融する温度で且ガス加圧下で加熱した後、前記加圧下
で前記ガラス層を凝固させる処理を施し、次いで基板と
キャップとをキャップに形成−された前記加圧下での加
熱温度より低い温度でガラス層を軟化させて接合し封止
することを特徴とするものである。
The manufacturing method of a semiconductor device of the present invention is such that, in the semiconductor device described above, a lead frame is bonded in advance to an electrically insulating substrate with a glass layer, a glass layer is formed on the cap by firing, and then the lead frame is bonded to the substrate. and the cap having the glass layer is heated at a temperature at which the glass layer melts and under gas pressure, and then subjected to a treatment to solidify the glass layer under the pressure, and then the substrate and the cap are formed into a cap. The glass layer is softened at a temperature lower than the heating temperature under pressure, and the glass layer is bonded and sealed.

更に、本発明は、前述の基板上にメタライズ層を有し、
半導体素子の信号を外部に取り出すリードフレームが基
板上にガラス層によって接合されている半導体装置用基
板の製造法において、予め基板上に前記リードフレーム
をガラス層によって接合した後、前記リードフレームを
接合した基板に対し、又は金属又はセラミックス焼結体
からなる平板状部材の外周部全周にガラス層が設けられ
ている半導体装置封止用キャップの製造法において、予
め部材にガラス層を焼成して設けた後、その部材に対し
ガラス層が溶融する温度で且ガス加圧下で加熱し1次い
で前記加圧下でガラス層を凝固させることを特徴とする
ものである。
Furthermore, the present invention has a metallized layer on the aforementioned substrate,
In a method for manufacturing a substrate for a semiconductor device in which a lead frame for extracting signals from a semiconductor element to the outside is bonded to a substrate with a glass layer, the lead frame is bonded to the substrate in advance with a glass layer, and then the lead frame is bonded. In a method for manufacturing a semiconductor device sealing cap in which a glass layer is provided on the entire outer periphery of a flat plate-like member made of a metal or ceramic sintered body, the glass layer is fired on the member in advance. After being provided, the member is heated at a temperature at which the glass layer melts and under gas pressure, and then the glass layer is solidified under the pressure.

〔作用〕[Effect]

前述の問題を解決するのには、ガラス中の亀裂やボイド
を無くすことである。亀裂に関しては部材の熱膨張係数
を揃えることが必要である。そのためにはSiC絶縁材
を基板とした場合、枠体やキャップ等の部材には40〜
50X10″″7/”Cの熱膨張係数を有するムライト
セラミックスは金属コバールが適当で、これら部材によ
って亀裂を少なくすることを可能にした。また窒化アル
ミニウムを基板とした場合には、窒化アルミニウムやア
ルミナが適当である。
A solution to the aforementioned problems is to eliminate cracks and voids in the glass. Regarding cracks, it is necessary to match the thermal expansion coefficients of the members. For this purpose, when using SiC insulating material as a substrate, parts such as frames and caps must have a
For mullite ceramics with a thermal expansion coefficient of 50X10''''7/''C, metal Kovar is suitable, and these materials have made it possible to reduce cracks.Also, when aluminum nitride is used as a substrate, aluminum nitride or alumina is appropriate.

ボイドに関しては、その発生する原因に次のよ 。Regarding voids, the causes of their occurrence are as follows.

うな事柄が考えられる。すなわち、1)印刷時の空気の
巻き込みによるもの、2)焼成時に生ずるガラス中のバ
インダーの抜けからによるもの、3)セラミックスとガ
ラスの反応によるもの、4)半導体装置の構造上、ガラ
スを厚くする必要性から、ガラスを形成するとき、印刷
時に重ね塗りを行わねばならないために、スクリーンの
メツシュ跡がボイドとなって残るなど数多くある。
I can think of things like this. Namely, 1) due to the entrainment of air during printing, 2) due to the release of the binder in the glass that occurs during firing, 3) due to the reaction between ceramics and glass, and 4) due to the thickness of the glass due to the structure of the semiconductor device. Due to necessity, when forming glass, multiple coatings must be applied during printing, resulting in the mesh marks of the screen remaining as voids.

本発明者らは半導体装置を多数作製し、ガラス中のボイ
ドの粒径及びボイド率と半導体装置の気密性について検
討したところ次のことが明らかになった。すなわち、基
板上にガラスを印刷・焼成したグレーズのままのガラス
中のボイ“ドは体積比で10〜13%程度あり、このと
きの粒径は最大径で0.28mが存在している。これを
高温・高ガス圧力下で処理(以下加圧処理という)する
とボイド率は2〜4%に少なくなり、粒径も最大で0.
08mm と約1/3程度小さくなる。この小さくなっ
た加圧処理材を半導体装置の封止温度に再加熱しても、
ガラス中のボイドはグレーズ時の大きさに戻らず、ボイ
ド率で4〜6.5%1粒径で最大0.1mであった。こ
の状態での半導体装置の気密性は著しく改善され、高信
頼性の半導体装置を可能にした。
The present inventors manufactured a large number of semiconductor devices and studied the particle size and void ratio of voids in glass and the airtightness of the semiconductor devices, and as a result, the following became clear. That is, the voids in the glass as a glaze obtained by printing and firing the glass on the substrate are about 10 to 13% by volume, and the maximum particle size at this time is 0.28 m. When this is treated at high temperature and high gas pressure (hereinafter referred to as pressure treatment), the void ratio is reduced to 2-4%, and the particle size is also reduced to 0.
08mm, which is about 1/3 smaller. Even if this reduced pressure-treated material is reheated to the sealing temperature of the semiconductor device,
The voids in the glass did not return to the size at the time of glazing, and the void ratio was 4 to 6.5% and the maximum particle size was 0.1 m. The airtightness of the semiconductor device in this state was significantly improved, making it possible to manufacture a highly reliable semiconductor device.

電気絶縁性基板として非酸化物系セラミックス焼結体が
好ましく、S iC,S i3N4.AQNを主成分と
する焼結体、又はこれらの混合物を主成分とする焼結体
が好ましく、特にこれらのものに対しBe量として0.
1〜3.0重量%(特にBeOが好ましい)を含む焼結
体で、室温の熱伝導率が0.1caQ/al−8・℃以
上を有し、室温の比抵抗が109Ω国以上を有するもの
、更に同様に0.3caQ/aos ・’C以上、10
10Ω国以上とするものが好ましい。
Non-oxide ceramic sintered bodies are preferable as the electrically insulating substrate, such as SiC, Si3N4. A sintered body containing AQN as a main component or a mixture thereof is preferable, and in particular, a sintered body containing AQN as a main component or a mixture thereof is preferable, and in particular, the amount of Be for these products is 0.
A sintered body containing 1 to 3.0% by weight (especially preferably BeO), having a thermal conductivity at room temperature of 0.1 caQ/al-8・℃ or more, and a specific resistance at room temperature of 109Ω or more. 0.3caQ/aos ・'C or more, 10
It is preferable that the resistance be 10Ω or more.

半導体素子はSi又は化合物半導体物質からなり、基板
上に金、半田等によって接合される。
The semiconductor element is made of Si or a compound semiconductor material, and is bonded onto the substrate using gold, solder, or the like.

リードフレームにはコバール等のFe−Ni−Co系合
金のファーニコ等が用いられる。
For the lead frame, Fe--Ni--Co alloy Farnico, such as Kovar, is used.

細線はリードフレームと素子とに固相接合され、素子に
はボール形成によって接合される。金、銅。
The thin wire is solid state bonded to the lead frame and the device, and is bonded to the device by ball formation. gold, copper.

又はアルミニウム線等の直径50μm程度の細線が用い
られる。
Alternatively, a thin wire such as an aluminum wire having a diameter of about 50 μm is used.

ガラスには特に前述の非酸化物系基板に対し、PbOを
主成分とする硼珪酸鉛ガラスが好ましく。
As for the glass, lead borosilicate glass containing PbO as a main component is particularly preferable for the above-mentioned non-oxide substrate.

室温付近の熱膨張係数が50X10″’ ? /−C以
下となるものが好ましく、BzOa、ALz○a、Si
O2等が微量含有したものが好ましい。
It is preferable that the thermal expansion coefficient near room temperature is 50X10'''?/-C or less, and BzOa, ALz○a, Si
Preferably, it contains a small amount of O2 or the like.

本発明における加圧処理はガラスを溶融状態として行う
もので、加圧する前に予めガラスの軟化温度付近で減圧
して焼成されたガラス層中の有機物等の揮発成分ガス成
分を除去することが好ましい、減圧は1〜10″″4I
ImHg程度が好ましく、前述の加熱溶融させるまでの
昇温中に行うことができる。
The pressure treatment in the present invention is carried out while the glass is in a molten state, and it is preferable to reduce the pressure in advance near the softening temperature of the glass to remove volatile gas components such as organic substances in the fired glass layer before applying pressure. , pressure reduction is 1~10''4I
The temperature is preferably about ImHg, and it can be carried out during the heating up to the above-mentioned heating and melting.

加圧処理は加熱温度及び圧力によってコン1〜ロールさ
れるもので、特に加熱温度軟化温度と基本にしてそれよ
りも高すぎても低すぎても形成されるボイドの含有量及
び大きさが違う。特に、使用されるガラスの軟化温度よ
り80〜120℃高い温度範囲で、2.5〜4.0気圧
にてガス印加することが好ましい、軟化温度での加圧保
持時間は2〜10分の短時間で好ましく、ガラスが凝固
するまで加圧するのが好ましい。
Pressure treatment is controlled by heating temperature and pressure, and in particular, the content and size of voids that are formed are different depending on the heating temperature and softening temperature. . In particular, it is preferable to apply gas at a pressure of 2.5 to 4.0 atm in a temperature range 80 to 120 degrees Celsius higher than the softening temperature of the glass used.The pressure is maintained at the softening temperature for 2 to 10 minutes. It is preferable to apply pressure for a short time, and it is preferable to pressurize until the glass solidifies.

リードフレームの接合温度はガラスの軟化温度より40
〜80℃高い温度に加熱し、ガラス中にリードフレーム
が埋まるように荷重を加えて行われる。
The bonding temperature of the lead frame is 40° higher than the softening temperature of glass.
This is done by heating the glass to a temperature higher than 80°C and applying a load so that the lead frame is buried in the glass.

キャップの封止温度は前述の加圧温度より低い温度で行
われる。それより高い温度では再びボイドが大きくなり
加圧による効果が失われてしまう。
The sealing temperature of the cap is lower than the above-mentioned pressing temperature. At higher temperatures, the voids become larger again and the effect of pressurization is lost.

その温度はガラスの軟化温度より40〜80℃高い温度
で行い、さらに荷重を加えることによって行うのが好ま
しい、この封止工程によって加圧処理したものよりボイ
ド率及びその大きさが大きくなるので、加圧処理におけ
るこれらの条件を各コントロールしなければならない。
It is preferable to carry out the process at a temperature 40 to 80 degrees Celsius higher than the softening temperature of the glass, and to apply a load, as the void ratio and size will be larger than those subjected to pressure treatment through this sealing process. Each of these conditions in the pressure treatment must be controlled.

〔実施錆 第1図は本発明に係る半導体装置の断面図である。[Execution rust FIG. 1 is a sectional view of a semiconductor device according to the present invention.

第1図においてSiCに2重量%BeOを含む焼結体か
らなる絶縁基板3の一方の面上の中央部に半導体素子7
が金属ソルダ層8によって接着され、更に同面上の外周
部には、低融点ガラス層4を介して、ムライト質セラミ
ックス、又は、金属製コバール材からなる枠体11が気
密に封着されている。また低融点ガラス層4には複数個
のリード片5が気密に封着されている。リード片5の一
端と半導体素子7との間は、Au、AQ、Cu等のボン
デングワイヤ9によって電気的に接続している。更に枠
体11の他方の面は、金属ソルダ一層、又は低融点ガラ
ス層1oによりキャップ6と気密に封着されている。ま
たアルミニウムなどの金属からなる冷却フィン1は冷却
能を高めたい場合に樹脂、半田等によって絶縁基板3に
取付けられる。特に、冷却フィン1は熱伝導性フィラー
で充填されたエポキシ樹脂系またはシリコーン樹脂系接
着材2によって接着されるのが好ましい。
In FIG. 1, a semiconductor element 7 is placed in the center on one surface of an insulating substrate 3 made of a sintered body containing 2% by weight of BeO in SiC.
is bonded by a metal solder layer 8, and a frame 11 made of mullite ceramics or metal Kovar material is hermetically sealed to the outer peripheral portion on the same surface via a low melting point glass layer 4. There is. Further, a plurality of lead pieces 5 are hermetically sealed to the low melting point glass layer 4. One end of the lead piece 5 and the semiconductor element 7 are electrically connected by a bonding wire 9 made of Au, AQ, Cu, or the like. Furthermore, the other surface of the frame 11 is hermetically sealed to the cap 6 with a single layer of metal solder or a low melting point glass layer 1o. Further, the cooling fins 1 made of metal such as aluminum are attached to the insulating substrate 3 with resin, solder, etc. when it is desired to increase the cooling performance. In particular, it is preferable that the cooling fins 1 be bonded with an epoxy resin or silicone resin adhesive 2 filled with a thermally conductive filler.

第1図に示す本発明の半導体パッケージは次の工程に基
づいて組立てられる。(1)SiC絶縁基板3の中央部
に金メタライズを施こす。その焼成温度は、800〜1
000℃程度で行われる。
The semiconductor package of the present invention shown in FIG. 1 is assembled based on the following steps. (1) Apply gold metallization to the center of the SiC insulating substrate 3. The firing temperature is 800-1
It is carried out at about 000°C.

(2)SiC絶縁基板3、枠体11及びキャップ6(低
融点ガラス封止のときのみ)に低融点ガラス4を所定の
位置に、スクリーン印刷等の方法によリコーテイングし
、焼成する。ガラスとしては主成分としてPbOである
硼珪酸鉛ガラスを用いた。
(2) The low melting point glass 4 is recoated on the SiC insulating substrate 3, the frame 11, and the cap 6 (only when sealing with low melting point glass) at predetermined positions by a method such as screen printing, and fired. As the glass, lead borosilicate glass containing PbO as a main component was used.

他に微量のBzOa、S i02 、AQzOaを含む
It also contains trace amounts of BzOa, S i02 , and AQzOa.

(3)外周の全周にガラス層を形成したSiC絶縁基板
の上にリード片5をのせ、ガラスの軟化温度より80〜
120℃高く加熱し、リード片をガラス中に埋める。(
4)ガラス層を形成した枠体をリード片の上面にのせ軸
方向の圧力(約100〜300g荷重)で加熱し互いに
接合され、リード片と基板とが組立てられる。このとき
の加熱温度は、ガラスの軟化温度(約350℃)より4
0〜80℃高い温度が望ましい。(5)次に加圧処理を
行う。加圧処理は組立部材及びガラスを形成したキャッ
プ材を減圧中で軟化温度まで加熱し常圧に戻した後頁に
軟化温度より80〜120’C高い温度に加熱・保持し
てガラスを完全に溶融させた後直ちに圧さく空気中2.
5〜4.0気圧でガラス表面を等方的に加圧する。10
−3mmHgの減圧下で昇温することによって有機物等
のガス成分を除去する。
(3) Place the lead piece 5 on the SiC insulating substrate on which a glass layer is formed around the entire outer periphery, and
Heat to 120°C and bury the lead piece in the glass. (
4) The frame body with the glass layer formed thereon is placed on the upper surface of the lead piece and heated with pressure in the axial direction (approximately 100 to 300 g load) to join them together, thereby assembling the lead piece and the substrate. The heating temperature at this time is 4° below the softening temperature of glass (approximately 350°C).
A temperature 0 to 80°C higher is desirable. (5) Next, perform pressure treatment. Pressure treatment involves heating the assembly parts and the cap material forming the glass under reduced pressure to the softening temperature, returning to normal pressure, and then heating and holding the glass at a temperature 80 to 120'C higher than the softening temperature to completely soften the glass. Immediately after melting, press in air 2.
The glass surface is isotropically pressurized at 5 to 4.0 atmospheres. 10
Gas components such as organic substances are removed by increasing the temperature under reduced pressure of -3 mmHg.

加圧時間は数分という短時間で良く、冷却後凝固するま
で加圧される。圧力源は、圧さく空気ばかりでなく、窒
素、アルゴン等の不活性ガスでもよい。(6)絶#基板
上に施した金メタライズ8の箇所に半導体素子7を軟ロ
ウ材などの金属ソルダーで接合する。(7)半導体素子
7とリード片5のインナーリード部(A、u及びA1等
のメタライズを施す)をワイヤボンデングする。(8)
前述によって加圧処理したキャップをガラスの軟化温度
より40〜80℃高い温度に加熱し、荷重100〜30
0gの圧力を加え気密に封止する封止後のガラス中のボ
イド率は6%及びガラス内ボイドの最大径は0.1mm
であった。(9)必要に応じ放熱フィン1を適切な接合
材2で接合する。
The pressurization time may be as short as several minutes, and the pressure is applied until solidification after cooling. The pressure source may be not only compressed air but also an inert gas such as nitrogen or argon. (6) Semiconductor element 7 is bonded to the gold metallized portion 8 formed on the substrate using a metal solder such as soft brazing material. (7) Wire bonding the semiconductor element 7 and the inner lead portion of the lead piece 5 (metallized with A, u, A1, etc.). (8)
The cap that has been pressure-treated as described above is heated to a temperature 40 to 80 degrees Celsius higher than the softening temperature of the glass, and a load of 100 to 30
After applying 0g of pressure and sealing the glass airtight, the void ratio in the glass is 6% and the maximum diameter of the void in the glass is 0.1mm.
Met. (9) If necessary, the radiation fins 1 are bonded using an appropriate bonding material 2.

上記手法によって作製した半導体装置をヘリウムリーク
試験によりリーク量を測定した。その結果を第3図に示
す0表中、比較例は前述の加圧処理を行わないもので、
他の工程は全く同じ方法によって製造したものである。
The amount of leakage of the semiconductor device manufactured by the above method was measured by a helium leak test. The results are shown in Table 0 in Figure 3, where the comparative example was not subjected to the above-mentioned pressure treatment.
The other steps were manufactured using exactly the same method.

また、半導体装置の信頼性を評価するため熱サイクル試
験を下記の条件で行ない、熱サイクル試験後にヘリウム
リーク量を測定した。熱サイクル試験は、半導体装置を
一55℃に設定した浴槽中で25分間保持し、室温中に
5分間放置した後、150”Cの恒温槽に25分間保持
し、更に室温中で5分間放置するという熱サイクルで、
150回及び500回の繰り返しを行った。
Further, in order to evaluate the reliability of the semiconductor device, a thermal cycle test was conducted under the following conditions, and the amount of helium leakage was measured after the thermal cycle test. In the thermal cycle test, the semiconductor device was held in a bath set at -55°C for 25 minutes, left at room temperature for 5 minutes, then held in a constant temperature bath at 150"C for 25 minutes, and then left at room temperature for 5 minutes. In the thermal cycle of
150 and 500 repetitions were performed.

ヘリウムリーク試験の測定法は、半導体装置を入れた圧
力容器にヘリウムガスを封入した。内圧をゲージ圧で5
気圧とし20時間以上保持した。
The helium leak test was performed by filling a pressure vessel containing a semiconductor device with helium gas. The internal pressure is 5 in gauge pressure.
Atmospheric pressure was maintained for 20 hours or more.

その後150℃の恒温槽で2時間加熱、更に室温に2時
間放置し、半導体装置表面に吸着するヘリウムガスを放
出させた後、ヘリウムリーク試験機でリーク量を測定し
た。一方比較例として従来の作製方法で作製し、封止後
のガラス中のボイド率が11%の半導体装置についても
同様に作製後のままと熱サイクル試験後のヘリウムリー
ク試験を行ない、そのリーク量を測定した。本発明の製
造方法で作製した半導体装置のリーク量は初期値で2.
8〜5.3 x 10−1°atm−cc/ sと小さ
く、バラツキも小さい。また、熱サイクル試験を500
サイクル行った後においても、リーク量の変化はなく、
バラツキも少ない。従来の方法で作製した半導体装置の
へリームリーク量は初期値で3.5X 10−”〜4 
、 OX I O−”ato+−cc/ s  と大き
く、バラツキも多い。さらに、熱サイクル数が150回
になると、リーク量は、8×10″″9〜4X10−7
atm・CC/S  と著しく増大し、バラツキもきわ
めて大きい、更に、500サイクルになると貫通リーク
を生じ、半導体装置として不良となるものが見られた。
Thereafter, it was heated in a constant temperature bath at 150° C. for 2 hours, and then left at room temperature for 2 hours to release the helium gas adsorbed on the surface of the semiconductor device, and then the amount of leakage was measured using a helium leak tester. On the other hand, as a comparative example, a helium leak test was similarly conducted on a semiconductor device manufactured using the conventional manufacturing method and with a void ratio of 11% in the glass after sealing, both as it was manufactured and after a thermal cycle test. was measured. The leakage amount of the semiconductor device manufactured by the manufacturing method of the present invention is 2.
It is as small as 8 to 5.3 x 10-1° atm-cc/s, and the variation is small. In addition, a heat cycle test of 500
Even after the cycle, there was no change in the amount of leakage.
There is little variation. The helium leakage amount of a semiconductor device manufactured by the conventional method is 3.5X 10-" to 4 at the initial value.
, OX I O-"ato+-cc/s, which is large and has many variations.Furthermore, when the number of thermal cycles reaches 150, the leakage amount is 8 x 10"9 to 4 x 10-7
atm.CC/S, and the variation was also extremely large.Furthermore, after 500 cycles, through leakage occurred and some semiconductor devices were found to be defective.

〔実施例2〕 第4図は各工程におけるガラス中のボイドの変化を示し
たものである。
[Example 2] Figure 4 shows the change in voids in the glass in each step.

ボイドの測定は、軟X線装置を用い、試験を印加電圧1
00v、印加電流2mAで透過し影像を写真撮影して、
測定面積に対するボイド量を測定し、百分率(%)で表
した。試料は前述の半導体装置の製造工程に準じて、そ
れぞれ加熱処理をしたのち用いた。
To measure voids, use a soft X-ray device and conduct the test with an applied voltage of 1
00V and an applied current of 2mA, and photographed the image.
The amount of voids relative to the measured area was measured and expressed as a percentage (%). Each sample was used after being subjected to heat treatment according to the manufacturing process of the semiconductor device described above.

本発明の製造工程におけるボイド率の変化は、SiC絶
縁基板にガラスを焼成して形成した状態で10〜13%
ある。更にリードフレーム付けや組立の熱履歴を経ると
ボイド率は多少増加する。
The change in void ratio in the manufacturing process of the present invention is 10 to 13% when glass is fired and formed on a SiC insulating substrate.
be. Furthermore, the void ratio increases to some extent when the lead frame is attached and subjected to heat history during assembly.

次いで475℃で6分間3気圧の加圧処理を施すことに
よってボイドは2〜4%と著しく少なくなる。その後の
Siペレット付は及び封止工程を経てもボイドの増加は
少なく4〜6.5 %である。
Next, by applying pressure treatment at 475° C. and 3 atm for 6 minutes, the voids are significantly reduced to 2 to 4%. Even after the subsequent Si pellet attachment and sealing process, the increase in voids is small and is 4 to 6.5%.

このように加圧処理によるボイド低域の効果は大きいこ
とがわかる。一方、比較例として従来の製造工程でのボ
イド率は、初期値に対し各工程を経るごとに多くなって
いる。
Thus, it can be seen that the effect of the pressure treatment on the void low range is large. On the other hand, as a comparative example, the void ratio in the conventional manufacturing process increases with each process compared to the initial value.

本発明の製造工程における組立て時、加圧処理時及び封
止時のX線透過写真によってボイド率をfR察した結果
、加圧処理によるボイド減少の効果が明瞭であることが
確認された。
As a result of observing the void ratio fR using X-ray radiographs during assembly, pressure treatment, and sealing in the manufacturing process of the present invention, it was confirmed that the effect of pressure treatment in reducing voids was clear.

(実施例3〕 実施例1の手法で加熱温度及び加圧力を変えてガラス中
のボイド率の異なる第1図に示すパッケージを作製し、
前述と同様の熱サイクル試験によって150サイクル後
のヘリウムリーグを測定した。第5図にその結果を示す
。0印は加圧処理したもの、・印は無加圧のものである
。ヘリウムリーク量はボイド率が7%を謔えると急激に
増すことがわかる。しかし、7%以下ではリーク量の変
化は小さく封止性が高いことがわかる。尚、ボイド率が
7%以下のものはボイドの最大粒径も0.II以下と小
さいが、ボイド率が8%以上のもののボイドの最大粒径
はかなり大きなバラツキを有していた。
(Example 3) Packages shown in FIG. 1 with different void ratios in the glass were produced by changing the heating temperature and pressing force using the method of Example 1,
The helium league after 150 cycles was measured by the same thermal cycle test as described above. Figure 5 shows the results. The mark 0 indicates that the sample was subjected to pressure treatment, and the mark . indicates that no pressure was applied. It can be seen that the amount of helium leak increases rapidly when the void ratio reaches 7%. However, it can be seen that at 7% or less, the change in leakage amount is small and the sealing performance is high. In addition, when the void ratio is 7% or less, the maximum particle size of the void is also 0. Although the void ratio was small, i.e., II or less, the maximum particle diameter of voids with a void ratio of 8% or more had a considerably large variation.

実施例1の手法でガラス中のボイドの最大径の異なるパ
ッケージを作製し、熱サイクル試験150サイクル後の
ヘリウムリークを測定した。第6図にその結果を示す。
Packages with different maximum diameters of voids in the glass were prepared using the method of Example 1, and helium leakage was measured after 150 cycles of a thermal cycle test. Figure 6 shows the results.

Q印及び・印は前述と同様である。ガラス中のボイドの
最大粒径が0.11mmを越えるものが含まれるように
なると気密性は急激に悪くなることがわかる。尚、ボイ
ドの最大粒径が0.11mと小さいものはボイド率も7
%以下と小さいが、それより大きい粒径を有するもので
はボイド率のバラツキも大きいものであった6(実施例
4〕 第2図は本発明に係る半導体装置の他の例を示す断面図
である0本実施例は第1図におけるものがキャリツブ6
の接合に際し、枠体11が使用されたものであるが、こ
の枠体11がキャップ6に凸状に全周にわたって一体に
形成されたもので、この凸部に予めガラス層が焼成され
たものである。
The Q mark and the * mark are the same as above. It can be seen that when the glass contains voids with a maximum particle diameter exceeding 0.11 mm, the airtightness deteriorates rapidly. In addition, if the maximum particle size of the void is as small as 0.11 m, the void ratio is also 7.
% or less, but those with larger particle sizes had large variations in void ratio6 (Example 4) FIG. 2 is a cross-sectional view showing another example of the semiconductor device according to the present invention. In this embodiment, the one in Fig. 1 is caliber 6.
The frame 11 is used when joining the cap 6, and the frame 11 is integrally formed with the cap 6 in a convex shape over the entire circumference, and a glass layer is pre-fired on the convex part. It is.

このキャップへのガラス層の形成及び実施例1に形成さ
れたリードフレーム5を接合した絶縁基板3の加圧処理
は実施例1と同様の方法で実施し、次いでキャップ6と
基板3とを同様に接合した。
The formation of a glass layer on this cap and the pressure treatment of the insulating substrate 3 to which the lead frame 5 formed in Example 1 was bonded were performed in the same manner as in Example 1, and then the cap 6 and the substrate 3 were bonded in the same manner. It was joined to.

前述と同様にヘリウムリーク試験の結果リーク量が約4
 X 10 ”ate ・cc/ a  と少なく、ガ
ラス層中のボイド率が約6%及びボイドの最大粒径が0
.1m以下であることが確認された。
As mentioned above, the helium leak test results showed that the leakage amount was approximately 4
X 10 "ate cc/a", the void ratio in the glass layer is about 6%, and the maximum particle size of the void is 0.
.. It was confirmed that the distance was 1 m or less.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明の半導体装置の製造方法によれば、
ガラス中のボイドの低減と粒径を抑制することにより、
封止後の熱疲労による特性の劣化を無くする顕著な効果
が得られる。また、高熱伝導電気絶縁性のSiC基板上
にペレットを取り付け、かつベースにリードフレームと
枠体を接合し。
As described above, according to the method for manufacturing a semiconductor device of the present invention,
By reducing voids in glass and controlling particle size,
A remarkable effect of eliminating deterioration of characteristics due to thermal fatigue after sealing can be obtained. In addition, the pellets are mounted on a SiC substrate with high thermal conductivity and electrical insulation, and the lead frame and frame are bonded to the base.

ペレットのボンデングバットをワイヤーでリードフレー
ムのインナーリード部と電気的に接続し、枠体にふた材
を接合封止したことにより、高速ロジックや高速メモリ
に好適な半導体装置を得ることができる。
A semiconductor device suitable for high-speed logic and high-speed memory can be obtained by electrically connecting the bonding butt of the pellet to the inner lead portion of the lead frame with a wire and bonding and sealing the lid material to the frame.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る半導体装置の断面図、
第3図及び第4図は本発明及び比較に係る半導体装置の
ヘリウムリーク試験におけるリーク量を示すデータ、第
5図はボイド率とリーク量との関係を示す線図、第6図
はボイドの最大粒径とリーク量との関係を示す線図であ
る。 1・・・放熱フィン、3・・・電気絶縁性基板、4・・
・ガラス層、5・・・リードフレーム、6・・・キャッ
プ、7・・・第6凹
1 and 2 are cross-sectional views of a semiconductor device according to the present invention,
3 and 4 are data showing the amount of leakage in helium leak tests of semiconductor devices according to the present invention and comparison, FIG. 5 is a diagram showing the relationship between the void ratio and the amount of leakage, and FIG. FIG. 3 is a diagram showing the relationship between maximum particle size and leakage amount. 1... Heat dissipation fin, 3... Electrical insulating board, 4...
・Glass layer, 5... Lead frame, 6... Cap, 7... Sixth recess

Claims (1)

【特許請求の範囲】 1、電気絶縁性基板上に搭載された半導体素子、該半導
体素子からの信号を外部に取り出すリードフレーム、該
リードフレームと半導体素子とを電気的に接続する細線
、及び前記基板上にガラス層によつて接合され、且前記
半導体素子、細線及びリードフレームの一部を外気より
遮断封止するキャップを備えた半導体装置において、前
記ガラス層中のボイド率が7体積%以下で、且ガラス層
中のボイドの最大粒径が0.11mm以下であることを
特徴とする半導体装置。 2、電気絶縁性基板上に半導体素子接合用メタライズ層
を有し、前記半導体素子の信号を外部に取り出すリード
フレームが前記基板上にガラス層によつて接合されてい
る半導体装置用基板において、前記ガラス層中のボイド
率が3.5体積%以下で、且ガラス層中のボイドの最大
粒径が0.8mm以下であることを特徴とする半導体装
置用基板。 3、金属又はセラミックス焼結体からなる平板状部材の
外周部全周にガラス層が設けられている半導体装置用キ
ャップにおいて、前記ガラス層のボイド率が3.5体積
%以下で、且ガラス層のボイド最大粒径が0.8mm以
下であることを特徴とする半導体装置封止用キャップ。 4、電気絶縁性基板上に搭載された半導体素子、該半導
体素子からの信号を外部に取り出すリードフレーム、該
リードフレームと半導体素子とを電気的に接続する細線
、及び前記基板上にガラス層によつて接合され、且前記
半導体素子、細線及びリードフレームの一部を外気より
遮断封止するキャップを備えた半導体装置の製造法にお
いて、予め前記基板上に前記リードフレームを前記ガラ
ス層によつて接合するとともに、前記キャップにガラス
層を焼成によつて形成し、次いで前記リードフレームを
接合した前記基板及び前記ガラス層を有する前記キャッ
プを前記ガラス層の溶融する温度で且ガス加圧下で加熱
した後、前記加圧下で前記ガラス層を凝固させる処理を
施し、次いで、前記基板とキャップとを前記キャップに
形成された前記ガラスによつて前記加圧下での加熱温度
より低い温度で前記ガラス層を軟化させて接合し前記封
止することを特徴とする半導体装置の製造法。 5、電気絶縁性基板上に半導体素子接合用メタライズ層
を有し、前記半導体素子の信号を外部に取り出すリード
フレームが前記基板上にガラス層によつて接合されてい
る半導体装置用基板の製造法において、予め前記基板上
に前記リードフレームを前記ガラス層によつて接合した
後、前記リードフレームを接合した前記基板を前記ガラ
ス層が溶融する温度で且ガス加圧下で加熱し、次いで前
記加圧下で前記ガラス層を凝固させる処理を施すことを
特徴とする半導体装置用基板の製造法。 6、金属又はセラミックス焼結体からなる平板状部材の
外周部全周にガラス層が設けられている半導体装置用キ
ャップの製造法において、予め前記部材にガラス層を焼
成して設けた後、前記ガラス層が溶融する温度で且ガス
加圧下で加熱し、次いで前記加圧下で前記ガラス層を凝
固させることを特徴とする半導体装置封止用キャップの
製造法。
[Scope of Claims] 1. A semiconductor element mounted on an electrically insulating substrate, a lead frame for extracting signals from the semiconductor element to the outside, a thin wire electrically connecting the lead frame and the semiconductor element, and the aforementioned In a semiconductor device having a cap bonded to a substrate by a glass layer and sealing the semiconductor element, the thin wire, and a part of the lead frame from outside air, the void ratio in the glass layer is 7% by volume or less. A semiconductor device characterized in that the maximum grain size of voids in the glass layer is 0.11 mm or less. 2. A substrate for a semiconductor device, which has a metallized layer for bonding a semiconductor element on an electrically insulating substrate, and a lead frame for extracting a signal from the semiconductor element to the outside is bonded to the substrate by a glass layer. A substrate for a semiconductor device, characterized in that the void ratio in the glass layer is 3.5% by volume or less, and the maximum grain size of the voids in the glass layer is 0.8 mm or less. 3. In a cap for a semiconductor device in which a glass layer is provided around the entire outer periphery of a flat plate-like member made of a metal or ceramic sintered body, the void ratio of the glass layer is 3.5% by volume or less, and the glass layer A cap for sealing a semiconductor device, characterized in that the maximum void particle size is 0.8 mm or less. 4. A semiconductor element mounted on an electrically insulating substrate, a lead frame for extracting signals from the semiconductor element to the outside, a thin wire electrically connecting the lead frame and the semiconductor element, and a glass layer on the substrate. In the method for manufacturing a semiconductor device, the lead frame is bonded to the semiconductor element, the thin wire, and a cap for sealing a part of the lead frame from outside air. At the same time as bonding, a glass layer was formed on the cap by firing, and then the substrate to which the lead frame was bonded and the cap having the glass layer were heated at a temperature at which the glass layer melted and under gas pressure. After that, the glass layer is solidified under the applied pressure, and then the glass layer is heated at a temperature lower than the heating temperature under the applied pressure using the glass formed on the cap. 1. A method for manufacturing a semiconductor device, comprising softening, bonding, and sealing. 5. A method for manufacturing a substrate for a semiconductor device, which has a metallized layer for bonding a semiconductor element on an electrically insulating substrate, and a lead frame for extracting signals from the semiconductor element to the outside is bonded to the substrate by a glass layer. After bonding the lead frame onto the substrate in advance through the glass layer, the substrate to which the lead frame is bonded is heated under gas pressure at a temperature at which the glass layer melts, and then heated under gas pressure. A method for manufacturing a substrate for a semiconductor device, comprising performing a treatment for solidifying the glass layer. 6. In a method for manufacturing a cap for a semiconductor device in which a glass layer is provided around the entire outer periphery of a flat plate-like member made of a metal or ceramic sintered body, after the glass layer is previously fired and provided on the member, the 1. A method for manufacturing a cap for sealing a semiconductor device, comprising heating at a temperature at which a glass layer melts and under gas pressure, and then solidifying the glass layer under the pressure.
JP4756687A 1987-03-04 1987-03-04 Method for manufacturing semiconductor device Expired - Lifetime JPH0824153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4756687A JPH0824153B2 (en) 1987-03-04 1987-03-04 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4756687A JPH0824153B2 (en) 1987-03-04 1987-03-04 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63215057A true JPS63215057A (en) 1988-09-07
JPH0824153B2 JPH0824153B2 (en) 1996-03-06

Family

ID=12778771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4756687A Expired - Lifetime JPH0824153B2 (en) 1987-03-04 1987-03-04 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0824153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102291A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Glass-embedded silicon substrate and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241184A (en) * 1975-09-30 1977-03-30 Fuji Kobunshi Kogyo Kk Composition of defoaming agent
JPS5874581A (en) * 1981-10-26 1983-05-06 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Ceramic piece adhering method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241184A (en) * 1975-09-30 1977-03-30 Fuji Kobunshi Kogyo Kk Composition of defoaming agent
JPS5874581A (en) * 1981-10-26 1983-05-06 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Ceramic piece adhering method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102291A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Glass-embedded silicon substrate and method for manufacturing same

Also Published As

Publication number Publication date
JPH0824153B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
US4517584A (en) Ceramic packaged semiconductor device
KR910007016B1 (en) Components for semiconductor
JP4362366B2 (en) Method for forming air cavity package of semiconductor circuit element
JPS6327860B2 (en)
JPH0261539B2 (en)
US5314842A (en) Resin-sealed type semiconductor device and method for manufacturing the same
KR100260686B1 (en) Hermetic sealing of a substrate of high thermal conductivity using an interposer of low thermal conductivity
JP3336240B2 (en) Semiconductor element mounting board
JPH0741159Y2 (en) Hermetically sealed ceramic package
JPS63215057A (en) Semiconductor device and its manufacture
JPS6243155A (en) Integrated circuit package
JPH0117258B2 (en)
EP0100817A2 (en) A hermetically sealed casing of an electrical device and process of manufacturing
US4765528A (en) Plating process for an electronic part
JP2650044B2 (en) Connection structure between components for semiconductor devices
JP2000252392A (en) Wiring board for mounting semiconductor device and its mounting structure
JP3426827B2 (en) Semiconductor device
KR0168841B1 (en) Metal electronic package and the manufacture method
JP3300525B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS61256746A (en) Semiconductor device
JP3070929B2 (en) Package assembly method and package
CA1304172C (en) Metal electronic package
JP3269420B2 (en) Hermetic terminal and method of manufacturing the same
JPH0572751B2 (en)
JPH0756886B2 (en) Method of manufacturing semiconductor package