JPS63211561A - Conductive plastic, its manufacture, and plastic battery using it - Google Patents

Conductive plastic, its manufacture, and plastic battery using it

Info

Publication number
JPS63211561A
JPS63211561A JP62041501A JP4150187A JPS63211561A JP S63211561 A JPS63211561 A JP S63211561A JP 62041501 A JP62041501 A JP 62041501A JP 4150187 A JP4150187 A JP 4150187A JP S63211561 A JPS63211561 A JP S63211561A
Authority
JP
Japan
Prior art keywords
polypyrrole
film
membrane
immersed
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62041501A
Other languages
Japanese (ja)
Inventor
Katsumi Yoshino
勝美 吉野
Minoru Oda
稔 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62041501A priority Critical patent/JPS63211561A/en
Publication of JPS63211561A publication Critical patent/JPS63211561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery having low self discharge rate by synthesizing a polypyrrole composite film which has high electric conductivity, high mechanical strength, and low self discharge in water-based polymerization solution, and using the film in an electrode. CONSTITUTION:Nickel plates are immersed in a specified amount of water-based polymerization solution prepared by dissolving, for example, pyrrole and p- toluene sodium sulfonate in purified water and dc voltage is applied across the nickel plates to synthesize a polypyrrole film. The polypyrrole film is immersed in acetonitrile containing a specified amount of (n-C4H9)4N.BF4 and undoped by using silver as a reference electrode. The undoped film is redoped with BF<->4, then immersed in acetonitrile containing (n-C4H9)4N.BF4 and pyrrole, and anodically electrolyzed to form a polypyrrole composite film. A battery using the polypyrrole composite film in an electrode has a low self discharge rate such as 30% for four months.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水系重合液で電気化学的に合成でき、高い電
気伝導度と優れた機械的性質を併せ持ち、しかも自己放
電の割合が極めて少ないポリピロール複合膜及びその製
造方法、並びにそれを電極材料に用いた2次電池(プラ
スチック電池)に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention can be electrochemically synthesized using an aqueous polymerization solution, has both high electrical conductivity and excellent mechanical properties, and has an extremely low rate of self-discharge. The present invention relates to a polypyrrole composite membrane, a method for manufacturing the same, and a secondary battery (plastic battery) using the same as an electrode material.

〔従来の技術〕[Conventional technology]

導電性プラスチックを電極材料に使用した電池(以下、
プラスチック電池と略称する)は、1981年にマツク
ダミー(A、G、MacDlamld)らによってポリ
アセチレン電池が開発された後、数多くの種類のものが
開発されている。
Batteries that use conductive plastic as electrode material (hereinafter referred to as
BACKGROUND ART Many types of plastic batteries (abbreviated as plastic batteries) have been developed since polyacetylene batteries were developed by MacDlamld et al. in 1981.

プラスチック電池を大別すると、(1)導電性プラスチ
ックを陽極に用いて充電時にアニオンを取り込むタイプ
のものと、(2)放電時にカチオンを取り込むタイプの
ものがある。いずれのタイプの電池でも、(イ)軽量で
ある、(ロ)高いエネルギー密度を持つ、(ハ)最大出
力密度が大きい、(ニ)開放電圧が高い、など優れた特
徴がある反面、(i)既存の鉛蓄電池等に比べて自己放
電の割合が大きい、(ii )サイクル寿命が短い等の
問題点があった。
Plastic batteries can be roughly divided into (1) types that use conductive plastic as an anode and take in anions during charging, and (2) types that take in cations during discharge. Both types of batteries have excellent features such as (a) light weight, (b) high energy density, (c) high maximum output density, and (d) high open-circuit voltage. ) They had problems such as a higher rate of self-discharge than existing lead-acid batteries, and (ii) a short cycle life.

ポリアセチレンは、重合時の触媒残渣の影響で自己放電
が大きいと言われていたが、その後開発されたポリピロ
ール、ポリチオフェン等の電解酸化重合ポリマーは触媒
を含まず、そのため自己放電もかなり小さいと言われて
いる。その反面、例えばポリピロールでは、有機溶媒中
で合成され、機械的強度に乏しく、また電気伝導度も小
さいために、工業的に電池化するには間通があった。し
かし、1985年に佐藤らによって水系重合液で合成で
き、かつ機械的強度に優れ、しかも電気伝導度の大きな
ポリピロールの合成法が開発された( J、J、A、P
、24(6)1985゜L、423一本文献は参照文献
として本明細書中に加入する)。しかしながら、この方
法で合成したポリピロールを用いた電池では、自己放電
がかなり大きな値であった。
It was said that polyacetylene had a large self-discharge due to the influence of catalyst residue during polymerization, but the electrolytically oxidized polymers developed after that, such as polypyrrole and polythiophene, do not contain catalysts, and therefore self-discharge is said to be considerably small. ing. On the other hand, polypyrrole, for example, is synthesized in an organic solvent, has poor mechanical strength, and has low electrical conductivity, so it has been difficult to make it into a battery industrially. However, in 1985, Sato et al. developed a method for synthesizing polypyrrole that can be synthesized using an aqueous polymerization solution, has excellent mechanical strength, and has high electrical conductivity (J, J, A, P
, 24(6) 1985°L, 423 (this document is incorporated herein by reference). However, in batteries using polypyrrole synthesized by this method, self-discharge was considerably large.

〔発明が解決しようとする問題点〕 前述のように、佐藤らによって開発された合成法により
得られるポリピロールは、数多くの優れた特徴を併せ持
っている反面、合成時の支持電解質が有機溶媒に殆んど
溶解しないため、プラスチック電池化するためには別な
電解質と交換する必要がある。この場合に使用する電解
質としては、上記支¥1電解質よりも比較的小さなイオ
ン半径の電解質を使用する必要がある。
[Problems to be solved by the invention] As mentioned above, polypyrrole obtained by the synthesis method developed by Sato et al. has many excellent characteristics, but on the other hand, the supporting electrolyte during synthesis is mostly an organic solvent. Because it does not dissolve, it must be replaced with a different electrolyte to make it into a plastic battery. In this case, it is necessary to use an electrolyte with a relatively smaller ionic radius than the above-mentioned ¥1 electrolyte.

そのため、自己放電の割合が有機溶媒中で合成したもの
よりもかなり大きな値となってしまうという問題がある
Therefore, there is a problem in that the rate of self-discharge becomes much larger than that synthesized in an organic solvent.

従って、本発明の目的は、水系重合液で合成でき、高い
電気伝導度と優れた機械的強度を併せ持つと共に、自己
放電の割合が極めて小さなポリピロール複合膜及び製造
方法、並びにこのように優れた特性を有するポリピロー
ル複合膜を電極材料に用いたプラスチック電池を提供す
ることにある。
Therefore, the object of the present invention is to provide a polypyrrole composite membrane that can be synthesized using an aqueous polymerization liquid, has both high electrical conductivity and excellent mechanical strength, and has an extremely low self-discharge rate, as well as a manufacturing method, and a method for producing such a polypyrrole composite membrane, as well as a method for producing such a polypyrrole composite membrane, which can be synthesized using an aqueous polymerization liquid, and has both high electrical conductivity and excellent mechanical strength. An object of the present invention is to provide a plastic battery using a polypyrrole composite membrane having the following as an electrode material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のポリピロール複合膜は、上記目的を達成するた
め、合成時の支持電解質が除去されたポリピロール膜に
、さらに他の電解質をドープすると共にポリピロール膜
をコーティングして成ることを特徴とするものである。
In order to achieve the above object, the polypyrrole composite membrane of the present invention is characterized in that the polypyrrole membrane from which the supporting electrolyte during synthesis has been removed is further doped with another electrolyte and coated with a polypyrrole membrane. be.

このような導電性ポリピロール複合膜は、本発明に従っ
て、水系重合液で合成したポリピロール膜から合成時の
支持電解lを電機化学的に又は化学的に脱ドープし、次
いで、他の電解質をドープすると共にポリピロール膜を
コーティングすることによって得られる。
According to the present invention, such a conductive polypyrrole composite membrane is produced by electrochemically or chemically dedoping the supporting electrolyte during synthesis from a polypyrrole membrane synthesized with an aqueous polymerization solution, and then doping with other electrolytes. It can be obtained by coating a polypyrrole film with a polypyrrole film.

さらに、本発明によれば、上記のように優れた特徴を有
するポリピロール複合膜を電極材料として用いてなるプ
ラスチック電池も提供される。
Further, according to the present invention, there is also provided a plastic battery using a polypyrrole composite membrane having the excellent characteristics as described above as an electrode material.

〔発明の作用及び態様〕[Operation and mode of the invention]

前記したように、佐藤らの方法によって合成されたポリ
ピロール膜の支持電解質は有機溶媒に殆んど溶解しない
ため、プラスチック電池の電極材料として用いるために
は、上記支持電解質を他の可溶性の電解質と交換する必
要がある。
As mentioned above, the supporting electrolyte of the polypyrrole membrane synthesized by the method of Sato et al. is hardly soluble in organic solvents, so in order to use it as an electrode material for plastic batteries, the supporting electrolyte must be mixed with other soluble electrolytes. Needs to be replaced.

一旦合成した導電性プラスチックのドーパントを交換す
るためには、完全に元のドーパントを取り除いてしまい
、その後新たなドーパントを取り込ませる方法が採られ
る。
In order to replace the dopant in a conductive plastic that has been synthesized, the method is to completely remove the original dopant and then incorporate a new dopant.

本発明においても、合成された導電性ポリピロール膜の
既存のドーパント(合成時の支持電解質のp−トルエン
スルホン酸イオン)を電気化学的又は化学的に取り除き
、その後新たなドーパント(過塩素酸イオンなど)を取
り込ませる。本発明者らは、この場合のイオンの大きさ
のアンバランスに注目し、脱ドープの際にポリマーマト
リックス中に生じたp−トルエンスルホン酸イオンの通
り道が、過塩素酸イオンなどの新たなドーパントにとっ
てはあまりに大きすぎるため、自己放電が大きくなるも
のと考えた。
In the present invention, the existing dopant (p-toluenesulfonate ion as a supporting electrolyte during synthesis) of the synthesized conductive polypyrrole membrane is electrochemically or chemically removed, and then a new dopant (perchlorate ion, etc.) is removed. ). The present inventors focused on the imbalance of ion sizes in this case, and found that the path of p-toluenesulfonic acid ions generated in the polymer matrix during dedoping allows new dopants such as perchlorate ions to pass through the polymer matrix. It was thought that the self-discharge would increase because it was too large.

そこで、既存のドーパント(p−1ルエンスルホン酸イ
オン)を取り除いた後、新たにイオン半径の小さなイオ
ンを含むポリピロール層をコ−ティグして通り道をせば
める方法を検討17、このような処理方法によって前記
自己放電の問題が顕著に改善できることを見い出した。
Therefore, we considered a method to narrow the path by removing the existing dopant (p-1 luenesulfonate ion) and then coating it with a new polypyrrole layer containing ions with a small ionic radius17. It has been found that the above-mentioned self-discharge problem can be significantly improved by this method.

すなわち、本発明によれば、水系重合液で合成したポリ
ピロール膜から既存のドーパント(p−トルエンスルホ
ン酸)を脱ドープした後、さらに新たなドーパントをド
ープすると共にポリピロール膜をコーティングすること
によって、脱ドープされたポリピロール膜(マトリック
ス)の表面、あるいはさらにp−トルエンスルホン酸イ
オンの脱ドープによりマトリックス中に生じた微小孔(
通り道)内面にまで新たなポリピロール層が形成される
ものと考えられ、これによって上記微小孔が狭められあ
るいは封孔され、自己放電が著しく低減するものと考え
られる。
That is, according to the present invention, after dedoping an existing dopant (p-toluenesulfonic acid) from a polypyrrole film synthesized with an aqueous polymerization solution, the dedoping process is performed by doping a new dopant and coating the polypyrrole film. The surface of the doped polypyrrole membrane (matrix) or the micropores (
It is thought that a new polypyrrole layer is formed even on the inner surface, and this narrows or seals the micropores, thereby significantly reducing self-discharge.

本発明では上記の現象あるいはこれに類似する現象が現
出できれば充分であって、従って、上記微小孔に新たな
ドーパントをドープした後に新たなポリピロール層をコ
ーティングしてもよく、また新たなドーパントを含有す
るコーティング材料を用いてドープと同時にコーティン
グを行なってもよい。
In the present invention, it is sufficient that the above-mentioned phenomenon or a phenomenon similar to it can appear. Therefore, a new polypyrrole layer may be coated after doping a new dopant into the micropores, or a new dopant may be coated. Coating may be performed at the same time as doping using the coating material contained.

本発明による処理の好適な手順を以下に示す。A preferred procedure for treatment according to the invention is shown below.

(A)前記文献(J、J、A、P、24(8)1985
)l:示される既報の方法でポリピロールを電気化学的
に合成する。
(A) Said document (J, J, A, P, 24(8) 1985
)l: Polypyrrole is electrochemically synthesized by the previously reported method shown.

([3)得られたポリピロール膜から、p−トルエンス
ルホン酸イオンを脱ドープする。これらは、銀、飽和カ
ロメルなどを参照電極とし、有機溶媒中で電気化学的に
実施してもよいし、あるいはアンモニア水などを用いて
化学的に行なってもよい。
([3) Dedoping p-toluenesulfonic acid ions from the obtained polypyrrole film. These may be carried out electrochemically in an organic solvent using silver, saturated calomel, or the like as a reference electrode, or may be carried out chemically using aqueous ammonia or the like.

(C)新たなドーパント(過塩素酸イオン、フルオロホ
ウ酸イオン、ハロゲンイオンなど)をドープする。
(C) Doping with a new dopant (perchlorate ion, fluoroborate ion, halogen ion, etc.).

(D)コーティングの実施 コーティング用の重合液は、イオン半径が小さい電解質
(例えばBFa−、CD0a−、ハロゲンイオンなどの
アルカリ金属塩、アンモニウム塩など)を支持塩とし、
水系又は有機溶媒系にビロールモノマーを添加したもの
を使用する。
(D) Coating implementation The polymerization solution for coating uses an electrolyte with a small ionic radius (for example, an alkali metal salt such as BFa-, CD0a-, or a halogen ion, or an ammonium salt) as a supporting salt;
An aqueous or organic solvent system to which virol monomer is added is used.

〔実 施 例〕〔Example〕

以下、実施例を示して本発明について具体的に説明する
The present invention will be specifically described below with reference to Examples.

実施例1 既報の方法に従い、ビロール0.25moj! /II
 。
Example 1 According to the previously reported method, 0.25 moj of virol! /II
.

p−トルエンスルホン酸ナトリウム 0.8a+og/Ωを精製水に溶解した重合液を作成し
、これにNi板を挿入して両Ni板間に2.3Vの直流
電圧を印加してポリピロール膜を合成した(膜は5 C
/ c−の電気量で合成)。
Create a polymerization solution by dissolving 0.8a+og/Ω of sodium p-toluenesulfonate in purified water, insert a Ni plate into it, and apply a DC voltage of 2.3V between both Ni plates to synthesize a polypyrrole film. (The membrane was 5C
/ c-).

得られたポリピロール膜をNi板から剥し、洗浄後真空
乾燥した。その後、ポリピロール膜をNiメツシュに包
み、0.5IIloff/Jl!の(n  C4Hs)
4 N−BF<を含有するアセトニトリル中に浸漬し、
銀を参照電極として−1,5V/Agの電圧が印加でき
るようポテンショスタティックに脱ドープ操作を行なっ
た。
The obtained polypyrrole film was peeled off from the Ni plate, washed, and then vacuum dried. After that, the polypyrrole film was wrapped in Ni mesh, and 0.5IIloff/Jl! (n C4Hs)
4 Immersed in acetonitrile containing N-BF<,
A potentiostatic dedoping operation was performed using silver as a reference electrode so that a voltage of -1.5 V/Ag could be applied.

得られた脱ドープしたポリピロールフィルムを純粋なア
セトニトリルで洗浄後、 0.5 txoD /IIの(n−C4Hg ) 4 
N−BF4を含有するアセトニトリル溶液中に浸漬し、
銀を参照電極として+〇、6V/Agの電圧が印加でき
るようポテンショスタティックにBF4−を再ドープし
た。
After washing the obtained dedoped polypyrrole film with pure acetonitrile, the (n-C4Hg)4 of 0.5 txoD/II
immersed in an acetonitrile solution containing N-BF4,
Using silver as a reference electrode, BF4- was potentiostatically redoped so that a voltage of 6 V/Ag could be applied.

このポリピロール膜をIIlog/flの(n−Ca 
Hg ) a N 11BF4 、0.25moN /
Dのビロールを溶解したアセトニトリル中に浸漬し、陰
極に対して3.Ovの電圧を印加してポリピロール層を
コーティングし、本発明のポリピロール複合膜を得た。
This polypyrrole film was coated with IIlog/fl (n-Ca
Hg) aN 11BF4, 0.25moN/
3. Dip the virol of D into dissolved acetonitrile and apply it to the cathode. A voltage of Ov was applied to coat the polypyrrole layer to obtain a polypyrrole composite film of the present invention.

実施例2 上記実施例1と同様の方法でポリピロール膜を作成し、
洗浄後真空乾燥した。
Example 2 A polypyrrole film was created in the same manner as in Example 1 above,
After washing, it was vacuum dried.

得られたポリピロール膜をpt製メツシュに包み、0.
5moN/RのL i C(104を含有するアセトニ
トリル中に浸漬し、銀を参照電極として−1,5V/A
gの電圧が印加できるようにポテンショスタティックに
p−トルエンスルホン酸イオンを脱ドープした。
The obtained polypyrrole membrane was wrapped in a PT mesh and 0.
Immersed in acetonitrile containing 5 moN/R L i C (104) and -1,5 V/A with silver as a reference electrode.
The p-toluenesulfonic acid ion was potentiostatically dedoped so that a voltage of g could be applied.

得られた脱ドープポリピロールフィルムをアセトニトリ
ルで洗浄後、0.5mo、Q/gのL i CD 04
を含有するアセトニトリル溶液中に浸漬し、銀を参照電
極として0.6V/Agの電圧が印加できるようポテン
ショスタティックにCR04−を再ドープした。
After washing the obtained undoped polypyrrole film with acetonitrile, 0.5 mo, Q/g of Li CD 04
was immersed in an acetonitrile solution containing silver, and potentiostatically redoped with CR04- so that a voltage of 0.6 V/Ag could be applied using silver as a reference electrode.

このポリピロール膜を、0.5mon/j?のL i 
Cfl 04 、 0. 25moR/Dのピロールを
溶解したアセトニトリル中に浸漬し、陰極に対して3.
Ovの電圧を印加してポリピロール層をコーティングし
、本発明のポリピロール複合膜を得た。
This polypyrrole film is 0.5 mon/j? L i
Cfl 04, 0. 25moR/D of pyrrole was immersed in acetonitrile dissolved in it, and 3.
A voltage of Ov was applied to coat the polypyrrole layer to obtain a polypyrrole composite film of the present invention.

実施例3 実施例1と同様の方法でポリピロール膜を作成し、洗浄
後真空乾燥した。
Example 3 A polypyrrole membrane was prepared in the same manner as in Example 1, washed and then vacuum dried.

得られたポリピロール膜をアンモニア水に浸漬し、−昼
夜放置してp−トルエンスルホン酸イオンを脱ドープし
た。
The obtained polypyrrole membrane was immersed in aqueous ammonia and left to stand day and night to dedope p-toluenesulfonic acid ions.

得られた脱ドープフィルムを精製水で充分洗浄した後、
真空乾燥し、その後0.5moR/Rの(C2H5)a
 N−BF4を含有するアセトニトリル溶液中に浸漬し
、銀を参照電極として+0.6V/Agの電圧が印加で
きるようポテンショスタティックにBF4−を再ドープ
した。
After thoroughly washing the obtained dedoped film with purified water,
Vacuum drying and then 0.5moR/R of (C2H5)a
It was immersed in an acetonitrile solution containing N-BF4, and redoped with BF4- potentiostatically so that a voltage of +0.6 V/Ag could be applied using silver as a reference electrode.

このポリピロール中に0.5mog/NのL i BF
a 、  0. 25moR/Ωのピロールを溶解した
アセトニトリル中に浸漬し、陰極に対して 3.OVの
電圧を印加してポリピロール層をコーティングし、ポリ
ピロール複合膜を得た。
0.5 mog/N of Li BF in this polypyrrole
a, 0. 3. Immerse it in acetonitrile in which 25 moR/Ω of pyrrole is dissolved and apply it to the cathode. A voltage of OV was applied to coat the polypyrrole layer to obtain a polypyrrole composite film.

実施例4 実施例1と同様の方法でポリピロール膜を作成し、洗浄
後真空乾燥した。
Example 4 A polypyrrole membrane was prepared in the same manner as in Example 1, washed and then vacuum dried.

得られたポリピロール膜をNi製メツシュに包み、飽和
食塩水溶液中に浸漬し、対向電極(1) )に対して−
2,OVの電圧を印加して脱ドープ操作を行なった。
The obtained polypyrrole film was wrapped in a Ni mesh, immersed in a saturated saline solution, and exposed to the opposite electrode (1).
2. Dedoping operation was performed by applying a voltage of OV.

得られた脱ドープしたポリピロールフィルムを精製水で
洗浄後、飽和食塩水に0゜25αog/Ωのピロールを
溶解した液に浸漬し、陰極に対して2.3■の電圧を印
加してポリピロール層をコーティングし、ポリピロール
複合膜を得た。
After washing the resulting dedoped polypyrrole film with purified water, it was immersed in a solution of 0°25αog/Ω pyrrole dissolved in saturated saline, and a voltage of 2.3μ was applied to the cathode to form a polypyrrole layer. was coated to obtain a polypyrrole composite membrane.

実施例5 実施例1と同様の方法でポリピロール膜を生成し、洗浄
後真空乾燥した。
Example 5 A polypyrrole film was produced in the same manner as in Example 1, washed and then vacuum dried.

得られたポリピロール膜をNi製メツシュに包み、0.
5 fIoΩ/Ωの(n−Ca Hg ) N、BF4
を含有するアセトニトリル中に浸漬し、銀を参照電極と
して−1,5V/Agの電圧を印加して脱ドープ操作を
行なった。
The obtained polypyrrole film was wrapped in a Ni mesh and 0.
5 fIoΩ/Ω(n-CaHg)N, BF4
The sample was immersed in acetonitrile containing silver, and a voltage of -1.5 V/Ag was applied using silver as a reference electrode to perform a dedoping operation.

得られた脱ドープしたポリピロールフィルムを純粋なア
セトニトリルで洗浄後、 0.5moU/NのL i BFa 、 0.2511
oΩ/gのピロールを含有するアセトニトリル中に浸漬
し、陰極に対して3.0■の電圧を印加してポリピロー
ル層をコーティングし、ポリピロール複合膜を得た。
After washing the obtained dedoped polypyrrole film with pure acetonitrile, 0.5 moU/N of Li BFa, 0.2511
It was immersed in acetonitrile containing pyrrole of oΩ/g, and a voltage of 3.0 μ was applied to the cathode to coat a polypyrrole layer to obtain a polypyrrole composite membrane.

実施例6 実施例1に従い、0.5C/cdのポリピロール層をコ
ーティングしたポリピロール複合フィルムを用いて電池
化した。そのときの自己放電特性を第1図に示す。同図
には、コーティング処理のみ省略した以外は全く同様に
処理(脱ドープ及びドープ処理)したサンプルの場合の
自己放電特性も併せて示す。
Example 6 According to Example 1, a battery was made using a polypyrrole composite film coated with a 0.5 C/cd polypyrrole layer. The self-discharge characteristics at that time are shown in FIG. The figure also shows the self-discharge characteristics of a sample that was treated in exactly the same way (undoped and doped) except that only the coating treatment was omitted.

第1図から明らかなように、未コーティング処理のサン
プルでは、105秒(約24時間)で自己放電が9割に
達するのに対し、本発明に従ってコーティングを施した
サンプルでは、107秒(4ケ月)放置しても自己放電
量は3割程度であり、実用上極めて有効であることがわ
かる。
As is clear from Figure 1, self-discharge reaches 90% in 105 seconds (approximately 24 hours) for the uncoated sample, whereas self-discharge reaches 90% in 107 seconds (approximately 4 months) for the sample coated according to the present invention. ) Even if left undisturbed, the amount of self-discharge is about 30%, indicating that it is extremely effective in practice.

実施例7 実施例2によって得られたポリピロール複合フィルムを
用いて電池化した。その自己放電特性を第2図に示す。
Example 7 A battery was made using the polypyrrole composite film obtained in Example 2. Its self-discharge characteristics are shown in Figure 2.

同図には、コーティング処理のみ省略した以外は全く同
様に処理したサンプルの場合の自己放電特性も併せて示
す。同図から、本発明のポリピロール複合フィルムを使
用したプラスチック電池の自己放電特性が飛躍的に向上
し、長時間放置しても安定していることがわかる。
The figure also shows the self-discharge characteristics of a sample treated in exactly the same way except that only the coating treatment was omitted. From the figure, it can be seen that the self-discharge characteristics of the plastic battery using the polypyrrole composite film of the present invention are dramatically improved, and it is stable even when left for a long time.

〔発明の効果〕 以上のように、本発明のポリピロール複合膜は、水系重
合液で合成でき、高い電気伝導度と優れた機械的強度を
併せ持つという基本的な特長を有する他、脱ドープ及び
ドープ処理すると共にさらにポリピロール層をコーティ
ングした複合膜であるため、これを使用したプラスチッ
ク電池の自己放電特性は、添附図面に示すように、未コ
ーティング処理のポリピロール膜を使用した場合に比べ
て飛躍的に向上し、3ケ月以上放置しても3割程度しか
自己放電せず、さらにこの値は長時間放置しても安定し
ているという顕著な効果、利点が得られ、実用上極めて
有用である。
[Effects of the Invention] As described above, the polypyrrole composite membrane of the present invention has the basic features of being able to be synthesized using an aqueous polymerization solution and having both high electrical conductivity and excellent mechanical strength. Because it is a composite membrane that is treated and further coated with a polypyrrole layer, the self-discharge characteristics of plastic batteries using this membrane are dramatically greater than those using uncoated polypyrrole membranes, as shown in the attached drawing. It has the remarkable effect and advantage that even if it is left for three months or more, only about 30% self-discharge occurs, and this value remains stable even if it is left for a long time, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各種ポリピロール膜を使用したプラ
スチック電池の自己放電特性を示す。
Figures 1 and 2 show the self-discharge characteristics of plastic batteries using various polypyrrole films.

Claims (3)

【特許請求の範囲】[Claims] (1)合成時の支持電解質が除去されたポリピロール膜
に、さらに他の電解質をドープすると共にポリピロール
膜をコーティングして成るポリピロール複合膜。
(1) A polypyrrole composite membrane obtained by doping a polypyrrole membrane with another electrolyte and coating it with a polypyrrole membrane, from which the supporting electrolyte during synthesis has been removed.
(2)水系重合液で合成したポリピロール膜から合成時
の支持電解質を電気化学的に又は化学的に脱ドープし、
次いで、他の電解質をドープすると共にポリピロール膜
をコーティングすることを特徴とするポリピロール複合
膜の製造方法。
(2) Electrochemically or chemically dedoping the supporting electrolyte during synthesis from a polypyrrole membrane synthesized with an aqueous polymerization solution,
A method for producing a polypyrrole composite membrane, which comprises then doping another electrolyte and coating the polypyrrole membrane.
(3)合成時の支持電解質が除去されたポリピロール膜
にさらに他の電解質をドープすると共にポリピロール膜
がコーティングされて成るポリピロール複合膜を電極材
料に用いてなるプラスチック電池。
(3) A plastic battery using a polypyrrole composite membrane as an electrode material, which is obtained by doping a polypyrrole membrane from which the supporting electrolyte during synthesis has been removed, doping it with another electrolyte, and coating it with a polypyrrole membrane.
JP62041501A 1987-02-26 1987-02-26 Conductive plastic, its manufacture, and plastic battery using it Pending JPS63211561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62041501A JPS63211561A (en) 1987-02-26 1987-02-26 Conductive plastic, its manufacture, and plastic battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62041501A JPS63211561A (en) 1987-02-26 1987-02-26 Conductive plastic, its manufacture, and plastic battery using it

Publications (1)

Publication Number Publication Date
JPS63211561A true JPS63211561A (en) 1988-09-02

Family

ID=12610104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041501A Pending JPS63211561A (en) 1987-02-26 1987-02-26 Conductive plastic, its manufacture, and plastic battery using it

Country Status (1)

Country Link
JP (1) JPS63211561A (en)

Similar Documents

Publication Publication Date Title
US5362493A (en) Preparation of redox polymer cathodes for thin film rechargeable batteries
CA1304878C (en) Conductive polymers obtained from 3-alkylthiophene, process for their fabrication and electroconductive devices containing them
US5002700A (en) Permanently doped polyaniline and method thereof
US4728399A (en) Preparation of laminates of metals and electrically conductive polymers
KR20020077341A (en) Films for electrochemical components and method for producing the same
EP0358239B1 (en) Solid electrolytic capacitor and method of manufacturing the same
FR2624526A1 (en) COMPOSITE ELECTRODE COMPRISING AN ALUMINUM BODY CONNECTED WITH AN ELECTROCONDUCTIVE POLYMER AND AN ELECTRIC CELL USING SUCH A COMPOSITE ELECTRODE
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
US4472488A (en) Polymeric electrode coated with reaction product of cyclic compound
JPS63211561A (en) Conductive plastic, its manufacture, and plastic battery using it
JP3213994B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0362451A (en) Electrode of polyaniline polymer and preparation of polyaniline polymer
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
CA2118946A1 (en) Oxirane and dioxolane copolymers; process for preparing them and ion conductive materials containing the same
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPS62296376A (en) Manufacture of polymer solid electrolyte battery
JPH04245166A (en) Secondary battery
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP2000021393A (en) Manufacture of polymer electrode
JP2716132B2 (en) Polyaniline battery
CN116093426A (en) Electropolymerized gel electrolyte battery and preparation method thereof
JPH04206156A (en) Solid electrolyte battery
JPS62296377A (en) Electrochemical battery with no separator
JPH01157060A (en) Polyaniline electrode
JP2528798B2 (en) Laminate containing furan-based polymer complex film and its manufacturing method