JPS63210028A - Method for synthesizing lithium manganese oxide solid solution - Google Patents

Method for synthesizing lithium manganese oxide solid solution

Info

Publication number
JPS63210028A
JPS63210028A JP62043550A JP4355087A JPS63210028A JP S63210028 A JPS63210028 A JP S63210028A JP 62043550 A JP62043550 A JP 62043550A JP 4355087 A JP4355087 A JP 4355087A JP S63210028 A JPS63210028 A JP S63210028A
Authority
JP
Japan
Prior art keywords
oxide
solid solution
heating
salt
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62043550A
Other languages
Japanese (ja)
Other versions
JPH07112929B2 (en
Inventor
Kazunobu Matsumoto
和伸 松本
Tatsu Nagai
龍 長井
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Takeshi Asai
浅井 彪
Nanao Kawai
河合 七雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62043550A priority Critical patent/JPH07112929B2/en
Publication of JPS63210028A publication Critical patent/JPS63210028A/en
Publication of JPH07112929B2 publication Critical patent/JPH07112929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled solid soln. available as positive polar active substance of a lithium battery safely and easily without the need for limiting the supply amount of O2, by mixing manganese oxide or the like, a first transition metallic oxide or the like other than Mn and lithium oxide or the like and heating this mixture. CONSTITUTION:(A) Manganese oxide or salt (e.g. MnCO3) becoming oxide by heating and (B) a first transition metallic oxide other than Mn or salt (e.g. CoCO3) becoming oxide by heating and (C) lithium oxide or salt (e.g. Li2CO3) becoming oxide by heating are mixed. Then after heating this mixture at 800-1,200 deg.C in the open atmosphere wherein the supply amount of O2 is not limited, it is quenched and the titled solid soln. shown in a formula [M shows a first transition metal other than Mn, (y) shows 0.1-1] is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウムマンガン酸化物固溶体の合成法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for synthesizing a lithium manganese oxide solid solution.

〔従来の技術〕[Conventional technology]

最近、L i M n Ox(リチウムマンガン酸化物
)などのLiMOバリチウム遷移金属酸化物)が高エネ
ルギー密度を期待できるリチウム電池の正極活物質とし
て注目を受けている。
Recently, LiMO (barium transition metal oxides such as LiMnOx (lithium manganese oxide)) has been attracting attention as a positive electrode active material for lithium batteries that can be expected to have high energy density.

しかし、LiMn0.の場合は、供給する酸素の量を反
応に必要な量に限定しながら合成しなければならなかっ
た。これは、LiMn0.の場合、LiCo0.などと
は異なり、開放された酸化雰囲気で加熱すると、Mn(
マンガン)が容易に酸化されてMn (■)になり、例
えばLiMnzOnなどのLIMO,と異なる結晶構造
になるため、供給する酸素量を限定してMn (IV)
の生成を防止する必要があるからである。
However, LiMn0. In this case, it was necessary to carry out the synthesis while limiting the amount of oxygen supplied to the amount necessary for the reaction. This is LiMn0. If LiCo0. When heated in an open oxidizing atmosphere, Mn (
Manganese) is easily oxidized to Mn (■), resulting in a crystal structure different from that of LIMO, such as LiMnzOn.
This is because it is necessary to prevent the generation of

そのような事情から、これまでは、LizO□とMnO
を真空封管して、Lightの熱分解によって生じるO
!のみによりMn(n)OをM n (Ill)に酸化
してLiMn0.を合成していた(J、Am、Chem
 。
Due to such circumstances, until now LizO□ and MnO
is vacuum-sealed, and the O produced by the thermal decomposition of Light is removed.
! Mn(n)O is oxidized to Mn(Ill) by only LiMn0. was synthesized (J, Am, Chem
.

Soc、、 78.3255(1956)) 。Soc, 78.3255 (1956)).

しかし、この方法は、真空封管のため、合成に手間がか
かり、またLightという過酸化物を用いるため危険
であるという問題があった。
However, this method has problems in that it is time-consuming to synthesize because it uses a vacuum-sealed tube, and it is dangerous because it uses a peroxide called Light.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来、LiMn01の合成に際して真空封管
により供給する酸素量を制限しなければならないという
制約を受けたり、また取扱いにおいても危険を伴ったと
いう事実に鑑み、例えばリチウム電池の正極活物質とし
て用いる場合にLiM n Otよりもむしろ有用なリ
チウムマンガン酸化物固溶体を前述のような制約や危険
性を招くことなく合成することを目的とする。
In view of the fact that conventionally, LiMn01 was synthesized using a vacuum-sealed tube to limit the amount of oxygen supplied, and the handling was also dangerous, the present invention was developed as a positive electrode active material for lithium batteries, for example. The object of the present invention is to synthesize a lithium manganese oxide solid solution that is more useful than LiM n Ot when used as a lithium manganese oxide without incurring the limitations and risks described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、マンガンの酸化物または加熱により酸化物に
なる塩と、マンガン以外の第一遷移金属の酸化物または
加熱により酸化物になる塩と、リチウムの酸化物または
加熱により酸化物になる塩とを混合し、酸素供給量を制
限しない開放された雰囲気で加熱することによって、リ
チウム電池用の正極活物質としてLiMn0iよりもむ
しろ有用な、式(1) %式%(1) (式中、Mはマンガン以外の第一遷移金属であり、yは
0.1以上で1未満である)で示されるリチウムマンガ
ン酸化物固溶体を、供給する酸素量を制限することなく
得られるようにしたものである。
The present invention provides an oxide of manganese or a salt that becomes an oxide when heated, an oxide of a first transition metal other than manganese or a salt that becomes an oxide when heated, and an oxide of lithium or a salt that becomes an oxide when heated. By mixing and heating in an open atmosphere that does not limit the amount of oxygen supply, the formula (1) % formula % (1) (wherein M is a first transition metal other than manganese, and y is 0.1 or more and less than 1), which can be obtained without limiting the amount of oxygen supplied. be.

上記式(りにおいてMで示されるマンガン以外の第一遷
移金属としては、コバル1−(Co)、ニッケル(Ni
)、チタン(Ti)、バナジウム(V)、クロム(Cr
)、鉄(F e)などがあげられる。
The first transition metals other than manganese represented by M in the above formula include cobal-1-(Co), nickel (Ni
), titanium (Ti), vanadium (V), chromium (Cr
), iron (Fe), etc.

本発明において、マンガンと、マンガン以外の第一遷移
金属Mと、リチウムとを、それぞれ酸化物または加熱に
より酸化物になる塩の状態で反応に供するが、上記加熱
により酸化物になる塩としては、例えば炭酸塩、酢酸塩
などがあげられる。
In the present invention, manganese, the first transition metal M other than manganese, and lithium are subjected to the reaction in the form of an oxide or a salt that becomes an oxide upon heating, but the salt that becomes an oxide upon heating is Examples include carbonates and acetates.

特に炭酸塩の状態で反応に供すると、加熱により脱炭酸
し、その際に微粒子化するので、各反応成分の混合状態
がより一層均−になるので好ましい結果が得られる。な
お、酸化物としては、Mnの場合はMn01M n !
 Os、Mn、O,などが用いられ、遷移金属Mの場合
はMO1M201、M s Oaなどが用いられ、Li
の場合はLi、Oなどが用いられる。
Particularly, when the reaction is carried out in the form of a carbonate, it is decarboxylated by heating and is turned into fine particles at that time, so that the mixed state of each reaction component becomes even more uniform, so that favorable results can be obtained. In addition, in the case of Mn, as an oxide, Mn01M n!
Os, Mn, O, etc. are used, and in the case of transition metal M, MO1M201, M s Oa, etc. are used, and Li
In this case, Li, O, etc. are used.

反応は酸素供給量を制限しない開放された雰囲気で行わ
れるが、この酸素供給量を制限しない開放された雰囲気
は、たとえ大気中より酸素が希薄な雰囲気であってもよ
(、むしろ遷移金属Mの固溶化量が少なかったり、ある
いは反応温度が低い場合には、上記酸素が希薄な雰囲気
の方が大気中よりも目的とする固溶体をより安定して得
ることができるという特徴がある。
The reaction takes place in an open atmosphere that does not limit the amount of oxygen supplied, but this open atmosphere that does not limit the amount of oxygen supplied may be an atmosphere where oxygen is rarer than in the atmosphere (in fact, transition metal M When the amount of solid solution is small or the reaction temperature is low, the above-mentioned oxygen-poor atmosphere has the characteristic that the desired solid solution can be obtained more stably than in the air.

本発明においては、Mnと、Mn以外の第一遷移金属M
と、リチウムとを、それぞれ酸化物または加熱により酸
化物になる塩の状態で反応に供するが、このようにMn
以外の第一遷移金属Mを含ませた3成分系で反応させる
ことにより、COなとのMn以外の第一遷移金属MがM
nと固溶化することになって、酸素の供給量を限定しな
い酸素雰囲気中で加熱しても、通常の条件下では酸化さ
れやすいMnの価数があがらずM n ([[[)の酸
化物が合成されるようになるものと考えられる。
In the present invention, Mn and a first transition metal other than Mn
and lithium are subjected to the reaction in the form of an oxide or a salt that becomes an oxide upon heating, but in this way, Mn
By reacting in a three-component system containing a first transition metal M other than Mn, the first transition metal M other than Mn such as CO
Even when heated in an oxygen atmosphere where the amount of oxygen supplied is not limited, the valence of Mn, which is easily oxidized under normal conditions, does not increase. It is thought that things will be synthesized.

上記のようにMnが酸化されにくくなる理由は、現在の
ところ必ずしも明確ではないが、COなとの遷移金属M
がMnに固溶化することにより、Mnや遷移金属Mが3
価の状態であるLi(MnM)03の結晶構造が安定化
し、それによってMnも3価の状態でとどまるようにな
るからであると考えられる。
The reason why Mn becomes difficult to oxidize as mentioned above is not necessarily clear at present, but transition metal Mn such as CO
By forming a solid solution in Mn, Mn and transition metal M become 3
This is thought to be because the crystal structure of Li(MnM)03 in a valent state is stabilized, and as a result, Mn also remains in a trivalent state.

本発明において、弐〇〇中、つまりLi(Mn1−yM
y)Ox中のyの値を0.1以上で1未満(つまり、0
.1≦y〈1)にするが、これはyが0.1より小さい
と、Mnと遷移金属Mとの固溶化が充分に生じず、した
がって、供給する酸素量を制限しない開放された酸素雰
囲気中では、LiMn0.はもとよりリチウムマンガン
酸化物固溶体が得られなくなるからである、そして、L
 i Mow(MはCo。
In the present invention, 200 medium, that is, Li (Mn1-yM
y) Set the value of y in Ox to 0.1 or more and less than 1 (that is, 0
.. 1≦y<1), but this is because if y is smaller than 0.1, solid solution formation of Mn and transition metal M will not occur sufficiently, so an open oxygen atmosphere that does not limit the amount of oxygen to be supplied is required. Among them, LiMn0. This is because it becomes impossible to obtain a lithium manganese oxide solid solution, and L
i Mow (M is Co.

NiなどのMn以外の第一遷移金属)を開放された酸素
雰囲気中で合成しうろことから、yは1未満であればそ
の上限値は存在しないと考えられるからである。
This is because if y is less than 1, it is considered that there is no upper limit because y (first transition metals other than Mn such as Ni) may be synthesized in an open oxygen atmosphere.

本発明においては、前述のように、Mnと、Mn以外の
第一遷移金属Mと、リチウムとを炭酸塩の状態で反応に
供することが好ましいが、この際、Mnと遷移金属Mと
は前もって炭酸塩として共沈させることにより混合して
おくことが好ましい。
In the present invention, as described above, it is preferable to subject Mn, the first transition metal M other than Mn, and lithium to the reaction in the carbonate state. It is preferable to mix them by co-precipitating them as carbonates.

これは共沈させることによって、Mnの炭酸塩と遷移金
属Mの炭酸塩が均一に混合するからである。
This is because the Mn carbonate and the transition metal M carbonate are uniformly mixed by coprecipitation.

なお、上記のように共沈させる場合、得られる炭酸塩は
、特に厳しく管理された条件下でないかぎり、塩基性炭
酸塩となりやすい、それ故、本発明において炭酸塩とは
、塩基性炭酸塩をも含む概念である。
In addition, when co-precipitating as described above, the carbonate obtained tends to become a basic carbonate unless under particularly strictly controlled conditions. Therefore, in the present invention, carbonate refers to a basic carbonate. It is a concept that also includes

上記のようにMnと遷移金属Mとを水溶液中で炭酸塩と
して共沈させるには、例えばMnの水溶性塩(例えば、
Mnの塩化物)と遷移金属Mの水溶性塩(例えば、遷移
金属Mの塩化物)を炭酸ガスを飽和した純水に溶解し、
この溶液に例えばNaHco、やpJazcOsなどの
可溶性炭酸塩を加え、それらを反応させることによって
行われる。
In order to coprecipitate Mn and the transition metal M as a carbonate in an aqueous solution as described above, for example, a water-soluble salt of Mn (e.g.
chloride of Mn) and a water-soluble salt of transition metal M (for example, chloride of transition metal M) are dissolved in pure water saturated with carbon dioxide gas,
This is carried out by adding soluble carbonates such as NaHco and pJazcOs to this solution and reacting them.

加熱温度としては、800〜1200℃を採用するのが
好ましいが、これは800℃未満ではMnと遷移金属M
との固溶化が起こりにくく、一方、1200°Cを超え
るとLiの揮発による損失が多くなって定量的な反応生
成物が得られにくくなるからである。
It is preferable to adopt a heating temperature of 800 to 1200°C, but if it is lower than 800°C, Mn and transition metal M
On the other hand, if the temperature exceeds 1200°C, the loss due to Li volatilization increases, making it difficult to obtain a quantitative reaction product.

なお、Mnに添加するGoなどの遷移金属Mの量が多く
なると、反応は上記範囲内での温度の低い側でも確実に
実施できるようになる。
Note that when the amount of transition metal M such as Go added to Mn is increased, the reaction can be carried out reliably even at the lower temperature within the above range.

加熱後の冷却は、特に限定されるものではないが、急冷
による方が冷却の間での予定外の相分離(固溶化したも
のが分離する)が生じるおそれがないので好ましい。
Cooling after heating is not particularly limited, but rapid cooling is preferable because there is no risk of unexpected phase separation (separation of solid solution) during cooling.

本発明においては、得られるリチウムマンガン酸化物固
溶体をL i (M n l−y M y ) Ozで
示したが、(Mnl−yMy)部分が若干過剰になりL
iに対して等量販上(通常5%以下の範囲で)になる場
合もあるし、また、酸素欠陥が生じて03の部分が02
−δ、ツまりL i (M n 1−y My )02
−δ(δ≦0.3)になることもあるが、本発明におけ
る式(1)で示されるリチウムマンガン酸化物固溶体は
それらの場合も含むものである。
In the present invention, the obtained lithium manganese oxide solid solution is expressed as L i (Mnl-yMy) Oz, but the (Mnl-yMy) portion is slightly excessive and L
There are cases where the sales volume is equal to i (usually within a range of 5% or less), and oxygen defects occur and the 03 part becomes 02
−δ, Tsumari Li (M n 1-y My ) 02
-δ (δ≦0.3), and the lithium manganese oxide solid solution represented by formula (1) in the present invention includes such cases.

そして、本発明によって合成される式(1)で示される
リチウムマンガン酸化物固溶体は、リチウム電池の正極
活物質として用いた場合、電池電圧が3.9〜4.6 
V (L iが0〜1の範囲で変動するので、それに伴
って電池電圧も変動する)と二硫化チタンや二硫化モリ
ブデンなどの硫化物系活物質を用いた電池(通常、電池
電圧が3v以下)より高く、高エネルギー密度が期待で
きる。また、LiMnOxよりも、例えばL i(Mn
1−y Coy)0:では充放電時の分極が少なく、充
放電時の電池電圧の変化が小さくなるので、正極活物質
としてむしろ有用である。このように分極が小さくなる
のは、Coが固溶化することにより、Li+イオンの拡
散が速くなるためであると考えられる。
When the lithium manganese oxide solid solution represented by formula (1) synthesized according to the present invention is used as a positive electrode active material of a lithium battery, the battery voltage is 3.9 to 4.6.
V (as Li varies in the range of 0 to 1, the battery voltage also varies accordingly) and batteries using sulfide active materials such as titanium disulfide and molybdenum disulfide (usually, the battery voltage is 3 V). (below), and high energy density can be expected. In addition, for example, Li(Mn
1-y Coy)0: has little polarization during charging and discharging, and the change in battery voltage during charging and discharging is small, so it is rather useful as a positive electrode active material. The reason why the polarization becomes small in this way is considered to be because the diffusion of Li + ions becomes faster due to the formation of a solid solution of Co.

(実施例〕 つぎに実施例をあげて本発明をさらに詳細に説明する。(Example〕 Next, the present invention will be explained in more detail by giving examples.

実施例1 遷移金属としてCoを選び、Li(MnCO)Ox固溶
体を合成した。coとMnとのモル比は1o=90(つ
まり、Co/Mn−10/90(モル比))である。
Example 1 Co was selected as the transition metal, and a Li(MnCO)Ox solid solution was synthesized. The molar ratio of co and Mn is 1o=90 (that is, Co/Mn-10/90 (molar ratio)).

合成によって得られた固溶体を式(1)にしたがって表
示すると、L i(Mno、qCoo、+)Oxである
When the solid solution obtained by synthesis is expressed according to formula (1), it is Li(Mno, qCoo, +)Ox.

合成方法は次に示すとおりである。The synthesis method is as follows.

まず、MnとCoとがCo/Mn=10/90(モル比
)になる割合でMn Cl ・4 HiOとCOCl!
・6H,0を炭酸ガスを飽和した純水に溶解し、濃度4
重量%のN a HCOs水溶液を加え、2時間放置し
て、MnとCoを炭酸塩として共沈させて均一な混合物
とし、得られた沈澱物を濾過、水洗した後、アルゴン中
140℃で5日間乾燥した。
First, Mn Cl 4 HiO and COCl! in a ratio of Mn and Co such that Co/Mn=10/90 (molar ratio).
・Dissolve 6H,0 in pure water saturated with carbon dioxide gas to a concentration of 4
Aqueous NaHCOs solution of % by weight was added and left to stand for 2 hours to co-precipitate Mn and Co as carbonates to form a homogeneous mixture.The resulting precipitate was filtered, washed with water, and incubated at 140°C in argon for 5 hours. Dry for days.

つぎに、上記MnとCoとの共沈物とLi、CO8とを
モル比1:1の割合で混合し、空気中(Nglox−8
0/20)、1200℃で3時間加熱したのち、エア・
クエンチ(加熱したサンプルを25℃の大気中に取り出
し急冷する方法)することによって合成を行った。加熱
にあたって試料を収容するのに使用したボートはAlt
osを主成分とするものである。また、合成温度のみを
1000℃に変えて他は上記と同一条件下での合成も行
った。
Next, the coprecipitate of Mn and Co, Li, and CO8 were mixed at a molar ratio of 1:1, and the mixture was mixed in the air (Nglox-8
0/20), after heating at 1200℃ for 3 hours,
Synthesis was performed by quenching (a method in which a heated sample is taken out into the atmosphere at 25° C. and rapidly cooled). The boat used to house the sample during heating was Alt.
The main component is os. Further, synthesis was also carried out under the same conditions as above except that only the synthesis temperature was changed to 1000°C.

さらに、上記ではLigCOsを当量用いて合成を行っ
たが、加熱中におけるリチウムの揮発による損失を補う
ため、LiiCO8を1.5倍等量仕込んだ合成も行っ
た。
Further, in the above, synthesis was carried out using an equivalent amount of LigCOs, but in order to compensate for loss due to volatilization of lithium during heating, synthesis was also carried out using 1.5 times the equivalent amount of LiiCO8.

実施例2 Co/Mn比を30/70 (モル比)とした以外は、
実施例1と同様にしてL L (Mn Co)Ox固溶
体を合成した0合成された固溶体を式(りにしたがって
表示すると、L i (Mno、tCOo、1)Oxで
ある。
Example 2 Except that the Co/Mn ratio was 30/70 (molar ratio),
A L L (Mn Co)Ox solid solution was synthesized in the same manner as in Example 1. The synthesized solid solution is represented by the formula (L i (Mno, tCOo, 1)Ox).

実施例3 Co/Mn比を50150 (モル比)とした以外は、
実施例1と同様にしてLi(MnCo)O,固溶体を合
成した0合成された固溶体を式(1)にしたがって表示
すると、L i (Mna、sCoo、5)Oxである
Example 3 Except that the Co/Mn ratio was 50150 (molar ratio),
A Li(MnCo)O solid solution was synthesized in the same manner as in Example 1. When the synthesized solid solution is expressed according to formula (1), it is L i (Mna, sCoo, 5)Ox.

実施例4 Co/Mn比をTo/30 (モル比)とした以外は、
実施例1と同様にしてLi(MnCo)0!固溶体を合
成した0合成された固溶体を式(1)にしたがって表示
すると、L i(Mno、5COo、y)Otである。
Example 4 Except that the Co/Mn ratio was To/30 (molar ratio),
In the same manner as in Example 1, Li(MnCo)0! 0 Synthesized solid solution When the synthesized solid solution is expressed according to formula (1), it is L i (Mno, 5COo, y)Ot.

実施例5 Co/Mn比を80/20 (モル比)とした以外は、
実施例1と同様にしてLi(MnCo)O,固溶体を合
成した0合成された固溶体を式(りにしたがって表示す
ると、L i (Mno、iCOo、m)Oxである。
Example 5 Except that the Co/Mn ratio was 80/20 (molar ratio),
A Li(MnCo)O solid solution was synthesized in the same manner as in Example 1. When the synthesized solid solution is expressed according to the formula (R), it is L i (Mno, iCOo, m)Ox.

比較例I Coを固溶させずにCo/Mn比を0/100とした以
外は実施例1と同様にして合成を行った。
Comparative Example I Synthesis was carried out in the same manner as in Example 1 except that Co was not dissolved in solid solution and the Co/Mn ratio was set to 0/100.

比較例2 Coを100モル%とし、Co/Mn比を10010と
した以外は実施例1と同様にして合成を行った。
Comparative Example 2 Synthesis was carried out in the same manner as in Example 1 except that Co was 100 mol % and the Co/Mn ratio was 10010.

上記のように合成した実施例1〜5および比較例1〜2
の物質についてX線回折像を測定し、合成した物質の同
定を行った。測定は50kV、150mA、、Cuター
ゲットのX線源を用いて、4” /sinのスキャン速
度で2θ=7〜100°の範囲を測定することによって
行った。その結果を第1表に示す。
Examples 1 to 5 and Comparative Examples 1 to 2 synthesized as above
The synthesized substance was identified by measuring the X-ray diffraction image of the substance. The measurements were carried out using an X-ray source of 50 kV, 150 mA, and a Cu target in the range of 2θ=7 to 100° at a scan rate of 4"/sin. The results are shown in Table 1.

第1表に示すように、Coを添加しなかった比較例1 
(Co /M n =O/100)では、LiMn0.
なる物質は合成されず、LiMn、O,となり、Mnは
高い価数まで酸化されていた。
As shown in Table 1, Comparative Example 1 in which Co was not added
(Co /M n =O/100), LiMn0.
The substance was not synthesized and became LiMn, O, and Mn was oxidized to a high valence.

これに対し、Coを少量添加した実施例1(C。In contrast, Example 1 (C) in which a small amount of Co was added.

/ M n −10/90)では、Li(MnCo)O
s固溶体となり、Mnの価数は3価で高くならなかった
/Mn-10/90), Li(MnCo)O
s solid solution, and the valence of Mn was trivalent and did not become high.

以上のような結果から判断すると、固溶化してLL(M
nl−y Coy)OxとなるためのCoの下限量は、
Co /M n−0/100〜10/90の間であり、
少なくともCo/Mnを10/90(モル比)にしてお
けば、酸素雰囲気中でも、目的とする固溶体が得られる
と考えられる。
Judging from the above results, LL(M
The lower limit amount of Co to become nl-y Coy)Ox is:
Co/M n- is between 0/100 and 10/90,
It is believed that by setting Co/Mn to at least 10/90 (molar ratio), the desired solid solution can be obtained even in an oxygen atmosphere.

Coの添加量を増加した実施例2〜5では、いずれもL
i(Mn量1−yCoy)Otとなり、またCOを10
0モル%にした比較例2でも、L i C’o Osが
得られたことから、Mnが3価を保ち得るCOの添加量
の上限値は存在しないと考えられる。
In Examples 2 to 5, in which the amount of Co added was increased, L
i (Mn amount 1-yCoy) Ot, and CO 10
Since L i C'o Os was obtained even in Comparative Example 2 where the concentration was 0 mol %, it is considered that there is no upper limit for the amount of CO added that can maintain the trivalence of Mn.

なお、上記第1表に示す結果は、Li、CO,の仕込量
を多くして加熱中のLiの揮発による損失を補った時の
ものである。Li1COsを当量仕込んだ場合は、Co
/Mn比50150よりMn量の多い実施例1.2.3
では、LiMn、0.がわずかながら生じた。これは加
熱中にLiが揮発してしまうためと考えられる。したが
って、安定してLi(M n 1−y My )Ox系
の固溶体を得るには、Li。
The results shown in Table 1 above were obtained when the amounts of Li and CO were increased to compensate for the loss due to the volatilization of Li during heating. When an equivalent amount of Li1COs is charged, Co
Example 1.2.3 with higher Mn content than /Mn ratio 50150
Now, LiMn, 0. occurred to a small extent. This is considered to be because Li volatilizes during heating. Therefore, in order to stably obtain a Li(Mn1-yMy)Ox-based solid solution, Li.

COsを等量より過剰に用いるのが好ましいといえる。It can be said that it is preferable to use COs in excess of the equivalent amount.

また、Li、CO,が多くなっても反応上は特に弊害が
生じないと考えられる。
Further, even if Li and CO are increased, it is thought that no particular adverse effects will occur in terms of the reaction.

また、合成温度の下限値は明らかでないが、COがMn
より等量販上の実施例3〜5では、合成温度を800°
Cに下げても安定してLi(MnCo)0!固溶体を合
成することができた。
Also, although the lower limit of the synthesis temperature is not clear, CO
In Examples 3 to 5, where the volume is more equivalent, the synthesis temperature was set to 800°.
Li(MnCo) remains stable even when lowered to C! We were able to synthesize a solid solution.

つぎに、六方晶系に属するLi(MnCo)O□固溶体
の格子定数C6、allをそれぞれ(006)、(11
0)面のピーク値より算出した。その結果を第1図に示
す、これに使用した試料は合成温度1200℃で合成さ
れたものである。
Next, the lattice constants C6 and all of the Li(MnCo)O□ solid solution belonging to the hexagonal system are (006) and (11
Calculated from the peak value of 0) plane. The results are shown in FIG. 1. The sample used was synthesized at a synthesis temperature of 1200°C.

第1図に示すように、Co量の増加に伴ってC0、a、
はほぼ直線的に減少し、均一に固溶していく様子がわか
る。これは、Co3+のイオン半径がMn3+のイオン
半径に比べて0.05人程小さいことから定量的に説明
できる。
As shown in Fig. 1, as the amount of Co increases, C0, a,
It can be seen that the amount decreases almost linearly and becomes a uniform solid solution. This can be quantitatively explained because the ionic radius of Co3+ is smaller by about 0.05 people than the ionic radius of Mn3+.

以上、実施例では、第一遷移金属としてCoを用いて説
明したが、COに代えて、Ti、V、、Cr、Fe、N
iなどを用いてもよい。
In the above examples, Co was used as the first transition metal, but instead of CO, Ti, V, Cr, Fe, N
i, etc. may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、MnにCOなどの第
一遷移金属を固溶化させることにより、供給する酸素量
を限定しない開放された酸素雰囲気中での反応によって
、L L (Mn 1−y My )Oxで示されるす
“チウムマンガン酸化物固溶体を容易に合成することが
できるようになった。これによって従来LiMn0zを
合成するにあたって真空封管により供給する酸素量の制
限をしなければならなかったり、あるいは危険を伴った
などの問題が解決され、リチウム電池の正極活物質とし
てLi M n O!よりもむしろ有用なLiMnOx
類値化合物を容易に合成できるようになった。
As explained above, in the present invention, L L (Mn 1- It has become possible to easily synthesize a lithium manganese oxide solid solution represented by y My )Ox.As a result, when synthesizing LiMn0z, it was necessary to limit the amount of oxygen supplied using a vacuum sealed tube. LiMnOx, which is more useful than LiMnO! as a positive electrode active material for lithium batteries, solves problems such as lack of or danger.
Similar compounds can now be easily synthesized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により合成したLi(Mnl−yCo 
y)Ox系固溶体の格子定数all、cll値を示す図
である。
Figure 1 shows Li (Mnl-yCo) synthesized according to the present invention.
y) A diagram showing the lattice constants all and cll values of an Ox-based solid solution.

Claims (3)

【特許請求の範囲】[Claims] (1)マンガンの酸化物または加熱により酸化物になる
塩と、マンガン以外の第一遷移金属の酸化物または加熱
により酸化物になる塩と、リチウムの酸化物または加熱
により酸化物になる塩とを混合し、酸素供給量を制限し
ない開放された雰囲気で加熱して、式(I) Li(Mn_1_−_yM_y)O_2(I)(式中、
Mはマンガン以外の第一遷移金属であり、yは0.1以
上で1未満である) で示されるリチウムマンガン酸化物固溶体を合成するこ
とを特徴とするリチウムマンガン酸化物固溶体の合成法
(1) An oxide of manganese or a salt that becomes an oxide when heated, an oxide of a first transition metal other than manganese or a salt that becomes an oxide when heated, and an oxide of lithium or a salt that becomes an oxide when heated. are mixed and heated in an open atmosphere without restricting the amount of oxygen supplied to obtain the formula (I) Li(Mn_1_-_yM_y)O_2(I) (wherein,
M is a first transition metal other than manganese, and y is 0.1 or more and less than 1.
(2)上記の加熱により酸化物になる塩が炭酸塩である
特許請求の範囲第1項記載のリチウムマンガン酸化物固
溶体の合成法。
(2) The method for synthesizing a lithium manganese oxide solid solution according to claim 1, wherein the salt that becomes an oxide upon heating is a carbonate.
(3)式(I)中におけるMがコバルトである特許請求
の範囲第1項または第2項記載のリチウムマンガン酸化
物固溶体の合成法。
(3) The method for synthesizing a lithium manganese oxide solid solution according to claim 1 or 2, wherein M in formula (I) is cobalt.
JP62043550A 1987-02-25 1987-02-25 Synthesis method of lithium manganese oxide solid solution Expired - Lifetime JPH07112929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043550A JPH07112929B2 (en) 1987-02-25 1987-02-25 Synthesis method of lithium manganese oxide solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043550A JPH07112929B2 (en) 1987-02-25 1987-02-25 Synthesis method of lithium manganese oxide solid solution

Publications (2)

Publication Number Publication Date
JPS63210028A true JPS63210028A (en) 1988-08-31
JPH07112929B2 JPH07112929B2 (en) 1995-12-06

Family

ID=12666863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043550A Expired - Lifetime JPH07112929B2 (en) 1987-02-25 1987-02-25 Synthesis method of lithium manganese oxide solid solution

Country Status (1)

Country Link
JP (1) JPH07112929B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265061A (en) * 1988-08-30 1990-03-05 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH02199770A (en) * 1989-01-27 1990-08-08 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
EP0421421A1 (en) * 1989-10-06 1991-04-10 Matsushita Electric Industrial Co., Ltd. Non aqueous electrolyte secondary battery
JPH04267053A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JPH04282561A (en) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO1994022767A1 (en) * 1993-04-01 1994-10-13 Fuji Chemical Industry Co., Ltd. METHOD OF PRODUCTION OF LiM3+O2 OR LiMn2O4 AND LiNi3+O2 AS POSITIVE POLE MATERIAL OF SECONDARY CELL
JPH0837007A (en) * 1994-05-16 1996-02-06 Tosoh Corp Lithium-containing transition metal composite oxide, and its manufacture and use
US5700442A (en) * 1994-06-21 1997-12-23 Commissariat A L'energie Atomique Insertion compounds based on manganese oxide usable as the positive electrode active material in a lithium battery
WO2000030977A1 (en) * 1998-11-20 2000-06-02 Fmc Corporation Multiple doped lithium manganese oxide compounds and methods of preparing same
JP2009514180A (en) * 2005-11-15 2009-04-02 ザ ジレット カンパニー Primary lithium ion electrochemical cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265061A (en) * 1988-08-30 1990-03-05 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH02199770A (en) * 1989-01-27 1990-08-08 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
EP0421421A1 (en) * 1989-10-06 1991-04-10 Matsushita Electric Industrial Co., Ltd. Non aqueous electrolyte secondary battery
US5147738A (en) * 1989-10-06 1992-09-15 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JPH04267053A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JPH04282561A (en) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO1994022767A1 (en) * 1993-04-01 1994-10-13 Fuji Chemical Industry Co., Ltd. METHOD OF PRODUCTION OF LiM3+O2 OR LiMn2O4 AND LiNi3+O2 AS POSITIVE POLE MATERIAL OF SECONDARY CELL
US5648057A (en) * 1993-04-01 1997-07-15 Fuji Chemical Industry Co., Ltd. Process for producing LiM3+ O2 or LiMn2 O4 and LiNi+ O2 for use in positive electrode of secondary battery
JPH0837007A (en) * 1994-05-16 1996-02-06 Tosoh Corp Lithium-containing transition metal composite oxide, and its manufacture and use
US5700442A (en) * 1994-06-21 1997-12-23 Commissariat A L'energie Atomique Insertion compounds based on manganese oxide usable as the positive electrode active material in a lithium battery
WO2000030977A1 (en) * 1998-11-20 2000-06-02 Fmc Corporation Multiple doped lithium manganese oxide compounds and methods of preparing same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP2009514180A (en) * 2005-11-15 2009-04-02 ザ ジレット カンパニー Primary lithium ion electrochemical cell

Also Published As

Publication number Publication date
JPH07112929B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
US8021783B2 (en) Lithium manganese-based composite oxide and method for preparing the same
Choy et al. Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route
US5702679A (en) Method of preparing Li1+X- Mn2-X O4 for use as secondary battery
CN104335396B (en) Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
US8333950B2 (en) Process for the preparation of lithium metal oxides involving fluidized bed techniques
Thirunakaran et al. Adipic acid assisted, sol–gel route for synthesis of LiCrxMn2− xO4 cathode material
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
US5874058A (en) Method of preparing Li1+x MN2-x O4 for use as secondary battery electrode
JPS63210028A (en) Method for synthesizing lithium manganese oxide solid solution
JP6910697B2 (en) Manufacturing method of positive electrode active material
JPH1064516A (en) Lithium battery
JP4166347B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6826447B2 (en) Method for reducing the amount of residual lithium in the positive electrode active material particles
JP2021136096A (en) Positive electrode active material precursor for lithium ion secondary battery and manufacturing method thereof, and positive electrode active material for lithium ion secondary battery and manufacturing method thereof
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3042128B2 (en) Synthesis method of electrode material
JPH11189419A (en) Spinel manganese oxide or lithium secondary battery
Robertson et al. M 3+‐Modified LiMn2 O 4 Spinel Intercalation Cathodes: I. Admetal Effects on Morphology and Electrochemical Performance
JP4774661B2 (en) Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide
JP3914981B2 (en) Cubic rock salt type lithium ferrite oxide and method for producing the same
JPH082921A (en) Lithium-manganese double oxide, its production and use
JP2002003220A (en) Anode material for lithium ion secondary battery, anode and battery using it
JP2000169152A (en) Cobalt-coated lithium manganese double oxide and its production
JP2002338248A (en) Lamellar rock salt type lithium iron oxide and manufacturing method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term