JPS63206472A - Production of high-density thermally decomposed carbon film - Google Patents

Production of high-density thermally decomposed carbon film

Info

Publication number
JPS63206472A
JPS63206472A JP62040624A JP4062487A JPS63206472A JP S63206472 A JPS63206472 A JP S63206472A JP 62040624 A JP62040624 A JP 62040624A JP 4062487 A JP4062487 A JP 4062487A JP S63206472 A JPS63206472 A JP S63206472A
Authority
JP
Japan
Prior art keywords
base material
temperature
carbon film
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62040624A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Yasuhiro Aiba
康博 愛場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP62040624A priority Critical patent/JPS63206472A/en
Publication of JPS63206472A publication Critical patent/JPS63206472A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin thermally decomposed carbon film which is easily strippable from a base material by maintaining the base material and a gaseous mixture composed of hydrocarbon and nonoxidative gas respectively at specific temps. at the time of introducing the gaseous mixture into a furnace and depositing the thermally decomposed carbon film on the base material. CONSTITUTION:Gaseous nitrogen 5 is bubbled in benzene 6 to form a gaseous raw material (gaseous mixture) 7 contg. vapor phase hydrocarbon which is introduced into a reaction tube 3. The gaseous mixture 7 introduced into the reaction tube 3 deposits the thermally decomposed carbon on the base material 4 made of quartz and the tube wall and is then discharged in the form of an exhaust gas 8 via a soot trap 9. The base material 4 is placed on the down stream side of the gas flow direction and is heated to 850-1,100 deg.C by a heater 1 so that the gaseous mixture 7 passes the high-temp. side higher by >=50 deg.C than the temp. of the material 4 and flows on the material 4. The thermally cracked carbon film formed in such a manner does not adhere to the material 4 and is formed as a thin film sized about several mu.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度熱分解炭素フィルムの製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing high density pyrolytic carbon films.

(従来の技術) メタン、プロハン、ベンゼン、アセチレン等の炭化水素
を含むガスを1000〜2500℃に加熱した人造黒鉛
等の基材上に導入すると、密度が1.4〜2.2 g/
cm”程度の熱分解炭素が基材表面に析出する。特に2
000℃以上の高温では、容易に毎時数百μm程度の析
出速度を達成することが1950年代にパイログラファ
イトという商品名で上布されている。熱分解炭素の析出
速度は、ガス濃度、ガス流量、ガス圧力等の条件が同じ
であれば、当然基材温度が低い程小さくなる。基材温度
が約1500℃以上の場合は、ガス圧力が数Torrで
も析出速度は毎時数十μm程度以上を容易に達成できる
が、1ooo℃程度の低温になると、常圧下でも析出速
度は毎時数μm〜10μmして炭素フィルムとして用い
たシ、基材の表面被覆層として用いたり、あるいは炭素
繊維の編組品を基材として炭素繊維−炭素複合材をつく
るために用いたりするが、そのためには熱分解炭素の析
出速度は、実用的、な観点から少なくとも毎時数μm〜
10μm程度必要である。したがって、気相炭化水素の
熱分解による熱分解炭素の析出は。
(Prior art) When a gas containing hydrocarbons such as methane, prohane, benzene, and acetylene is introduced onto a substrate such as artificial graphite heated to 1000 to 2500°C, the density is 1.4 to 2.2 g/
cm” of pyrolytic carbon is precipitated on the surface of the substrate. In particular,
It was published in the 1950s under the trade name pyrographite that a precipitation rate of several hundred micrometers per hour can be easily achieved at high temperatures of 000° C. or higher. Naturally, the deposition rate of pyrolytic carbon decreases as the substrate temperature decreases, provided that conditions such as gas concentration, gas flow rate, and gas pressure are the same. When the substrate temperature is about 1500°C or higher, the deposition rate can easily reach several tens of micrometers per hour or more even at a gas pressure of several Torr, but at a low temperature of about 100°C, the deposition rate is only several tens of micrometers per hour even under normal pressure. A carbon film with a thickness of 10 μm to 10 μm can be used as a surface coating layer of a base material, or a carbon fiber braided product can be used as a base material to make a carbon fiber-carbon composite material. From a practical point of view, the precipitation rate of pyrolytic carbon is at least several μm per hour.
Approximately 10 μm is required. Therefore, the precipitation of pyrolytic carbon due to the pyrolysis of gas phase hydrocarbons.

一般に1000℃以上の領域が用いられている。Generally, a temperature range of 1000°C or higher is used.

ここで、1200℃程度以下の低温領域で得られる熱分
解炭素は、1800’C程度以上で得られるものと同様
に、黒鉛の理論密度! 26 g/am”に近い、 2
 g/an’以上の高密度になること、及び1500〜
1700℃程度の中温域で得られるものは1.4g/a
n”程度の低い密度になる傾向にあるととが知られてい
る(ジャーナル・オブ・ケミス1−17−−アンド−フ
ィジックス(J−Chim、 Phys 、)57、P
、815.1960)。したがって、1200℃程度以
下の低温で作成される熱分解炭素は、高温で作成される
ものに比べて結晶化度は劣るものの、炭素六員環面が基
材面とほぼ平行に配向しているという特質は同様のもの
であり、二次元的な構造は黒鉛単結晶に近いものである
。1200℃程度の低温で熱分解炭素のフィルムを製造
する方法が特公昭61−284号公報に示されている。
Here, pyrolytic carbon obtained at a low temperature of about 1200°C or lower has the same theoretical density as graphite, similar to that obtained at about 1800'C or higher. 26 g/am”, 2
g/an' or higher density, and 1500~
The amount obtained in the medium temperature range of around 1700℃ is 1.4g/a
It is known that the density tends to be as low as n'' (Journal of Chemistry 1-17--And-Phys.) 57, P.
, 815.1960). Therefore, although pyrolytic carbon produced at a low temperature of about 1200°C or less has a lower degree of crystallinity than that produced at a higher temperature, the six-membered carbon ring plane is oriented almost parallel to the substrate surface. These characteristics are similar, and the two-dimensional structure is close to that of single crystal graphite. A method for producing a pyrolytic carbon film at a low temperature of about 1200° C. is disclosed in Japanese Patent Publication No. 61-284.

(発明が解決しようとする問題点) しかしながら特公昭61−284号公報に示される炭素
フィルムの製造方法は、炭化水素を1150〜1250
℃で熱分解する工程と、析出した炭素フィルムを剥離す
る工程と、剥離した炭素フィルムを高温処理する工程と
から成り、フィルム方向のヤング率が20000kg/
am+’に及ぶような炭素フィルムの製造方法に関する
ものであるが。
(Problems to be Solved by the Invention) However, in the method for producing a carbon film disclosed in Japanese Patent Publication No. 61-284, hydrocarbons of 1,150 to 1,250
It consists of a process of thermally decomposing at ℃, a process of peeling off the precipitated carbon film, and a process of high temperature treatment of the peeled carbon film, and the Young's modulus in the film direction is 20,000 kg/
The present invention relates to a method for producing a carbon film of am+'.

1150〜1250℃に基材を加熱すると、以下に述べ
る理由から析出した炭素フィルムと基材の付着強度が大
きくなシ、シたがって例えば10μm程度の膜を破壊す
ることなしに基材から剥離することができなくなるとい
う問題点がある。
When the base material is heated to 1150 to 1250°C, the adhesion strength between the precipitated carbon film and the base material is high for the reasons described below, and therefore, for example, a film of about 10 μm can be peeled off from the base material without being destroyed. The problem is that it becomes impossible to do so.

熱分解炭素を、1150〜1250℃の基材上に析出さ
せる場合、基材としてはそのような温度でも安定な材料
を用いる必要があり、そのような材料としては、高融点
金属、黒鉛9石英ガラスまたはシリカ、アルミナ等のセ
ラミックスが考えられる。しかし、黒鉛や低密度のセラ
ミックス焼結体は多孔質であることから、熱分解炭素が
穴に入り込むことにより基材との付着強度が強くなって
剥離しにくくなるとともに9表面が平滑なフィルムを得
ることができないため、これらのものを基材として用い
るのは不適当である。したがって基材としては、高融点
金属もしくは石英ガラス等の多孔質でないものに限られ
るが9本質的に種々の金属はカーボンと反応してカーバ
イドを作り易いため、フィルムが汚染されることを考え
ると、金属も基材としては不適当である。結局9石英ガ
ラスが基材として好ましいことになるが0石英ガラスの
場合でも、およそ1100℃を越える高温では、熱分解
炭素の析出過程において、ガラスとの界面で何らかの化
学的反応がおこることが判明したものである。つまり、
全く平滑で穴もない石英ガラスを基材としても、10μ
m以下の薄膜を1100℃を越える温度で析出させた場
合3強固に接着したままはがれなくなってしまうのであ
る。
When pyrolytic carbon is deposited on a substrate at a temperature of 1150 to 1250°C, it is necessary to use a material that is stable even at such temperatures, such as high melting point metals, graphite 9 quartz, etc. Possible materials include glass or ceramics such as silica and alumina. However, since graphite and low-density ceramic sintered bodies are porous, pyrolytic carbon enters the pores, increasing the adhesion strength to the base material and making it difficult to peel off. Therefore, it is inappropriate to use these materials as a base material. Therefore, the base material is limited to non-porous materials such as high-melting point metals or quartz glass,9 but considering that various metals tend to react with carbon and form carbide, the film will be contaminated. , metals are also unsuitable as substrates. In the end, it turns out that 9 quartz glass is preferable as a base material, but even in the case of 0 quartz glass, it has been found that at high temperatures exceeding approximately 1100°C, some kind of chemical reaction occurs at the interface with the glass during the precipitation process of pyrolytic carbon. This is what I did. In other words,
Even if the base material is completely smooth quartz glass with no holes, the thickness of 10μ
If a thin film with a thickness of 3 m or less is deposited at a temperature exceeding 1100° C., it will remain firmly adhered and cannot be peeled off.

本発明は上記した欠点を解消し、1100℃以下の温度
で高密度熱分解炭素フィルムの製造法を提供することを
目的とする。
The present invention aims to overcome the above-mentioned drawbacks and provide a method for producing high-density pyrolytic carbon films at temperatures below 1100°C.

(問題点を解決するための手段) 本発明者らは、基材温度を低下させると同時に。(Means for solving problems) We simultaneously lowered the substrate temperature.

少なくとも毎時数μm以上の析出速度を達成できるよう
な方法について検討を重ねた結果9本発明に至った。
As a result of repeated studies on a method that can achieve a deposition rate of at least several micrometers per hour or more, the present invention has been arrived at.

本発明は、炭化水素及び非酸化性ガスからなる混合ガス
を炉内に導入し、炉内に配置された基材上に熱分解炭素
フィルムを析出する方法において。
The present invention provides a method for introducing a mixed gas consisting of a hydrocarbon and a non-oxidizing gas into a furnace and depositing a pyrolytic carbon film on a substrate placed in the furnace.

前記基材の温度を850〜1100℃に保ち、前記混合
ガスを基材の温度よ、Q50℃以上高い炉の領域を通過
させたのち、基材上に導く高密度熱分解炭素フィルムの
製造法に関する。
A method for producing a high-density pyrolytic carbon film, in which the temperature of the base material is maintained at 850 to 1100 °C, and the mixed gas is passed through a region of a furnace that is higher than the temperature of the base material by Q50 °C or more, and then introduced onto the base material. Regarding.

本発明において、熱分解により熱分解炭素を析出させる
原料として用いる炭化水素はメタン、ブaパン、ベンゼ
ン、アセチレン等の公知のものであシ、特に制限はない
がベンゼンがよシ低温で熱分解炭素を析出するので好ま
しい。非酸化性ガスはHe+ Ar、 N4 + Hz
等である。混合ガスは例えば窒素ガスをベンゼン液中に
バブリングさせて得る。熱分解炭素を析出させてフィル
ムを得る一連の反応を行う炉は、ニクロム線、カンタル
線等を用いた通常の抵抗加熱式炉で良く、空気雰囲気と
しゃ断して気相状炭化水素及び非酸化性ガスの混合ガス
を導入することができる耐熱容器を有するものである。
In the present invention, the hydrocarbon used as a raw material to precipitate pyrolytic carbon by thermal decomposition may be a known hydrocarbon such as methane, butane, benzene, acetylene, etc. Although there is no particular limitation, benzene is preferable for thermal decomposition at low temperatures. This is preferable because it precipitates carbon. Non-oxidizing gases are He + Ar, N4 + Hz
etc. The mixed gas is obtained, for example, by bubbling nitrogen gas into a benzene liquid. The furnace that performs the series of reactions to precipitate pyrolytic carbon and obtain a film may be a normal resistance heating furnace using nichrome wire, Kanthal wire, etc. It has a heat-resistant container into which a mixed gas of reactive gases can be introduced.

通常、熱分解炭素の析出に限らず。Usually, but not limited to the precipitation of pyrolytic carbon.

Si等のCVD(化学気相蒸着)においても、基材は炉
内の均熱部分に置かれ、基材近傍の炉内温度を一定に保
つことに注意が払われる。しかし1本発明においては、
炉内をガスの流れ方向に温度差を設ける。即ち、ガスの
流れ方向に対して基材を下流側に配置して基材の温度を
850〜1100℃に保ち、導入ガスは、基材温度より
50℃以上高く基材の上流側に位置する領域を通過して
から基材上に達するようにする。同様の効果を生み出す
ため、電気炉を2個以上直列に接続し、基材が配置され
ているガスの流れ方向に対して下流側の電気炉を850
〜1100℃に保ち、ガスの流れ方向に対して上流側の
電気炉の温度を基材の温度より50℃以上高くする方法
を用いてもよい。
Even in CVD (chemical vapor deposition) of Si, etc., the substrate is placed in a soaking area in the furnace, and care is taken to keep the temperature in the furnace near the substrate constant. However, in the present invention,
A temperature difference is provided in the direction of gas flow inside the furnace. That is, the base material is placed downstream with respect to the gas flow direction, and the temperature of the base material is maintained at 850 to 1100°C, and the introduced gas is located upstream of the base material, at least 50°C higher than the base material temperature. area and then onto the substrate. In order to produce a similar effect, two or more electric furnaces are connected in series, and the electric furnace on the downstream side in the gas flow direction where the base material is placed is
A method may be used in which the temperature of the electric furnace on the upstream side with respect to the gas flow direction is maintained at 1100° C. to 50° C. or more higher than the temperature of the base material.

基材の温度が850℃未満であると熱分解炭素の析出速
度が小さく、1100℃を越えると熱分解炭素フィルム
の基材からの剥離が困難となる。
If the temperature of the substrate is less than 850°C, the precipitation rate of pyrolytic carbon will be low, and if it exceeds 1100°C, it will be difficult to separate the pyrolytic carbon film from the substrate.

また混合ガスが通過する炉の領域の温度は基材の温度よ
り50℃以上高くしないと炭化水素の気相中での分解が
不充分となる。
Further, unless the temperature of the region of the furnace through which the mixed gas passes is higher than the temperature of the substrate by 50° C. or more, the decomposition of hydrocarbons in the gas phase will be insufficient.

(作用) 熱分解炭素は、気相中での炭化水素の分解9重合過程、
基材への拡散過程、基材表面上での脱水素9重合反応過
程により生成するとされているが。
(Function) Pyrolytic carbon is produced by the decomposition9 polymerization process of hydrocarbons in the gas phase,
It is said that it is produced by the process of diffusion into the base material and the dehydrogenation and polymerization reaction process on the surface of the base material.

約1400℃程度以下の低温で熱分解炭素が生成する場
合は、上記した一連の過程のうち、気相中での炭化水素
の分解反応速度が相対的に最も遅く。
When pyrolytic carbon is generated at a low temperature of about 1400° C. or lower, the decomposition reaction rate of hydrocarbons in the gas phase is relatively the slowest among the series of processes described above.

したがって律速段階になるとみなされる。つまり。Therefore, it is considered to be the rate-limiting step. In other words.

従来の手法では基材の温度が毎時数μm程度のフィルム
を形成することができないような低温に保たれていても
2本発明のごとく炭化水素を基材温度よシラ0℃以上高
温の雰囲気に適当な時間さらしてやる手法をとることに
よシ、気相中での炭化水素の分解反応が促進され、結果
として基材温度を低下させることができるのである。
In conventional methods, the temperature of the substrate is kept at such a low temperature that it is not possible to form a film of several micrometers per hour.However, as in the present invention, hydrocarbons are kept in an atmosphere at a temperature higher than the substrate temperature by 0°C or higher. By exposing the material for an appropriate period of time, the decomposition reaction of hydrocarbons in the gas phase is promoted, and as a result, the temperature of the substrate can be lowered.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例1 第1図は本発明の一実施例における高密度熱分解炭素フ
ィルムの製法を説明する図である。図において1は抵抗
加熱式の電気炉、2は断熱材、3はアルミナ製の反応管
であシ、4は表面に熱分解炭素を析出させた後、フィル
ム状にはがすための石英製の基材である。本実施例にお
いては原料炭化水素としてぺ/セン6を用いておシ、窒
素ガス5をバブリングさせて気相炭化水素含有原料ガス
(混合ガス)7として反応管3内に導入した。炉内に導
入されたガスは、基材上及び炉壁に熱分解炭素を析出し
た後、スート等の副生物を含む排気ガス8となってスー
トトラップ9を介した後に排出される。
Example 1 FIG. 1 is a diagram illustrating a method for producing a high-density pyrolytic carbon film in an example of the present invention. In the figure, 1 is a resistance heating electric furnace, 2 is a heat insulating material, 3 is an alumina reaction tube, and 4 is a quartz base to be peeled off into a film after depositing pyrolytic carbon on the surface. It is a material. In this example, P/C 6 was used as the raw material hydrocarbon, and nitrogen gas 5 was bubbled and introduced into the reaction tube 3 as a gas phase hydrocarbon-containing raw material gas (mixed gas) 7. The gas introduced into the furnace precipitates pyrolytic carbon on the substrate and the furnace wall, and then becomes exhaust gas 8 containing by-products such as soot, which is then discharged through a soot trap 9.

上記において、ベンゼンを10体積チ含む混合ガスを毎
分II!(このとき炉内の流速は毎分40cm)で導入
して反応を行った。破線で示した部分が炉内で最高温度
に保持される高温領域であるが。
In the above, a mixed gas containing 10 volumes of benzene is mixed every minute! (At this time, the flow rate in the furnace was 40 cm per minute) to conduct the reaction. The part indicated by the broken line is the high temperature area that is maintained at the highest temperature in the furnace.

基材4はその高温領域よシガス流方向に対して下流側に
置いて、高温領域より50℃以上低温になるようにした
。第1表に、基材を下流側に移動することにより、基材
平均温度が高温領域より50”c、ioo℃、200℃
低くなるようKした場合の基材上における析出速度を示
しだ。また、比較として、基材を高温領域に置いた場合
の析出速度も併記した。
The base material 4 was placed on the downstream side of the high temperature region in the gas flow direction, so that the temperature was 50° C. or more lower than the high temperature region. Table 1 shows that by moving the substrate to the downstream side, the average temperature of the substrate is 50"C, ioo℃, and 200℃ from the high temperature area.
The figure shows the precipitation rate on the substrate when the K is lowered. For comparison, the precipitation rate when the base material is placed in a high temperature region is also shown.

本実施例により、実用的な析出速度の範囲内で。According to this example, within the range of practical precipitation rates.

基材温度を低下させることができることが明らかである
。なお2本実施例のように基材温度1100℃以下で得
られた熱分解炭素フィルムは基材と強固に接着しておら
ず、基材から容易に剥離することができた。特に基材温
度1000℃以下の場合では、数μm厚程度の薄膜でも
きれいに剥離することができた。尚基材温度1000℃
の場合におけるフィルムの密度は! 15 g/cm’
であった。
It is clear that the substrate temperature can be lowered. Note that the pyrolytic carbon film obtained at a substrate temperature of 1100° C. or lower as in the second example did not adhere firmly to the substrate and could be easily peeled off from the substrate. In particular, when the substrate temperature was 1000° C. or lower, even a thin film of several μm thick could be peeled off cleanly. Base material temperature: 1000℃
The density of the film in the case of ! 15 g/cm'
Met.

第1表 実施例2 実施例1におけるような温度勾配を、同一炉内の位置の
差によるのではなく、第2図に示すように互いに独立に
制御できる2つの電気炉を直列に並べることによシ達成
して、実験を行った。基材12は気相炭化水素含有原料
ガス10の流れ方向に対して下流側の電気炉14内に配
置され、この電気炉の温度は上流側の電気炉13より5
0℃以上低温に保つようにした。尚1図において11は
排気ガス、15は断熱材である。ガス流量等の条件を実
施例1と同様にして、電気炉13の温度を1100℃、
電気炉14の温度を900℃としたところ、析出速度は
およそ毎時20μm程度となった。なお、基材よシ剥離
したフィルムの密度は2.11〜Z 17 a/cm’
程度であった。
Table 1 Example 2 The temperature gradient was not controlled by the difference in position within the same furnace as in Example 1, but by arranging two electric furnaces in series that could control each other independently as shown in Figure 2. I achieved this goal and conducted an experiment. The base material 12 is placed in an electric furnace 14 on the downstream side with respect to the flow direction of the gas-phase hydrocarbon-containing raw material gas 10, and the temperature of this electric furnace is 5% higher than that of the electric furnace 13 on the upstream side.
It was kept at a low temperature of 0°C or higher. In FIG. 1, 11 is exhaust gas and 15 is a heat insulating material. The conditions such as gas flow rate were the same as in Example 1, and the temperature of the electric furnace 13 was 1100°C.
When the temperature of the electric furnace 14 was set to 900° C., the deposition rate was approximately 20 μm/hour. The density of the film peeled off from the base material is 2.11 to Z 17 a/cm'
It was about.

(発明の効果) 本発明によれば、従来の方法では基材と反応して接着し
てしまうような1100℃を越える温度でしか得られな
かった熱分解炭素フィルムを、基材と接着せず、剥離可
能な温度で得ることができるため、数μm程度の薄いフ
ィルムを容易に得ることが可能となるわ
(Effects of the Invention) According to the present invention, a pyrolytic carbon film that could only be obtained at a temperature exceeding 1100°C, which would react with and adhere to the base material using conventional methods, can be produced without adhering to the base material. Since it can be obtained at a temperature that allows it to be peeled off, it becomes possible to easily obtain a thin film of several micrometers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は1本発明の実施例における高密度熱
分解炭素フィルムの製造法を説明する図である。 符号の説明 1・・・電気炉     2・・・断熱材3・・・反応
管     4・・・基材5・・・窒素      6
・・・ベンゼン7・・・気相炭化水素含有原料ガス 8・・・排気ガス    9・・・スートトラップ10
・・・気相炭化水素含有原料ガス 11・・・排ガス     12・・・基材13・・・
電気炉    14・・・電気炉15・・・断熱材 代理人 弁理士 若 林 邦 彦   、l  1支 
民ズr Δ へン宅′ン 第 2 図 手続補正書(自発)
FIGS. 1 and 2 are diagrams illustrating a method for producing a high-density pyrolytic carbon film in an embodiment of the present invention. Explanation of symbols 1...Electric furnace 2...Insulating material 3...Reaction tube 4...Base material 5...Nitrogen 6
... Benzene 7 ... Gas-phase hydrocarbon-containing raw material gas 8 ... Exhaust gas 9 ... Soot trap 10
... Gas phase hydrocarbon-containing raw material gas 11 ... Exhaust gas 12 ... Base material 13 ...
Electric furnace 14...Electric furnace 15...Insulation material agent Patent attorney Kunihiko Wakabayashi, l 1 branch
2nd figure procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 1、炭化水素及び非酸化性ガスからなる混合ガスを炉内
に導入し、炉内に配置された基材上に熱分解炭素フィル
ムを析出する方法において、前記基材の温度を850〜
1100℃に保ち、前記混合ガスを基材の温度より50
℃以上高い炉の領域を通過させたのち、基材上に導くこ
とを特徴とする高密度熱分解炭素フィルムの製造法。
1. In a method in which a mixed gas consisting of a hydrocarbon and a non-oxidizing gas is introduced into a furnace and a pyrolytic carbon film is deposited on a substrate placed in the furnace, the temperature of the substrate is set to 850-850°C.
The temperature of the mixed gas is maintained at 1100°C, and the temperature is 50°C below the temperature of the base material.
1. A method for producing a high-density pyrolytic carbon film, which comprises passing it through a region of a furnace at a temperature of at least 0.degree. C. and then introducing it onto a substrate.
JP62040624A 1987-02-24 1987-02-24 Production of high-density thermally decomposed carbon film Pending JPS63206472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040624A JPS63206472A (en) 1987-02-24 1987-02-24 Production of high-density thermally decomposed carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040624A JPS63206472A (en) 1987-02-24 1987-02-24 Production of high-density thermally decomposed carbon film

Publications (1)

Publication Number Publication Date
JPS63206472A true JPS63206472A (en) 1988-08-25

Family

ID=12585691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040624A Pending JPS63206472A (en) 1987-02-24 1987-02-24 Production of high-density thermally decomposed carbon film

Country Status (1)

Country Link
JP (1) JPS63206472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146680A (en) * 1989-10-31 1991-06-21 Ibiden Co Ltd Electrode plate for plasma etching
EP0557281A1 (en) * 1990-05-24 1993-09-01 Houston Area Research Center Halogen-assisted chemical vapor deposition of diamond
RU2778283C1 (en) * 2021-10-26 2022-08-17 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Device and method for the manufacture of microwave absorbers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146680A (en) * 1989-10-31 1991-06-21 Ibiden Co Ltd Electrode plate for plasma etching
EP0557281A1 (en) * 1990-05-24 1993-09-01 Houston Area Research Center Halogen-assisted chemical vapor deposition of diamond
RU2778283C1 (en) * 2021-10-26 2022-08-17 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Device and method for the manufacture of microwave absorbers

Similar Documents

Publication Publication Date Title
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
EP0201696B1 (en) Production of carbon films
Schmidt et al. Low temperature diamond growth using fluorinated hydrocarbons
US3783007A (en) Metal carbonitrile coatings
JPS63206472A (en) Production of high-density thermally decomposed carbon film
JPS59152299A (en) Gas-phase production of carbon fiber
JPS61124572A (en) Chemical vapor deposition method
US5571561A (en) Coated filaments
US20050019567A1 (en) Process for producing silicon carbide fibrils and product
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
KR890016220A (en) How to join diamond and diamond
JPS60252721A (en) Production of carbon fiber
JPH0578977A (en) Production of surface-coated carbon fiber
JPH0340920A (en) Production of thin zirconia film
JPS634069A (en) Production of thermally decomposed graphite
JPS59162149A (en) Method for applying silicon carbide film to surface of quartz glass
JPS63476A (en) Production of thermally decomposed isotropic carbon
Blocher Jr Chemical vapor deposition for surface conditioning: Opportunities and cautions
JPS63118070A (en) Production of pyrolytic carbon
Scheiffarth et al. Increasing high temperature oxidation and corrosion resistance of graphite and carbon-fiber-reinforced carbon by deposition of a low pressure chemically vapor-deposited silicon carbide coating
JPS61243176A (en) Method for cvd treatment
JPH04327265A (en) Production of surface-coated carbon fiber
JPS6350343A (en) Heating element for spinning
JP2002128580A (en) METHOD FOR MANUFACTURING HIGH-PURITY SiC-COATED CARBON SUBSTANCE