JPS59152299A - Gas-phase production of carbon fiber - Google Patents

Gas-phase production of carbon fiber

Info

Publication number
JPS59152299A
JPS59152299A JP58024788A JP2478883A JPS59152299A JP S59152299 A JPS59152299 A JP S59152299A JP 58024788 A JP58024788 A JP 58024788A JP 2478883 A JP2478883 A JP 2478883A JP S59152299 A JPS59152299 A JP S59152299A
Authority
JP
Japan
Prior art keywords
gas
hydrocarbon
carbon fiber
carrier gas
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024788A
Other languages
Japanese (ja)
Inventor
Morinobu Endo
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58024788A priority Critical patent/JPS59152299A/en
Publication of JPS59152299A publication Critical patent/JPS59152299A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements

Abstract

PURPOSE:In the production of carbon fibers using a mixed gas of hydrocarbons with a carrier gas containing a reductive gas, the water content of the mixed gas is specified to increase the yield of carbon fiber in the practical-scale production. CONSTITUTION:In the production of carbon fiber by the gas-phase process where the hydrocarbon is sent with a carrier gas and pyrolyzed, the water content of the mixed gas is controlled to less than 0.3vol%. As hydrocarbon, benzene or methane is used, while, as the carrier gas, a reductive gas for reducing the catalyst, preferably hydrogen, and an inert gas for diluting the reductive gas, preferably argon where the volume ratio of the inert gas/the hydrogen is about (30-70)/(0-100) are used. The content of the hydrocarbon in the mixed gas is about 1-60vol%. Thus, carbon fibers of high strength and uniform diameter and length are obtained.

Description

【発明の詳細な説明】 本発明は炭化水素の熱分解による気相法炭素繊維の製造
方法に関するものである。更にくわしくは、炭化水素、
とキャリヤガスとの混合ガス中の炭化水素を熱分解して
炭素繊維を製造する、いわゆる、気相法による炭素繊維
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing vapor-grown carbon fiber by thermal decomposition of hydrocarbons. More specifically, hydrocarbons,
The present invention relates to a method for producing carbon fibers by a so-called vapor phase method, in which carbon fibers are produced by thermally decomposing hydrocarbons in a mixed gas of a carrier gas and a carrier gas.

気相法による炭素繊維の一般的製造方法は、特公昭41
−12091号公報によって知られている。
The general method for manufacturing carbon fiber using the vapor phase method is
It is known from the publication No.-12091.

この気相法による炭素繊維は、有機繊維の炭化によって
製造された周知の炭素繊維に比べて、結晶欠陥が極めて
少々く、その為に引張シ強度、弾性率ともに著しく高い
繊維物性なもつという特色がある。
The carbon fiber produced by this vapor phase method has extremely few crystal defects compared to the well-known carbon fiber produced by carbonizing organic fibers, and therefore has extremely high fiber physical properties in both tensile strength and elastic modulus. There is.

しかしながら、かかる優れた繊維物性をもつ炭素繊維を
工業的に利用するには、いくつかの問題があり、特に工
業的々規模での収率の向上が要求される。本発明者等は
この問題を解決するため、研究を行ない本発明に到達し
た。すなわち、炭化水素ガスと触媒を還元する還元性の
ガスを含む′キャリヤガスとの混合ガスから炭素繊維を
製造する方法において、混合ガスに含まれる水分全0.
3容量チ以下とする事を特徴とする炭素繊維の製造方法
に関するもので′ある。
However, there are several problems in industrially utilizing carbon fibers having such excellent fiber physical properties, and in particular, it is required to improve the yield on an industrial scale. In order to solve this problem, the present inventors conducted research and arrived at the present invention. That is, in a method for manufacturing carbon fiber from a mixed gas of a hydrocarbon gas and a carrier gas containing a reducing gas for reducing a catalyst, the total amount of water contained in the mixed gas is 0.
The present invention relates to a method for manufacturing carbon fiber characterized by having a capacity of 3 or less.

本発明では、炭化水素とキャリヤガスとの混合ガス中に
含まれる水分を0.3容量チ以下にする事が必要である
。さらに詳細に言えば、混合ガスに含まれる水分には、
キャリヤガスに含まれる水分と炭化水素に含まれる水分
があり、両者に含有される水分率の総和を0.3容量チ
以下にする事が必要である。当該水分率の測定は、キャ
リヤガス及び炭化水素に含有される水分率を一緒に、あ
るいは、別々に測定しても良い。キャリヤガス及び炭化
水素が気体の場合は混合ガスとして、反応装置(炉)を
出た位置で一緒に、例えば露点計を用いて露点を実測し
、その温度の飽和水蒸気量よυ水分率を求める事で測定
できる。一方、炭化水素が液体の場合はキャリヤガスと
別々に測定する。キャリヤガスに含まれる水分率は、例
えば上記した露点計により反応装置を出た位置で、バブ
ラーを通さずに測定しうる。炭化水素溶液中の水分率は
例えばカールフィッシャー試薬を用いた定電圧分極電流
滴定法によって測定した値を用いて次の様に計算するこ
とができる。バブラーを用いて炭化水素溶液の蒸気をキ
ャリヤーさせて行く場合は、その時の温度における分圧
に従って水分が供給されて行く故に、ラウール(Rao
ult)の分圧の法則に従って計算する。すなわち、 p=xo−po+xH−p、(p :その炭化水素゛P
H:その炭化水素 q:キャリヤガスによって同伴    溶液温度でのさ
れていく炭化水素蒸気中    水0飽和蒸気の水分量
           圧 子量 MH:水の分子量 Wo:炭化水素溶液 中の純炭化水 素重量% WH:炭化水素溶液 中の水分重量 % 3− かくして、キャリヤガスに含有される水分率と上式よシ
求められるキャリヤされていく炭化水素の水分率qを合
計する事で、混合ガスとしての水分率が求まる。ここで
言う炭化水素には、ベンゼン、トルエン、メタン、エタ
ン等多くのものが使用できる。
In the present invention, it is necessary to reduce the water content in the mixed gas of hydrocarbon and carrier gas to 0.3 volume or less. More specifically, the moisture contained in the mixed gas is
There is moisture contained in the carrier gas and moisture contained in the hydrocarbon, and it is necessary to keep the total moisture content of both of them to 0.3 by volume or less. The moisture content may be measured by measuring the moisture content contained in the carrier gas and the hydrocarbon together or separately. If the carrier gas and hydrocarbon are gases, measure the dew point together at the point where they exit the reactor (furnace) using a dew point meter, and calculate the υ moisture content from the saturated water vapor amount at that temperature. It can be measured by On the other hand, if the hydrocarbon is a liquid, it is measured separately from the carrier gas. The moisture content of the carrier gas can be measured, for example, by the dew point meter described above at the point where it exits the reactor, without passing through a bubbler. The moisture content in a hydrocarbon solution can be calculated as follows using, for example, a value measured by constant voltage polarization amperometric titration using a Karl Fischer reagent. When using a bubbler to carry the vapor of a hydrocarbon solution, water is supplied according to the partial pressure at the temperature at that time, so Raoul (Raoul)
Calculate according to the partial pressure law of ult). That is, p=xo-po+xH-p, (p: the hydrocarbon ゛P
H: The hydrocarbon q: Water content of saturated steam with no water in the hydrocarbon vapor entrained by the carrier gas at the solution temperature Indenter weight MH: Molecular weight of water Wo: Weight % of pure hydrocarbons in the hydrocarbon solution WH: Weight % of water in the hydrocarbon solution 3- Thus, by summing the water percentage contained in the carrier gas and the water percentage q of the hydrocarbons being carried as determined by the above formula, the water percentage as a mixed gas is Seek. Many hydrocarbons can be used here, such as benzene, toluene, methane, and ethane.

ここでいうキャリヤガスとは、触媒を還元するための還
元性のガスとそれを希釈するだめの不活性ガスよシなる
。触媒については後述するが、非常に粒径が小さい為に
通常表面に酸化被膜が形成されている。この被膜を還元
して除くために還元性のガスが必要であると考えられ、
不活性ガスのみでは繊維は生成しない。還元性のガスと
しては、水素ガスが最も好ま・しく用いられる。不活性
ガスとしては、たとえば第V族N2あるいは第0族Ar
The carrier gas here includes a reducing gas for reducing the catalyst and an inert gas for diluting it. The catalyst will be described later, but since the particle size is very small, an oxide film is usually formed on the surface. It is thought that a reducing gas is necessary to reduce and remove this film.
Inert gas alone does not produce fibers. As the reducing gas, hydrogen gas is most preferably used. Examples of the inert gas include Group V N2 or Group 0 Ar.
.

He + Ne 、 Kr 、 Xs r Rn等が用
いられる。また、キャリヤガス組成としては、不活性ガ
ス/水素ガスの組成比が容量比で30/70〜O/10
0である事が好ましい。キャリヤガスに不活性ガスを混
入する事は安全上及びコストの点で有利である。
He + Ne, Kr, Xs r Rn, etc. are used. In addition, as for the carrier gas composition, the composition ratio of inert gas/hydrogen gas is 30/70 to O/10 in terms of volume ratio.
Preferably it is 0. Mixing an inert gas into the carrier gas is advantageous in terms of safety and cost.

4一 本発明で用いる炭化水素とキャリヤガスとの混合ガス中
に含まれる水分は、0.3容量チ以下にする事によって
、特に収率の上できわめて臨界的である事を発見した。
41 It has been discovered that the moisture contained in the mixed gas of hydrocarbon and carrier gas used in the present invention is extremely critical, particularly in terms of yield, by reducing the amount of water to 0.3% by volume or less.

さらに、繊維の強度も高く、繊維の径及び長さの均質な
ものが得られる事が分かった。
Furthermore, it was found that the strength of the fibers was high and that fibers with uniform diameter and length could be obtained.

通常、混合ガス中の炭化水素の含有率は約1〜60容量
チが適当である。
Usually, the content of hydrocarbons in the mixed gas is suitably about 1 to 60 volumes.

キャリヤガス中の水分率を当該容量分率にする方法とし
ては、ツクラジウム膜にて濾過する方法、あるいは、加
熱白金石綿上で酸素を除いた後に、液体窒素等で冷却し
たトラップ中を通す等の一般に採用されている方法が用
いられ、特にその方法に制限されるものではない。
The moisture content in the carrier gas can be adjusted to the relevant volume fraction by filtration with a Tsucladium membrane, or by removing oxygen on heated platinum asbestos and passing it through a trap cooled with liquid nitrogen, etc. A commonly used method may be used, and the method is not particularly limited.

また、炭化水素中の水分率を低下せしめる方法としては
、用いる炭化水素が液体の場合、例えば予じめ蒸留して
純度をあげた後に、さらに金属ナトリウムを入れる方法
などが採用でき、炭化水素が気体の場合には、例えば、
液体窒素等で冷却したトラップ中を通すなどの方法が用
いられる。また、上記のように別々に行なうのでなく、
両者に不活性な、例えばゼオライトの如き物質に接触せ
しめて同時に除いてもよい。
In addition, as a method for reducing the moisture content in hydrocarbons, when the hydrocarbons used are liquids, for example, after increasing the purity by distillation in advance, metal sodium can be added to the hydrocarbons. In the case of gas, for example,
A method such as passing through a trap cooled with liquid nitrogen or the like is used. Also, instead of doing it separately as above,
Both may be removed at the same time by contacting with an inert substance such as zeolite.

炭化水素とキャリヤガスを混合ガスとする方法としては
、炭化水素が液体である場合は炭化水素を適当な温度に
調節する事によって、その蒸気をキャリヤガスと混合し
て割合を調節し、反応装置に導入する方法が通常とられ
る。一方、炭化水素が気体である場合は、炭化水素ガス
の流量を調節する事でキャリヤガスとの混合割合を調節
する方法が用いられる。これらの方法以外にいかなる方
法を用いて実施してもよい。
The method of making a mixed gas of hydrocarbon and carrier gas is to adjust the temperature of the hydrocarbon to an appropriate temperature when the hydrocarbon is a liquid, mix the vapor with the carrier gas, adjust the ratio, and add it to the reactor. The usual method is to introduce On the other hand, when the hydrocarbon is a gas, a method is used in which the mixing ratio with the carrier gas is adjusted by adjusting the flow rate of the hydrocarbon gas. Any method other than these methods may be used.

本発明の方法を用いて、炭素繊維を製造する方法を説明
する。
A method for manufacturing carbon fiber using the method of the present invention will be explained.

炭素繊維は炉芯管8内に設けられた基板10上に発生さ
せるのが気相法における通常の方法である。耐熱性のあ
る金属超微粒子を該基板10上に、例えば、アルコール
などの揮発性の分散媒に懸濁させ、スプレー等によシ散
布し、乾燥する。
A common method in the gas phase method is to generate carbon fibers on a substrate 10 provided in a furnace core tube 8. Heat-resistant ultrafine metal particles are suspended on the substrate 10 in a volatile dispersion medium such as alcohol, dispersed by spraying, etc., and dried.

上記金属超微粒子は具体的には、Tt + Zr等の周
期律表の第4a族、V 、 Nb等の第5a族、Cr 
+ M。
Specifically, the above-mentioned ultrafine metal particles include Group 4a of the periodic table such as Tt + Zr, Group 5a of the periodic table such as V, Nb, and Cr.
+M.

等の第6a族、Mn等の第78族、Fe 、 Co等の
第8族の元素及びそれを含む合金が適し、特に望ましい
のは第5a族、第8族の元素及びそれを含む合金である
。また、該微粒子の粒径は通常、1μ以下、好ましくは
300X以下であり、一般には100〜300Xのもの
が用いられる。
Group 6a elements such as Mn, group 78 elements such as Mn, group 8 elements such as Fe and Co, and alloys containing them are suitable, and particularly desirable are elements of group 5a and 8 and alloys containing them. be. Further, the particle size of the fine particles is usually 1 μm or less, preferably 300X or less, and those of 100 to 300X are generally used.

上記の基板を珀いて炭素繊維を製造するには、図に記載
の基板10を炉芯管8内に挿入し、これに炭化水素ガス
をキャリヤガスとともに流し、炉芯管8内の基板IOを
所定の温度に上げる。
In order to manufacture carbon fiber by combining the above substrates, the substrate 10 shown in the figure is inserted into the furnace core tube 8, and hydrocarbon gas is flowed therein together with the carrier gas, so that the substrate IO in the furnace core tube 8 is Raise to the specified temperature.

炉芯管8は一般にコランダム質、石英質等のものが適す
る。基板10は例えば、セラミック質のものも使用可能
であるが、黒鉛が最も好ましい。
The furnace core tube 8 is generally made of corundum, quartz, or the like. For example, the substrate 10 may be made of ceramic, but graphite is most preferable.

加熱温度は一般には950〜1300℃の範囲で選ばれ
る。この範囲で、メタン等低分子の炭化水素の場合は高
目の温度、すなわち1200〜1300℃、脂肪族高分
子および芳香族炭化水素ではやや低目の温度、すなわち
950〜1200℃が最も適する。
The heating temperature is generally selected within the range of 950 to 1300°C. Within this range, a higher temperature, i.e., 1200-1300°C, is most suitable for low-molecular hydrocarbons such as methane, and a slightly lower temperature, i.e., 950-1200°C, is most suitable for aliphatic polymers and aromatic hydrocarbons.

気相法による炭素繊維の形成は、まずある一定7− の長さになるまで、長さ方向の成長が起こシ、引続いて
太さ方向の成長が別々に起こる。炭素繊維の形態的成長
、即ち長さ方向の成長と太さ方向の成長は、温度、流速
等によって変わる。温度をやや低く、例えば、ベンゼン
の場合950〜1050℃では長さ方向の成長が起こり
、太さ約0.1μm以下の細い繊維しか得られないが、
温度を1050〜1300℃とすると繊維の直径が0.
1μm以上となるに至る太さの成長が起こる。また、こ
の繊維形成過程はガスの流速を調節する事によっても変
える事ができる。混合ガスの流速は一般的には5〜15
0aし’min (炉芯管断面平均)の範囲で用いられ
るが、細い繊維の形成はこれよりさらに速い流速下で行
なう事もできる。細い繊維の長さ方向の成長は1〜10
cm/hr程度であるので、目的とする繊維の長さを考
慮して成長の保持時間を選定する。
In forming carbon fibers by the vapor phase method, growth in the length direction occurs first until a certain length is reached, and then growth in the thickness direction occurs separately. The morphological growth of carbon fibers, that is, the growth in the length direction and the thickness direction, changes depending on temperature, flow rate, etc. At a slightly lower temperature, for example, in the case of benzene, 950 to 1050°C, growth occurs in the length direction and only thin fibers with a thickness of about 0.1 μm or less can be obtained.
When the temperature is 1050 to 1300°C, the diameter of the fiber is 0.
Growth occurs to a thickness of 1 μm or more. This fiber formation process can also be changed by adjusting the gas flow rate. The flow rate of the mixed gas is generally 5 to 15
Although a flow rate of 0amin (average cross-section of the furnace core tube) is used, thin fibers can be formed at a flow rate even higher than this. Longitudinal growth of thin fibers is 1 to 10
cm/hr, so the growth retention time is selected in consideration of the desired fiber length.

また、繊維の太さも太さ成長過程の保持時間や炭化水素
分圧を調節すれば、はとんど任意に再現性・ よくコン
トロールできる。
Furthermore, the thickness of the fibers can be easily controlled with almost any reproducibility by adjusting the holding time and hydrocarbon partial pressure during the thickness growth process.

上記の気相法による炭素繊維の製造方法におい8− て、本発明技術を用いる事は高収率をもたらすだけでな
く、高強度の繊維が多量に得られる。以下実施例および
比較例にて説明する。
In the above-mentioned method for producing carbon fibers by the vapor phase method, the use of the technology of the present invention not only results in a high yield, but also allows a large amount of high-strength fibers to be obtained. This will be explained below using Examples and Comparative Examples.

実施例1〜2および比較例1〜3 図に示される如き、電気管状炉9にアルミナ質炉芯管8
(内径60m5+長さ1000朋)を水平に置いた。炉
芯管内には、粒径300Xの鉄超微約(真空冶金製)を
高純度エチルアルコールに懸濁させてFe量として0.
1mgを全体にスプレーした、人造黒鉛基板(幅50 
mlI*長さ300mt+厚さ5朋)を置いた。
Examples 1-2 and Comparative Examples 1-3 As shown in the figure, an alumina furnace core tube 8 was installed in an electric tubular furnace 9.
(inner diameter 60m5 + length 1000m) was placed horizontally. In the furnace core tube, ultrafine iron particles (manufactured by Vacuum Metallurgy) with a particle size of 300X are suspended in high purity ethyl alcohol, and the amount of Fe is 0.
Artificial graphite substrate (width 50mm) sprayed with 1mg
mlI*length 300m+thickness 5m) was placed.

炉芯管8の一端にはガス導入管3を、他端には排出管1
1をシールゴム栓7を通して接続した。
A gas inlet pipe 3 is connected to one end of the furnace core tube 8, and a discharge pipe 1 is connected to the other end of the furnace core tube 8.
1 was connected through the seal rubber stopper 7.

さらに、切換コック2を開いて、ベンゼンのバブラー4
に第−表に掲げられる如き水分率を有する水素ガスを1
50 CC/ min (常温)流した。ベンゼン5は
金属ナトリウムを投入し、含有される水分率は1.33
 X 10−’容量チであった。
Furthermore, open the switching cock 2 and use the benzene bubbler 4.
Hydrogen gas having a moisture content as listed in Table 1 is
The flow rate was 50 CC/min (at room temperature). For benzene 5, metal sodium is added, and the moisture content is 1.33.
X 10-'capacity was.

炉温は1080℃に保ち、バブラー中のベンゼン5の温
度を恒温槽6の温度にて設定することによってベンゼン
蒸気を5容量チ、管1より送られてくる水素ガスと共に
供給し、60分間保持した。
The furnace temperature was maintained at 1080°C, and by setting the temperature of benzene 5 in the bubbler at the temperature of constant temperature bath 6, 5 volumes of benzene vapor were supplied together with hydrogen gas sent from tube 1, and held for 60 minutes. did.

その後、ベンゼン蒸気を含む水素ガスを止めて不活性ガ
スに切替えて、冷却して基板を取出し、生成した炭素繊
維を基板からはぎとり秤量した。
Thereafter, the hydrogen gas containing benzene vapor was stopped and switched to inert gas, cooled and the substrate was taken out, and the produced carbon fibers were peeled off from the substrate and weighed.

第−表に供給炭化水素の量、その他の条件を一定にして
水素ガスに含まれる水分量とその時の炭素繊維の生成量
と供給ベンゼン量に対する収率及び単糸の強度を示す。
Table 1 shows the amount of water contained in hydrogen gas, the amount of carbon fiber produced at that time, the yield and the strength of the single yarn with respect to the amount of benzene fed, while keeping the amount of hydrocarbons supplied and other conditions constant.

単糸の強度は直径5〜20μmの単糸について糸長4m
mz引張速K 1 mm / mi nにて測定した。
The strength of single yarn is 4 m long for a single yarn with a diameter of 5 to 20 μm.
It was measured at mz tensile speed K 1 mm/min.

(第−表) 実施例3〜6および比較例4〜6 水素ガスおよびアルゴンガスの総流量を250cC/m
 i nとし、炉温を1160℃に保ち、1時間保持し
た以外はすべて実施例2に示される条件で行なった。
(Table) Examples 3 to 6 and Comparative Examples 4 to 6 Total flow rate of hydrogen gas and argon gas was 250 cC/m
All experiments were carried out under the conditions shown in Example 2, except that the furnace temperature was kept at 1160° C. for 1 hour.

第二衣に水素ガスとアルゴンガスの混合割合を変化させ
た時の炭素繊維の生成量及び供給ベンゼン量に対する繊
維の収率を示す。
The amount of carbon fiber produced and the yield of fiber with respect to the amount of benzene supplied are shown when the mixing ratio of hydrogen gas and argon gas is changed in the second coat.

(第二衣)(Second coat)

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施するための装置の一例を示す模
式図である。以下に図中で示される記号について説明す
る。 1・・・ギヤ12ヤガス、不活性ガス導入口、2・・・
切替コック、3・・・ガス導入管、4・・・バブラー、
5・・・炭化水素(ベンゼン)、6・・・恒温槽、7・
・・栓、8・・・炉芯管、9・・・電気炉、10・・・
基板、11・・・ガス排出管 特許出願人 遠 藤 守 信 小山恒夫 手続補正書(自発) 昭和59年2月29日 特許庁長官若杉和夫殿 1、事件の表示 昭和58年 特許願 第24788号 2、発明の名称 気相法による炭素繊維の製造方法 3、補正をする者 事件との関係 特許出願人 住所 長野県須坂市北原町615番地 氏名    遠   藤   守   信住所 東京都
港区赤坂4丁目3番1号 明細書の発明の詳細な説明の欄 6、補正の内容 別紙の通り 補正の内容(特願昭58−24788 )明細書の発明
の詳細な説明の欄を次の通り補正する。 (1)明細書第11頁、第1行の「5容量チ」を「7容
量チ」に補正する。 (2)明細書第11頁、第7行の「水素ガス」を「混合
ガス」に補正する。 (3)明細書第11頁、第一表中の項目「水素ガス中の
水分率」を「混合ガス中の水分率」と補正する。 (4)明細書第11頁、第一表中比較例1の収率の欄の
「9」を「1」に補正する。 (5)明細書第11頁、第一表中比較例2の収率の欄の
「9以下」を「1以下」に補正する。 (6)  明細書第12頁、第3行のF CC/ mu
とし、」の次に「ベンゼン蒸気を1容量チの分圧で供給
し、」を挿入する。 1−
The figure is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention. The symbols shown in the figures will be explained below. 1... Gear 12 Yagas, inert gas inlet, 2...
Switching cock, 3... Gas introduction pipe, 4... Bubbler,
5...Hydrocarbon (benzene), 6...Thermostat, 7.
...Plug, 8... Furnace core tube, 9... Electric furnace, 10...
Substrate, 11... Gas exhaust pipe patent applicant Mamoru Endo Nobu Tsuneo Koyama Procedural amendment (voluntary) February 29, 1980 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Indication of the case 1982 Patent Application No. 24788 2. Name of the invention Method for manufacturing carbon fiber by vapor phase method 3. Relationship with the amended case Patent applicant address 615 Kitahara-cho, Suzaka-shi, Nagano Name Nobu Endo Address 4-3 Akasaka, Minato-ku, Tokyo Column 6 of Detailed Description of the Invention in Specification No. 1, Contents of Amendment (Japanese Patent Application No. 58-24788) The Detailed Description of Invention column of the specification is amended as follows. (1) Correct "5 capacity CH" in the first line of page 11 of the specification to "7 capacity CH". (2) "Hydrogen gas" on page 11, line 7 of the specification is corrected to "mixed gas." (3) The item "Moisture content in hydrogen gas" in Table 1 on page 11 of the specification is corrected to "Moisture content in mixed gas." (4) "9" in the yield column for Comparative Example 1 in Table 1 on page 11 of the specification is corrected to "1". (5) "9 or less" in the yield column of Comparative Example 2 in Table 1 on page 11 of the specification is corrected to "1 or less." (6) FCC/mu on page 12 of the specification, line 3
After "and," insert "benzene vapor is supplied at a partial pressure of 1 volume." 1-

Claims (3)

【特許請求の範囲】[Claims] (1)炭化水素ガスと触媒を還元する還元性のガスを含
むキャリヤガスとの混合ガスから炭素繊維を製造する方
法において、混合ガスに含まれる水分を0.3容量チ以
下とする事を特徴とする炭素繊維の製造方法。
(1) A method for producing carbon fiber from a mixed gas of a hydrocarbon gas and a carrier gas containing a reducing gas that reduces a catalyst, characterized in that the water contained in the mixed gas is 0.3 volumetric or less. A method for producing carbon fiber.
(2)  キャリヤガスが水素ガスと不活性ガスの混合
物である事を特徴とする特許請求の範囲第一項記載の炭
素繊維の製造方法。
(2) The method for producing carbon fibers according to claim 1, wherein the carrier gas is a mixture of hydrogen gas and inert gas.
(3)水素ガスと不活性ガスの混合ガスの容量組成比が
、不活性ガス/水素ガス=30/70〜0/100であ
る事を特徴とする特許請求の範囲第二項記載の炭素繊維
の製造方法。
(3) The carbon fiber according to claim 2, wherein the volume composition ratio of the mixed gas of hydrogen gas and inert gas is inert gas/hydrogen gas = 30/70 to 0/100. manufacturing method.
JP58024788A 1983-02-18 1983-02-18 Gas-phase production of carbon fiber Pending JPS59152299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024788A JPS59152299A (en) 1983-02-18 1983-02-18 Gas-phase production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024788A JPS59152299A (en) 1983-02-18 1983-02-18 Gas-phase production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS59152299A true JPS59152299A (en) 1984-08-30

Family

ID=12147919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024788A Pending JPS59152299A (en) 1983-02-18 1983-02-18 Gas-phase production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59152299A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
WO1989007163A1 (en) * 1988-01-28 1989-08-10 Hyperion Catalysis International Carbon fibrils
WO1991005089A1 (en) * 1989-09-28 1991-04-18 Hyperion Catalysis International, Inc. Battery
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US5171560A (en) * 1984-12-06 1992-12-15 Hyperion Catalysis International Carbon fibrils, method for producing same, and encapsulated catalyst
US5304326A (en) * 1989-04-19 1994-04-19 Hyperion Catalysis International, Inc. Thermoplastic elastomer compounds
US5456897A (en) * 1989-09-28 1995-10-10 Hyperlon Catalysis Int'l., Inc. Fibril aggregates and method for making same
US5707916A (en) * 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
JP2006117516A (en) * 2004-09-22 2006-05-11 Nagoya Institute Of Technology Vapor phase method for producing carbon nanotube

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707916A (en) * 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US5650370A (en) * 1984-12-06 1997-07-22 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and adhesive compositions containing same
US6235674B1 (en) 1984-12-06 2001-05-22 Hyperion Catalysis International Carbon fibrils, methods for producing same and adhesive compositions containing same
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US5171560A (en) * 1984-12-06 1992-12-15 Hyperion Catalysis International Carbon fibrils, method for producing same, and encapsulated catalyst
US5877110A (en) * 1984-12-06 1999-03-02 Hyperion Catalysis International, Inc. Carbon fibrils
US5578543A (en) * 1984-12-06 1996-11-26 Hyperion Catalysis Int'l, Inc. Carbon fibrils, method for producing same and adhesive compositions containing same
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
WO1989007163A1 (en) * 1988-01-28 1989-08-10 Hyperion Catalysis International Carbon fibrils
US5304326A (en) * 1989-04-19 1994-04-19 Hyperion Catalysis International, Inc. Thermoplastic elastomer compounds
US5456897A (en) * 1989-09-28 1995-10-10 Hyperlon Catalysis Int'l., Inc. Fibril aggregates and method for making same
US5726116A (en) * 1989-09-28 1998-03-10 Hyperion Catalysis International, Inc. Fibril aggregates and method for making same
WO1991005089A1 (en) * 1989-09-28 1991-04-18 Hyperion Catalysis International, Inc. Battery
US6358878B1 (en) 1989-09-28 2002-03-19 Hyperion Catalysis International, Inc. Carbon fibril-forming metal catalysts
JP2006117516A (en) * 2004-09-22 2006-05-11 Nagoya Institute Of Technology Vapor phase method for producing carbon nanotube

Similar Documents

Publication Publication Date Title
US4911781A (en) VLS Fiber growth process
US4391787A (en) Method for growing graphite fibers
JPS59152299A (en) Gas-phase production of carbon fiber
JPS63211368A (en) Method for coating carbon fiber with carbide and carbon fiber coated with carbide
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process
US5160574A (en) Process for production of small diameter titanium carbide whiskers
US5041305A (en) Process for depositing a silicon carbide coating on a filament
US4289801A (en) Method for producing fine grained pyrolytic silicon nitride
US3125416A (en) Method for producing high purity monocrystalline
CA2267970A1 (en) Apparatus and method for reducing breakage of fibers drawn from blanks
JPS59152298A (en) New production process for carbon fiber
JPH02296799A (en) Method for growing silicon carbide
JP3093836B2 (en) Diamond film fabrication method
JPS60252721A (en) Production of carbon fiber
JPS60260497A (en) Preparation of silicon carbide whisker
SU685718A1 (en) Method of preparing plating based on tungsten and molybdenum
JPS5927906A (en) Film- or fiber-form conductive polymer and its production
Narasimhan et al. Effect of chemical vapor deposition process parameters on the growth aspects of titanium carbide whiskers
JPH03153549A (en) Production of optical fiber coated with carbon
JPS62238826A (en) Production of carbon fiber
JPH0459632A (en) Production of nitrogen-containing synthetic quartz glass member
RU2111164C1 (en) Method of preparing sulfur
JPS62202809A (en) Production of thermally decomposed graphite
JPH01246196A (en) Production of diamond film
JPS63206472A (en) Production of high-density thermally decomposed carbon film