JPH04327265A - Production of surface-coated carbon fiber - Google Patents

Production of surface-coated carbon fiber

Info

Publication number
JPH04327265A
JPH04327265A JP3125188A JP12518891A JPH04327265A JP H04327265 A JPH04327265 A JP H04327265A JP 3125188 A JP3125188 A JP 3125188A JP 12518891 A JP12518891 A JP 12518891A JP H04327265 A JPH04327265 A JP H04327265A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
coating layer
carbon fibers
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3125188A
Other languages
Japanese (ja)
Inventor
Jiyunichirou Hakojima
箱島 順一郎
Toshihiko Hanada
花田 敏彦
Keizo Tsukamoto
恵三 塚本
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP3125188A priority Critical patent/JPH04327265A/en
Publication of JPH04327265A publication Critical patent/JPH04327265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the carbon fiber without causing peeling in the interface between fiber and a metallic carbide and cracking in the coating layer by reacting a metallic vapor with carbon on the surface of carbon fiber and coating the surface of the fiber with the above-mentioned metallic carbide. CONSTITUTION:A metallic vapor such as preferably Si, Ti or Cr is reacted with carbon fiber in a crucible made of carbon to form a coating layer of a carbide (e.g. SiC) of the aforementioned metal on the surface of the carbon fiber. Thereby, the objective carbon fiber coated with the metallic carbide without causing peeling in the interface between the carbon fiber and the metallic carbide and cracking in the coating layer is obtained. The resultant carbon fiber is suitable as members, etc., such as engine members requiring high strength at high temperatures.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、表面被覆炭素繊維の製
造方法に関し、詳細には、金属炭化物で表面を被覆した
表面被覆炭素繊維の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing surface-coated carbon fibers, and more particularly to a method for producing surface-coated carbon fibers whose surfaces are coated with metal carbide.

【0002】0002

【従来の技術】炭素繊維は、1000℃以上の高温にお
いて、高弾性、高強度等の優れた物理的性質を有するこ
とが知られている。そして、この炭素繊維とセラミック
スとの複合体は、例えばエンジン部材のように、高温で
高強度が要求される部材への応用が期待されている。と
ころで、上記炭素繊維は、大気中で焼失することから、
これを防止し、耐酸化性を付与するために、従来CVD
によりSiCなどで炭素繊維表面を被覆して使用されて
いた。
BACKGROUND OF THE INVENTION Carbon fibers are known to have excellent physical properties such as high elasticity and strength at high temperatures of 1000° C. or higher. This composite of carbon fiber and ceramics is expected to be applied to components that require high strength at high temperatures, such as engine components. By the way, since the carbon fibers mentioned above are burned out in the atmosphere,
In order to prevent this and provide oxidation resistance, conventional CVD
The surface of the carbon fiber was coated with SiC or the like.

【0003】0003

【発明が解決しようとする課題】しかしながら、CVD
により生成するSiCを炭素繊維に被覆させる従来手段
では、炭素繊維とSiCとの界面で剥離が生じ、また、
SiC被覆層に亀裂が入るという欠点が存在した。
[Problem to be solved by the invention] However, CVD
In the conventional means of coating carbon fibers with SiC produced by
There was a drawback that cracks appeared in the SiC coating layer.

【0004】そこで、本発明者等は、耐酸化性に優れた
炭素繊維を得るための炭素繊維表面被覆手段について、
鋭意研究した結果、本発明を完成したものであって、本
発明は、CVDによる従来の炭素繊維被覆手段に伴う上
記欠点を解消することを技術的課題とし、金属炭化物被
覆層が剥離せず、また、該被覆層に亀裂が生じない表面
被覆炭素繊維の製造方法を提供することを目的とする。
[0004] Therefore, the present inventors have developed a carbon fiber surface coating means for obtaining carbon fibers with excellent oxidation resistance.
As a result of intensive research, the present invention was completed, and the technical object of the present invention is to eliminate the above-mentioned drawbacks associated with conventional carbon fiber coating means by CVD, and the metal carbide coating layer does not peel off. Another object of the present invention is to provide a method for producing surface-coated carbon fibers in which cracks do not occur in the coating layer.

【0005】[0005]

【課題を解決するための手段】そして、本発明は、上記
目的を達成する手段として、金属蒸気と炭素繊維とを該
炭素繊維表面で反応させる被覆手段を採用する点を特徴
とし、これによって、金属炭化物被覆層を炭素繊維表面
に形成させるものである。即ち、本発明は、金属蒸気と
炭素繊維とを該炭素繊維表面で反応させ、この炭素繊維
表面に金属炭化物被覆層を形成することを特徴とする表
面被覆炭素繊維の製造方法である。
[Means for Solving the Problems] The present invention is characterized in that, as a means for achieving the above-mentioned object, it employs a coating means that reacts metal vapor and carbon fibers on the surface of the carbon fibers. A metal carbide coating layer is formed on the carbon fiber surface. That is, the present invention is a method for producing a surface-coated carbon fiber, which is characterized in that metal vapor and carbon fiber are reacted on the surface of the carbon fiber to form a metal carbide coating layer on the surface of the carbon fiber.

【0006】本発明において、使用する炭素繊維は、特
に限定されるものではなく、ピッチ系、パン系のいずれ
をも用いることができる。また、本発明における金属蒸
気は、炭素と反応して金属炭化物を形成し、高温での耐
酸化性に優れた金属炭化物となるものから選ばれる。こ
れを例示すれば、SiC、TiC、Cr3C2などが挙
げられる。とりわけ、SiCは、耐酸化性に優れ、炭素
との熱膨張率が近いことから、最も好ましい。
[0006] In the present invention, the carbon fiber used is not particularly limited, and either pitch type or bread type can be used. Further, the metal vapor in the present invention is selected from those that react with carbon to form a metal carbide and become a metal carbide with excellent oxidation resistance at high temperatures. Examples of this include SiC, TiC, and Cr3C2. In particular, SiC is most preferred because it has excellent oxidation resistance and has a coefficient of thermal expansion close to that of carbon.

【0007】使用する炭素繊維の径及び被覆層(被覆膜
)の厚さは、本発明において、特に限定するものではな
いが、直径φ10μmの炭素繊維を使用し、被覆膜厚さ
が2μm以下とするのが好ましい。これは、本発明の被
覆手段は、金属と炭素繊維自身との反応により行なうも
のであるため、生成する被覆膜厚さが2μmを越えると
炭素繊維が細くなってしまい、炭素繊維の特性が十分発
揮されなくなるからである。また、炭素繊維との反応に
より炭化物被膜が形成されるため、被覆層表面付近は、
完全に金属炭化物が形成されるが、被覆層内部では、金
属炭化物と炭素の複合物が形成される。この金属炭化物
と炭素との割合は、炭素繊維の内部に近ずくにつれ、炭
素が徐々に増え、いわゆる傾斜機能構造が得られる。
The diameter of the carbon fibers used and the thickness of the coating layer (coating film) are not particularly limited in the present invention, but carbon fibers with a diameter of 10 μm are used and the thickness of the coating layer is 2 μm. The following is preferable. This is because the coating means of the present invention is carried out by a reaction between the metal and the carbon fibers themselves, so if the thickness of the coating film that is produced exceeds 2 μm, the carbon fibers will become thinner and the characteristics of the carbon fibers will deteriorate. This is because they will not be able to demonstrate their full potential. In addition, since a carbide film is formed due to the reaction with carbon fibers, the area near the surface of the coating layer is
Although metal carbide is completely formed, a composite of metal carbide and carbon is formed inside the coating layer. The ratio of this metal carbide to carbon gradually increases as it approaches the inside of the carbon fiber, resulting in a so-called functionally graded structure.

【0008】金属蒸気は、その金属と反応しない雰囲気
中で、その金属の融点以上に加熱することにより得られ
る。例えば、Siでは1420℃以上、Tiでは167
5℃以上、Crでは1890℃以上の温度で、アルゴン
雰囲気中で加熱することにより得られる。反応させる時
間は、金属材質と温度とにより、適宜設定することがで
きる。
[0008] Metal vapor is obtained by heating the metal to a temperature higher than its melting point in an atmosphere that does not react with the metal. For example, for Si it is 1420℃ or more, for Ti it is 167℃
It is obtained by heating in an argon atmosphere at a temperature of 5° C. or higher, or 1890° C. or higher for Cr. The reaction time can be appropriately set depending on the metal material and temperature.

【0009】表面被覆炭素繊維の製造方法としては、例
えばSiCで炭素繊維表面を被覆する場合、まず、Si
C製のるつぼ等に金属Siを入れる。次に、SiC製る
つぼ等の上に、穴のあいたSiC製等の分散板を被せ、
この上に炭素繊維を載置する。これらをそっくり、蓋付
炭素製るつぼに入れ、アルゴン雰囲気下で1420℃以
上に加熱する。また、本発明においては、流動層加熱反
応装置を使用し、炭素繊維を流動化させて、加熱、反応
させることもできる。
As a method for manufacturing surface-coated carbon fibers, for example, when coating the surface of carbon fibers with SiC, first, SiC is coated with SiC.
Put metal Si into a crucible etc. made of C. Next, a dispersion plate made of SiC or the like with holes is placed on top of the SiC crucible, etc.
Carbon fibers are placed on top of this. All of these are placed in a carbon crucible with a lid and heated to 1420° C. or higher under an argon atmosphere. Further, in the present invention, a fluidized bed heating reaction apparatus can be used to fluidize the carbon fibers and heat and react them.

【0010】0010

【作用】本発明は、以上詳記したように、炭素繊維の表
面を金属炭化物で被覆する際、金属蒸気と該炭素繊維の
表面の炭素とを反応させ、この炭素繊維の表面に金属炭
化物を生じさせ、被覆させるものであり、これによって
、いわゆる傾斜機能構造となり、炭素繊維と金属炭化物
との界面に剥離がなく、被覆層に亀裂が無い金属炭化物
被覆炭素繊維の製造が可能となる作用が生ずる。
[Function] As described in detail above, when coating the surface of carbon fiber with metal carbide, the metal vapor and carbon on the surface of the carbon fiber are reacted, and the metal carbide is coated on the surface of the carbon fiber. This creates a so-called functionally graded structure, which enables the production of metal carbide-coated carbon fibers without peeling at the interface between the carbon fiber and metal carbide and without cracks in the coating layer. arise.

【0011】[0011]

【実施例】以下、本発明の実施例1、2を比較例と共に
挙げ、本発明をより詳細に説明する。
EXAMPLES The present invention will be explained in more detail below by referring to Examples 1 and 2 of the present invention together with comparative examples.

【0012】(実施例1)SiC製のるつぼにSi金属
粉末(山石金属(株)製HiSi No.600S)5
gを入れ、SiC製の分散板を被せ、その上に炭素繊維
(直径φ10μm)5gを置いた。これらをそっくり蓋
付炭素製るつぼに入れ、1800℃で3時間熱処理をし
た。このように処理した表面被覆炭素繊維は、エックス
線回析によりグラファイトとSiCより成っていた。ま
た、被覆層の厚さは、約0.5μmであり、そして、こ
の被覆層に亀裂がなく、被覆層と炭素繊維の界面に剥離
が生じていないことを確認した。
(Example 1) Si metal powder (HiSi No. 600S manufactured by Yamaishi Metal Co., Ltd.) 5 was placed in a SiC crucible.
A SiC dispersion plate was placed on top of the dispersion plate, and 5 g of carbon fiber (diameter φ10 μm) was placed on top of the dispersion plate made of SiC. These were placed in a carbon crucible with a lid and heat treated at 1800°C for 3 hours. The thus treated surface-coated carbon fibers were found to be composed of graphite and SiC by X-ray diffraction. Further, the thickness of the coating layer was approximately 0.5 μm, and it was confirmed that there were no cracks in the coating layer and that no peeling occurred at the interface between the coating layer and the carbon fibers.

【0013】(実施例2)SiC製のるつぼにTi金属
粉末(関東化学社製)5gを入れ、SiC製の分散板を
被せ、その上に炭素繊維(直径φ10μm)5gを置い
た。これらをそっくり蓋付炭素製るつぼに入れ、185
0℃で3時間熱処理をした。このように処理した炭素繊
維は、エックス線回析によりグラファイトとTiCより
成っていた。また、被覆層の厚さは、0.5μmであり
、そして、この被覆層に亀裂がなく、被覆層と炭素繊維
の界面に剥離が生じていないことを確認した。
(Example 2) 5 g of Ti metal powder (manufactured by Kanto Kagaku Co., Ltd.) was placed in a SiC crucible, covered with a SiC dispersion plate, and 5 g of carbon fiber (diameter φ10 μm) was placed on top of the dispersion plate. Place all of these in a carbon crucible with a lid, and
Heat treatment was performed at 0°C for 3 hours. The thus treated carbon fibers were found to be composed of graphite and TiC by X-ray diffraction. The thickness of the coating layer was 0.5 μm, and it was confirmed that there were no cracks in the coating layer and that no peeling occurred at the interface between the coating layer and the carbon fibers.

【0014】(比較例)炭素繊維(直径φ10μm)の
表面をCVD(Si源:SiCI4,C源:C3H8、
1250℃、2時間)によりSiCで被覆した。得られ
た炭素繊維は、エックス線回析によりグラファイトとS
iCより成っていた。また、この表面被覆炭素繊維の表
面被覆層には亀裂が生じていた。
(Comparative example) The surface of carbon fiber (diameter 10 μm) was coated by CVD (Si source: SiCI4, C source: C3H8,
1250° C. for 2 hours) to coat with SiC. The obtained carbon fibers were found to contain graphite and S by X-ray diffraction.
It consisted of iC. In addition, cracks were found in the surface coating layer of this surface-coated carbon fiber.

【0015】[0015]

【発明の効果】本発明は、以上詳記したように、炭素繊
維表面に剥離や亀裂の無い金属炭化物を被覆することが
できる効果を奏し、その結果、エンジン部材のような高
温で高強度を要求される部材等、耐熱性に優れたセラミ
ックスの強化材として有用な表面被覆炭素繊維を提供す
ることができる。
Effects of the Invention As detailed above, the present invention has the effect of being able to coat the surface of carbon fibers with metal carbide without peeling or cracking, and as a result, has high strength at high temperatures such as engine parts. It is possible to provide a surface-coated carbon fiber useful as a reinforcing material for ceramics with excellent heat resistance, such as required members.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  金属蒸気と炭素繊維とを該炭素繊維表
面で反応させ、この炭素繊維表面に金属炭化物被覆層を
形成することを特徴とする表面被覆炭素繊維の製造方法
1. A method for producing surface-coated carbon fibers, which comprises reacting metal vapor and carbon fibers on the surface of the carbon fibers to form a metal carbide coating layer on the surfaces of the carbon fibers.
JP3125188A 1991-04-26 1991-04-26 Production of surface-coated carbon fiber Pending JPH04327265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125188A JPH04327265A (en) 1991-04-26 1991-04-26 Production of surface-coated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125188A JPH04327265A (en) 1991-04-26 1991-04-26 Production of surface-coated carbon fiber

Publications (1)

Publication Number Publication Date
JPH04327265A true JPH04327265A (en) 1992-11-16

Family

ID=14904093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125188A Pending JPH04327265A (en) 1991-04-26 1991-04-26 Production of surface-coated carbon fiber

Country Status (1)

Country Link
JP (1) JPH04327265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139943A1 (en) * 2007-04-27 2008-11-20 Nissei Plastic Industrial Co., Ltd. Method of manufacturing metal-carbon nanocomposite material
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector
JP2015048291A (en) * 2013-09-04 2015-03-16 長野県 Manufacturing method of coated carbon nanotube
DE102015220145A1 (en) * 2015-10-16 2017-04-20 Bayerische Motoren Werke Aktiengesellschaft Carbon fiber material, process for its production, fiber composite component containing the carbon fiber material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139943A1 (en) * 2007-04-27 2008-11-20 Nissei Plastic Industrial Co., Ltd. Method of manufacturing metal-carbon nanocomposite material
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector
JP2015048291A (en) * 2013-09-04 2015-03-16 長野県 Manufacturing method of coated carbon nanotube
DE102015220145A1 (en) * 2015-10-16 2017-04-20 Bayerische Motoren Werke Aktiengesellschaft Carbon fiber material, process for its production, fiber composite component containing the carbon fiber material

Similar Documents

Publication Publication Date Title
US5254397A (en) Carbon fiber-reinforced composite material having a gradient carbide coating
US5283109A (en) High temperature resistant structure
US3249462A (en) Metal diffusion coating utilizing fluidized bed
JPH04327265A (en) Production of surface-coated carbon fiber
JPH03290375A (en) Composite material reinforced with coated carbon fiber
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JPH0578977A (en) Production of surface-coated carbon fiber
JPH05238856A (en) Method for forming coating film of metal carbide
JPH0789776A (en) Production of boron nitride coated carbon material
US20040258919A1 (en) Oxidation protective coating method for carbon/carbon composites
JP3496204B2 (en) Boron carbide coated carbon material and method for producing the same
JPS60238480A (en) Manufacture of carbon fiber-reinforced metal
JPH05124147A (en) Production of surface coated carbon fiber reinforced carbon composite material
JPH01249679A (en) Graphite-silicon carbide composite body and production thereof
JP2545731B2 (en) Method for producing intermetallic compound-coated composite by vapor phase method
JPH0229745B2 (en)
JPS63319281A (en) High-hardness titanium boride-coated ceramics material and its production
US3484278A (en) Pyrolytic beryllia
JP3193761B2 (en) Method for producing TiC-coated highly conductive carbon material
JPH0714806B2 (en) Carbon film coated graphite material
JPH11335170A (en) High-strength silicon carbide composite material and its production
JPH0717468B2 (en) Method for producing pyrolytic carbon-coated graphite material
JPH1150101A (en) Heat treatment apparatus for metallic silicon powder and heat treatment using the apparatus
Zmii et al. Protection of carbon materials from high-temperature gas corrosion
JPH05125660A (en) Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace